Discussion of
"Falling into traps? Patent thickets, patent commercialization, and stock returns"
by Po-Hsuan Hsu, Hsiao-Hui Lee, and Tong Zhou

Evgeny Lyandres
Boston University

May 2017
Overview
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: ✓* ; Empirics: ✓
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: ✓ ∗ ; Empirics: ✓

Higher expected litigation cost \uparrow cost of commercialization and delays it
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket ↑ expected litigation cost following patent commercialization

Theory: ✓ * ; Empirics: ✓

Higher expected litigation cost ↑ cost of commercialization and delays it

Theory: ✓ ; Empirics: ✓ *
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket ↑ expected litigation cost following patent commercialization

Theory: ✓* ; Empirics: ✓

Higher expected litigation cost ↑ cost of commercialization and delays it

Theory: ✓ ; Empirics: ✓*

Delayed exercise lowers the value of GO and the ratio of GO to AP
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: ✓*; Empirics: ✓

Higher expected litigation cost \uparrow cost of commercialization and delays it

Theory: ✓; Empirics: ✓*

Delayed exercise lowers the value of GO and the ratio of GO to AP

Theory: ✓
Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: \checkmark* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it

Theory: \checkmark; Empirics: \checkmark*

Delayed exercise lowers the value of GO and the ratio of GO to AP

Theory: \checkmark

Lower GO/AP ratio \downarrow operational and stock return volatility, risk exposure, and stock returns
The paper in one slide

Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: ✓; Empirics: ✓

Higher expected litigation cost \uparrow cost of commercialization and delays it

Theory: ✓; Empirics: ✓*

Delayed exercise lowers the value of GO and the ratio of GO to AP

Theory: ✓

Lower GO/AP ratio \downarrow operational and stock return volatility, risk exposure, and stock returns

Theory: ✓
The paper in one slide

Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \(\uparrow \) expected litigation cost following patent commercialization

Theory: ✓* ; Empirics: ✓

Higher expected litigation cost \(\uparrow \) cost of commercialization and delays it

Theory: ✓ ; Empirics: ✓*

Delayed exercise lowers the value of GO and the ratio of GO to AP

Theory: ✓

Lower GO/AP ratio \(\downarrow \) operational and stock return volatility, risk exposure, and stock returns

Theory: ✓

As a result, **patent thickets** \(\downarrow \) volatility, **stock returns**, and **market factor loadings**

Theory: ✓ ; Empirics: ✓*
Impressions

- A very cool idea
- The overall logic seems economically important
- Adequate modeling setup
- Impressive data compilation
- Thorough empirics
- Overall, really interesting and thought-provoking paper!
Impressions

- A very cool idea
- The overall logic seems economically important
- Adequate modeling setup
- Impressive data compilation
- Thorough empirics
- Overall, really interesting and thought-provoking paper!

But
Impressions

- A very cool idea
- The overall logic seems economically important
- Adequate modeling setup
- Impressive data compilation
- Thorough empirics
- Overall, really interesting and thought-provoking paper!

But

I am a discussant...
Model
The model’s logic

- Investment (real) option exercise is delayed when the cost of exercising the option is higher (i.e. the exercise threshold is higher)
 - Dixit and Pindyck (1988)
- The risk and expected return ↓ in the option exercise threshold
 - Carlson, Fisher and Giammarino (2006)
- **This paper**: The cost of exercising the option is endogenous
 - It is shown to be ↑ in patent thicket
 - **This is potentially a very important contribution!**
- As a result, risk and expected return ↑ in patent thicket
Endogenous option exercise cost – the idea

- There are n firms, each owning a patent that the focal firm uses.
- Each firm charges the focal firm a price for using its patents (exploitation cost), q_i for firm i, and has to pay a private cost, c_i.
- The higher the q_i and the higher the overall exploitation cost, $\sum_i q_i$, the longer the GO exercise is delayed, and the lower the value of GO.
- Each firm does not fully internalize this reduction in value, leading to a larger $\sum_i q_i$ than would be charged by a monopolist holding all n patents.
- The larger the n the higher the total exploitation cost and the lower the value of GO.
 - The “population effect”
 - More interestingly, the “coordination effect”
The authors liken the coordination effect to Cournot competition. However, q_i is price, not quantity, despite notation. So, this is price competition – a **homogenous product price competition**. The usual result is that such competition leads to prices equalling (constant) marginal costs. Why is this not happening here?
Coordination effect – intuition

- Why doesn’t price competition drive q_i to c_i?
 - Because the buyer needs to buy not one product, but all of them
 - This makes the products perfect complements, not perfect substitutes
 - A very unorthodox setting, not sure I’ve encountered it

To summarize:

- When the firm has to pay exploitation costs for all patents, the total cost ↑ in n
- When the firm has to pay exploitation cost for just one patent, the total cost is zero or ↓ in n if the marginal private cost is not constant

- **A conjecture**: There is a threshold fraction of patents for which the firm needs to pay exploitation costs
 - above which total exploitation cost ↑ patent thicket
 - below which total exploitation cost ↓ patent thicket
 - Perhaps this could lead to more nuanced empirical predictions
Other comments

- The payoff from exercising GO is perfectly correlated with the cash flows from AP
 - Is it reasonable?
 - Do you need it? (i.e. is it crucial?)
 - Relaxing it could lead to interesting cross-sectional predictions

- The “population effect” needs to be neutralized, you only need the “coordination effect”
 - I would assume N firms holding n patents, and do comparative statics w/r to N

- There is a condition in Proposition 2 (that expected return ↑ in patent thicket): $\theta_t < \Omega P_t^I$
 - If it is not satisfied then the effect is reversed
 - **Conjecture**: this effect must be satisfied always if GO exercise is optimal, i.e. $\theta^* < \Omega P^I*$
Empirics
The measure of patent thicket in the model is n

The empirical measure is

$$1 - \sum_{j=1}^{J} \left(\frac{Numcites_{i,t}^{j}}{Numcites_{i,t}} \right)^2 \frac{Numpats_{i,t}}{Numpats_{i,t} - 1}$$

If firms are symmetric in terms of $Numpats_{i,t}$ and $Numcites_{i,t}^{j}$, then the measure of patent thicket is one, regardless of n

- I.e., the measure is constructed to be orthogonal to n

- Unlike HHI, $\sum_{j=1}^{J} \left(\frac{Numcites_{i,t}^{j}}{Numcites_{i,t}} \right)^2$

In the context of this paper, I am not sure this orthogonalization is appropriate, as n is a crucial determinant of GO exercise timing in the model

The authors mention robustness to using HHI

I would use HHI as a primary measure of patent thicket
Asset pricing results – Interpretation

- CAPM estimation of portfolio returns shows that:
 - Difference in betas between two extreme patent thicket quintiles equals 0.07
 - This is equivalent to roughly 0.5% annual return spread
 - Difference in (monthly) alphas between two extreme patent thicket quintiles is 0.42%
 - This is equivalent to roughly 5% annual return
 - Does the market not understand the effects of patent thickets on risk?
 - Is there a trading strategy?
 - It would be interesting to think about carefully implementing it
 - Or we have a wrong asset pricing model?
 - I would include additional factors in the return regressions
 - Given the low correlations between patent thicket and size and B/M, I suspect that alphas are robust to Fama-French 3-factor model
 - But are they robust to inclusion of other factors?
Other comments

- Patent thickets are computed using only citations to patents of public firms
 - I would report results based on patent thickets computed using all patents
- Given that litigation is related to patent citations, can there be endogeneity of citations due to strategic omission of important citations?
- The test of the effect of patent thickets on the time to commercialization uses levels of new product introduction instead of their timing
 - In the model, eventual exercise of GO is a certainty
 - If both patent thickets and commercialization are constant over time, we should not expect a theoretical relation between patent thicket and subsequent commercialization within a given time frame
 - Thus, the test is a test of the time-varying nature of patent thickets and commercialization
A paper with great potential

Thought provoking – a highly recommended read