Identifying and Fixing Resource Misallocation

Chang-Tai Hsieh University of Chicago

What is Aggregate TFP?

Weighted Average of Firm Productivity

Extent of Resource Misallocation

Roadmap:

Measurement of Allocative Efficiency
Privatization of Chinese State Owned Firms
Sources of Informality
Contract Labor in India
Spatial Misallocation
Occupational Misallocation

Measuring Productivity of Heterogenous Firms

Typical Setup: $\quad Y=A K^{\alpha} L^{1-\alpha}$

Thousands of papers focused on measuring α

But there is a deeper problem

Setup is inconsistent with existence of heterogenous firms

$$
Y=A L
$$

$$
M P L=A
$$

Also true with more general function

$$
\begin{gathered}
Y=A K^{\alpha} L^{1-\alpha} \\
M P L=(1-\alpha) A\left(\frac{K}{L}\right)^{\alpha}=W \\
M P K=\alpha A\left(\frac{K}{L}\right)^{\alpha-1}=R \\
\Rightarrow \frac{K}{L}=\frac{W}{R} \cdot \frac{\alpha}{1-\alpha}
\end{gathered}
$$

MPK and MPL highest in highest A firm

Need a source of diminishing returns

Lucas "Span of Control"

$$
\begin{aligned}
& Y=A L^{\gamma} \quad=>\text { MC rises with size of firm } \\
& M P L=\frac{\gamma A}{L^{1-\gamma}}=W \\
& \frac{Y}{L}=\frac{A L^{\gamma}}{L}=\frac{A}{L^{1-\gamma}} \text { and } L=\left(\frac{\gamma A}{W}\right)^{\frac{1}{1-\gamma}}
\end{aligned}
$$

Downward Sloping Demand Curve

$Y=A L$ and $P=\eta Y^{-\sigma}$
$P=\frac{\sigma}{\sigma-1} \cdot \frac{W}{A} \Rightarrow P \cdot M P L=\frac{\sigma}{\sigma-1} \cdot \frac{W}{A} \cdot A=\frac{\sigma}{\sigma-1} W$

Note that $\frac{P Y}{L}=P \cdot A=P \cdot M P L$

Efficient equilibrium

PY/L is the same across firms

Differences in A show up as differences in firm size

Differences in PY/L are not differences in A

What do differences in PY/L reflect?

Differences in the marginal product of labor

Suppose $Y=A L$ and $P=\eta Y^{-\sigma}$ but

$$
\pi=P Y-\left(1+\tau_{L}\right) W L
$$

$$
=>P=\frac{\sigma}{\sigma-1} \cdot \frac{W\left(1+\tau_{L}\right)}{A} \text { and } \frac{P Y}{L}=\frac{\sigma}{\sigma-1} \cdot W\left(1+\tau_{L}\right)
$$

Labor Productivity Reflects MPL

High PY/L
=> MPL is high (firm is smaller than optimal)

Low PY/L
=> MPL is high (firm is larger than optimal)

More general setup:

$$
Y_{i}=A_{i} K_{i}^{\alpha} L_{i}^{1-\alpha}
$$

$$
\pi_{i}=P_{i} Y_{i}-\left(1+\tau_{L i}\right) W L_{i}-\left(1+\tau_{K i}\right) R K_{i}
$$

Value of MPL $\propto \frac{P_{i} Y_{i}}{L_{i}} \propto 1+\tau_{L i}$

Value of MPK $\propto \frac{P_{i} Y_{i}}{K_{i}} \propto 1+\tau_{K i}$

Average MP of K and L (TFPR)

$$
\begin{aligned}
& \propto\left(\frac{P_{i} Y_{i}}{K_{i}}\right)^{\alpha}\left(\frac{P_{i} Y_{i}}{L_{i}}\right)^{1-\alpha}=\frac{P_{i} Y_{i}}{K_{i}^{\alpha} L_{i}^{1-\alpha}} \\
& \propto\left(1+\tau_{K i}\right)^{\alpha}\left(1+\tau_{L i}\right)^{1-\alpha}
\end{aligned}
$$

This is NOT $A_{i}=\frac{Y_{i}}{K_{i}^{\alpha} L_{i}^{1-\alpha}}$

This is extreme:

- Markups could differ

- Fixed costs (e.g., exporting costs)
- Adjustment costs

Figure 2: Distribution of TFPR

Dispersion in Marginal Product of K and L

90-10 Gap

US (1987)
China (1998)
India (1989)
1.97
6.49
8.17

Transformation of State-Owned Firms in China

Small SOEs were closed or privatized
Large SOEs were "corporatized"

Shanghai Automobile

Publicly Listed in 2000
SAIC Group owns 73\% of equity of Shanghai Auto
Group owned by Shanghai Municipal Government
Shanghai Auto also created two new firms:
Shanghai-GM (owns 50\%)
Shanghai-Volkswagen (owns 50\%)

Labor Productivity of Incumbent Firms

TFPR: $M P K^{\alpha} M P L^{1-\alpha}=\frac{P_{i} Y_{i}}{K_{i}^{\alpha} L_{i}^{1-\alpha}}$

$$
P_{i} Y_{i} \propto \frac{A_{i}^{\sigma-1}}{T F P R_{i}^{\sigma-1}}
$$

Aggregate TFP: $\quad T F P=\left(\sum_{i}\left[A_{i} \cdot \frac{\overline{T F F P},}{\frac{T F P R_{i}}{}}\right]^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$

$$
\log T F P=\log \bar{A}+\frac{\sigma}{2} \operatorname{var} \log A-\frac{\sigma}{2} \operatorname{var} \log T F P R
$$

\% of Growth from 1998 to 2007 due to:
Privatization and Exit of SOE: 3.2\%
Corporatization of SOE: 13.2\%

Informal Workers and Establishments in India and Mexico

Unpaid Workers
\% Workers \% Establishments
Informal Establishments
\% Workers \% Establishments

India
1989-90
2005-06

Mexico
1998

2008
71.9
62.0
94.1
90.9

78.9	99.4
80.5	99.3

14.8	75.6
30.4	87.1

Why so Much Informality:

Hernando de Soto’s Answer

Legally register two sewing machine shop in Lima

Two women do paperwork under supervision of lawyer

Six hours per day, five days a week:

300 days and Costs = 32 times average wage, 30 government agencies

The response:

World Bank’s Doing Business Project

Small Firm Registration

Microfinance

Business/Manager Training

Special Tax Regimes

David McKenzie and Christopher Woodruff

Experiment with Registration of Informal Firms in Sri Lanka

Free Registration: Zero takeup

Free Registration + 1 month income: 20% takeup

Free Registration +2 month income: 50% takeup

No Effect on Profit of Formal Registration

Why so Much Informality?

Santiago and McKinsey’s Answer:

Formal firms get taxed

Formal firms subject to regulations

Firing Costs in India

Informal firms evade taxes, regulations.
value-added/capital

India (2011)

Indonesia (2006)

Mexico (2008)

Log Employment

Industrial Disputes Act

1947: Firms > 100 Workers Cannot Let Workers go

No change in IDA

Licensing Laws

Mostly Dismantled by mid 1990s

Elasticity of Labor Productivity (Y/L) with respect to Employment

Elasticity of Productivity of Capital with respect to Employment

TeamLease

Founded in 1997
99,000 Workers, 1100 administrative staff
1,200 clients, mostly service sector (83 workers per client)

One-year contract, one-month notice
Complies with IDA, pays payroll tax (but other labor contractors may not)

Based in Mumbai, 8 branches

Right Tail of Firm Size Distribution Has Thickened

2000 2010

Share of Plants
> 100 Workers

Employment Share
Plants > 100 Workers

63\%
70\%
$11 \% \quad 15 \%$

Large Firms (> 100 Workers) Use More Contract Labor

Spatial Misallocation

Large Differences in Economic Activity Across Cities
Local Labor Demand (TFP)
Labor Supply (Amenities, Housing Prices)

But workers can move between cities and indifferent between "good" and "bad" cities (in equilibrium)

Effect of Local TFP/Amenities/Housing Prices on Aggregate Welfare and Output

Suppose housing supply is inelastic in cities with TFP growth.
TFP => Higher Housing Prices
Rosen-Roback => High TFP cities are also Wage Cities
High TFP cities are also cities where MP of Labor is high
High Wage is equilibrium: Workers do not want to move to high TFP/high MP city

Distribution of Average Residual Wage in 220 Cities

Rosen-Roback

Local Output: $\quad Y_{i}=A_{i} K_{i}{ }^{\eta} L_{i}{ }^{\alpha}$
A_{i} : Local TFP

Welfare (Indirect Utility): $\quad V=\frac{W_{i} Z_{i}}{P_{i}^{\beta}}$
Z_{i} : Amenities
P_{i} : Rental Price of Housing

Partial Equilibrium

Labor Productivity: $\quad \frac{Y_{i}}{L_{i}} \propto W_{i}=\frac{V P_{i}^{\beta}}{Z_{i}}$

City Size: $\quad L_{i} \propto\left(\frac{A_{i}}{W_{i}^{1-\eta}}\right)^{\frac{1}{1-\alpha-\eta}}=\left(\frac{A_{i} Z_{i}^{1-\eta}}{P_{i}^{\beta(1-\eta)}}\right)^{\frac{1}{1-\alpha-\eta}}$

Housing Price: $P_{i}=L_{i}^{\gamma_{i}}=>W_{i} \propto\left(\frac{A_{i}^{\gamma_{i} \beta}}{Z_{i}^{1-\eta-\alpha}}\right)^{\frac{1}{(1-\eta)\left(1+\gamma_{i} \beta\right)-\alpha}}$

General Equilibrium

Aggregate Welfare: $V \propto Y \cdot \sum_{i} L_{i} \cdot \frac{Z_{i}}{P_{i}^{\beta}}$

$$
Y=\sum_{i} Y_{i}=\left(\sum_{i} A_{i}^{\frac{1}{1-\alpha-\eta}}\left(\frac{\bar{W}}{W_{i}}\right)^{\frac{1-\eta}{1-\alpha-\eta}}\right)^{\frac{1-\alpha-\eta}{1-\eta}}
$$

$$
\bar{W}=\sum_{i} L_{i} W_{i}: \text { employment-weighted average wage }
$$

Welfare = Average local TFP + Average Amenities/Prices - Wage Dispersion

Aggregate Effect of Increase in Local TFP (New York, SF, South)

Average Local TFP

Average Housing Prices increase (depending on housing supply elasticity)
W_{i} Dispersion

Increase Dispersion if high wage city (by a lot if housing supply inelastic) (New York, SF)

Decrease Dispersion if low wage city and housing prices don’t increase by "too much" (South)

Aggregate Effect of Decrease in Local TFP (Rust Belt Cities)

Average Local TFP Falls

Glaeser-Gyourko: Housing Supply Inelastic in Declining Cities

Average Housing Prices (across all cities) Fall
W_{i} Dispersion

Decrease Dispersion if wages are "very high"

Increase Dispersion if wages are not "too high"

Aggregate Effect of Improvement in Local Amenities

Value of Good Weather, Consumer Amenities, Good Public Schools

Average Amenities Improves
W_{i} Dispersion

Decrease Dispersion if high wage city (New York, SF)

Increase Dispersion if low wage city (South)

Standard Deviation of Log Average Wage Across 220 Cities

19642009
Average Wage
0.132
0.205

Average Residual Wage $0.109 \quad 0.189$

Convergence in Occupational Choice since 1960

Women vs. Men
Blacks vs. White

Percent of White Men in Select Occupations

1960 2006-2008

Doctors
94
63
Lawyers
96
61
Managers
86
57

What were they doing in 1960?

White Women:

58\% in Nursing, Teaching, Sales, Secretaries, Food Preparation
White Men: 17\% (Mostly Sales)

Black Men: 54\% in Freight/Stock Handlers, Motor Vehicle Operators, Machine Operators, Farm, Janitorial and Personal Services

White Men: 29\%

Occupational convergence driven by deep social changes
Labor market discrimination
Sandra Day O’Connor couldn’t find job in 1952
Human capital market discrimination

Princeton did not admit women until 1970s

Social preferences
Occupational convergence suggests less misallocation of talent today

Questions:

How much better is talent allocated across professions today?

How much does better allocation matter for

> Wage gaps?

Aggregate productivity?

How much did different social forces matter?

Our approach:

Roy model of occupational choice with frictions + general equilibrium

Minimum Setup

Each person gets a skill draw ε_{i} in N occupations
w_{i} : Return to unit of skill in occupation i
Labor Market Friction: Wage $_{i g}=\left(1-\tau_{i g}^{W}\right) \cdot w_{i} \cdot \varepsilon_{i}$
Occupational Choice: Pick $\max _{i}\left\{\left(1-\tau_{i g}^{W}\right) \cdot w_{i} \cdot \varepsilon_{i}\right\}$

Distributional Assumption

$\varepsilon_{i} \sim$ iid Frechet with dispersion parameter θ

Ex-ante probability person from group g chooses sector i

$$
p_{i g}=\frac{\left(w_{i} \cdot\left(1-\tau_{i g}^{W}\right)\right)^{\theta}}{\sum_{k}\left(w_{k} \cdot\left(1-\tau_{k g}^{W}\right)\right)^{\theta}}
$$

Average Wage

$\overline{\operatorname{Wage}}_{i g}=\left(1-\tau_{i g}^{w}\right) w_{i} \overline{\bar{c}}_{i g}$
Average quality of group g in $i: \overline{\varepsilon_{i g}}=p_{i g}^{-\theta}$
Average quality falls when more people enter

$$
\overline{\operatorname{Wag}}_{g}=\left(\sum_{i}\left(w_{i} \cdot\left(1-\tau_{i g}^{w}\right)\right)^{\theta}\right)^{\frac{1}{\theta}}
$$

Same wage in all occupations

OCCUPATIONAL WAGE GAP (LOGS)

Aggregate Output

$$
\begin{aligned}
& Y=\sum_{g} \sum_{i} w_{i} \bar{\varepsilon}_{i g}=\sum_{g} \frac{\overline{W a g e}_{g}}{1-\bar{\tau}_{i g}^{w}} \\
& =\sum_{g}\left(\sum_{i}\left(w_{i} \cdot \frac{\left(1-\tau_{i g}^{w}\right)}{1-\bar{\tau}_{i g}^{w}}\right)^{\theta}\right)^{\frac{1}{\theta}}
\end{aligned}
$$

Mean has no effect on output
Only dispersion matters for output

Inference:

Normalize $\tau_{i, w m}^{w}=0$

$$
1-\tau_{i g}^{w}=\left(\frac{p_{i g}}{p_{i, w m}}\right)^{-1 / \theta} \frac{\overline{\text { Wage }}_{w m}}{\overline{W a g e}_{g}}
$$

Standard Deviation of $\log p_{i g} / p_{i, w m}$

Preferences vs. Labor Market Frictions

$$
\begin{gathered}
\text { Pick } \max _{i}\left\{\mathrm{z}_{i g} \cdot\left(1-\tau_{i g}^{W}\right) \cdot w_{i} \cdot \varepsilon_{i}\right\} \\
p_{i g}=\frac{\left(w_{i} \cdot z_{i g} \cdot\left(1-\tau_{i g}^{W}\right)\right)^{\theta}}{\sum_{k}\left(w_{k} \cdot z_{k g} \cdot\left(1-\tau_{k g}^{W}\right)\right)^{\theta}} \\
\overline{W a g e}_{i g}=z_{i g}^{-1}\left(\sum_{k}\left(w_{k} \cdot z_{k g}\left(1-\tau_{k g}^{w}\right)\right)^{\theta}\right)^{\frac{1}{\theta}}
\end{gathered}
$$

Inference in model with $z_{i g}$ and $\tau_{i g}$

$\overline{\text { Wage }}_{i g} \propto z_{i g}^{-1}=>$ Wage gaps across occupations reflect $z_{i g}$
$1-\tau_{i g}^{w}=\left(\frac{p_{i g}}{p_{i, w m}}\right)^{-1 / \theta} \frac{{\overline{\text { Wage }_{i, w m}}}_{\overline{\text { Wage }}_{i g}}}{}$ still measures $1-\tau_{i g}^{w}$
(note we now use sector specific wage gap)

Variance $\log 1-\tau_{i g}^{w}$

Variance $\log z_{i g}$
VARIANCE (WEIGHTED) OF LOG

$\left(1-\tau_{i g}^{w}\right)^{-1}$ for White Women in Select Occupations
COMPOSITE BARRIER

Labor Market vs. Human Capital Distortions

Human capital $e_{i g}{ }^{\eta}$ with cost $e_{i g}\left(1+\tau_{i g}^{h}\right)$
Consumption: $\quad C=\left(1-\tau_{i g}^{w}\right) w_{i} \varepsilon_{i} e_{i g}{ }^{\eta}-e_{i g}\left(1+\tau_{i g}^{h}\right)$

$$
\Rightarrow C^{*}=(1-\eta)\left(1-\tau_{i g}^{w}\right) w_{i} \varepsilon_{i} e_{i g}^{* \eta} \text { where } e_{i g}^{*}=\left(\frac{\left(1-\tau_{i g}^{w}\right)}{\left(1+\tau_{i g}^{h}\right)^{\eta}} \cdot w_{i} \varepsilon_{i}\right)^{\frac{1}{1-\eta}}
$$

Choose $\max _{i}\left\{\left(1-\tau_{i g}^{w}\right) w_{i} \varepsilon_{i} e_{i g}^{*} \eta\right.$
\Rightarrow Occupational Choice: $p_{i g}=\frac{\left(w_{i} \cdot \frac{\left(1-\tau_{i g}^{w}\right)}{\left(1+\tau_{i g}^{h}\right)^{\eta}}\right)^{\theta}}{\sum_{k}\left(w_{k} \cdot \frac{\left(1-\tau_{k g}^{w}\right)}{\left(1+\tau_{k g}^{h}\right)^{\eta}}\right)^{\theta}}$

Labor Market vs. Human Capital Frictions: Identification

$$
\left(\frac{p_{i g}}{p_{i, w m}}\right)^{-1 / \theta} \frac{\overline{\text { Wage }}_{i, w m}}{\overline{\text { Wage }}_{i g}} \text { measures } \frac{\left(1-\tau_{i g}^{w}\right)}{\left(1+\tau_{i g}^{h}\right)^{\eta}}
$$

Assume $e_{i g}^{*}$ is fixed after it is chosen

$$
\Rightarrow \frac{\overline{\operatorname{Wage}}_{i g}(\mathrm{t}+1)}{\overline{\operatorname{Wage}}_{i g}(\mathrm{t})}=\frac{w_{i}(\mathrm{t}+1)}{w_{i}(\mathrm{t})} \cdot \frac{\left(1-\tau_{i g}^{w}(\mathrm{t}+1)\right)}{\left(1-\tau_{i g}^{w}(\mathrm{t})\right)}
$$

Wage growth relative to men isolates change in $\left(1-\tau_{i g}^{w}\right)$

Labor Market vs. Human Capital Frictions: Identification

We have:

1) $\Delta\left(1-\tau_{i g}^{w}\right)$ (from wage growth relative to men)
2) $\frac{\left(1-\tau_{i g}^{w}\right)}{\left(1+\tau_{i g}^{h}\right)^{\eta}}$ of young at t and $t+1$ (from occupational shares)
$\Rightarrow \quad$ Back out $\Delta\left(1+\tau_{i g}^{h}\right)^{\eta}$ as the residual

Variance of $\log \left(1+\tau_{i g}^{h}\right)^{\eta}$ and $\log \left(1-\tau_{i g}^{w}\right)$ for White Women VARIANCE (WEIGHTED) OF LOG

Contribution to Growth from 1960 to 2010:

$$
\begin{array}{rc}
\tau^{w}, \tau^{h}, \mathrm{z}: & 27.2 \% \\
\tau^{w}, \tau^{h} \text { only: } & 26.7 \% \\
\tau^{h} \text { only: } & 24.5 \% \\
\tau^{w} \text { only: } & 5.7 \%
\end{array}
$$

