Manufacturing - Finance Comparative Advantage and Global Imbalances

by Rui Mao and Yang Yao

ABFER Inaugural Conference

discussion by Martin Berka
Victoria University of Wellington and CAMA

National University of Singapore Business School
May 21, 2013
Do you think it is necessary to have a static model which predicts \(CA = 0 \) in a paper on global imbalances?

- Merge the two models into a single one that has CA predictions

I don’t understand some aspects of the modeling setup

You seem to have an externality in the model: households choose to give capital, but for 0 direct return

- The return comes in the form of a higher wage next year
- "wage return" = 1 + \(r \) to facilitate the existence of two assets in a risk-free world
- This is not a standard competitive equilibrium setup with price-takers
- It seems you may be solving some kind of central planner’s problem, which in your case doesn’t equal the competitive allocation.
- In a competitive allocation, households would choose \(K = 0 \)
Comments: Model

- Is this a well-defined steady state?
 - The within-generation problem has consumption smoothing and growing $|CA|
 - Consumption is constant in each generation: $C = \frac{1}{1+\beta} \left(Y_1 + \frac{Y_2}{1+r} \right)$
 - But with a constant interest rate and no risk, your model seems to have a unit root in NFA ($NFA \rightarrow \pm \infty$), possibly as a fraction of output

- Schmitt-Grohe & Uribe 2003 JIE show that SOE models with incomplete asset markets exhibit dependance on initial conditions, and so are inconsistent with a steady state growth path

- Stability which prevents transient shocks from having permanent consequences needs to be induced by, e.g., debt-elastic interest rate, convex adjustment costs, etc.

- What are the stability properties of your model?
The point you are making with the model is very intuitive and simple.

In a two-country world with perfect specialization, one country will end up making manufacturing stuff, the other will produce financial services.

Do you really need a very complex model to say this and bring idea to the data?
Empirical exercise very similar to Chinn and Prasad (2003, JIE)

- One new variable: Relative labour productivity
- They cover 89 countries, you cover 24: probably can increase sample?
- Results are mostly consistent with Chinn and Prasad (2003)
Why this country selection?

- Two-country model, but data only for small open economies.
 - The main feedback loop in your model – the dependance of interest rate on country characteristics (productivity) – need not be satisfied in the data.
- There are no CA-creditor countries in the sample except for Korea and Germany (Canada in a some years)
- Would be nice to see more Asian economies and the US, especially since the usual paradigm in explaining global CA imbalances is ”East vs. West”
Comments: Empirics

Why this country selection?

- Another reason why it would be nice to see more Asian countries:
 - Singapore, Hong Kong: world financial centers
 - Also very important manufacturing centers
 - But my guess is that their comparative advantage is in finance, not manufacturing
 - Singapore and Hong Kong run large CA surpluses
 - May not support the theory
Comments: Empirics

- **Link between Fiscal and CA balances**
 - "Twin deficit" literature concludes no long-term relationship (some decades +, some −)
 - This is because both CA and FB driven by shocks
 - Persistence and the degree of commonality across countries matter for results
Output per worker is an imprecise measure of what you mean by “productivity”

- Imprecise measure of TFP: Both Y and L respond endogenously to TFP
- On the flipside, Y/L can also move when TFP doesn’t:
 - non TFP induced changes in K
 - policy changes
 - tax change
- These are particularly relevant issues when looking at long (growth) horizons
I use a panel of constructed sectoral TFP levels from another project.

TFP_{Man}/TFP_{Fin} levels do not suffer from the above issues.

Should give clearer evidence of link between TFP and CA.

No other variables, but that may work against me.

Smaller sample: only half of your countries, plus UK, Belgium and Slovenia.
TFP_M / TFP_F vs CA: no clear link
$T F P_M / T F P_F$ vs $C A$ in cross-section

Cross sections

TN2
Pool vs Fixed effects panel

Dependent Variable: CA (constant not reported)
Sample: 1995 2007
Total panel (balanced) observations: 195
Period weights (PCSE) standard errors & covariance (d.f. corrected)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFP_M / TFP_F</td>
<td>-0.035</td>
<td>0.024</td>
<td>-1.459</td>
<td>0.146</td>
</tr>
</tbody>
</table>

R-squared 0.011923
Adjusted R-squared 0.006803
F-statistic 2.328872

Dependent Variable: CA (constant not reported)
Method: Panel EGLS (Cross-section random effects)
Total panel (balanced) observations: 195
Swamy and Arora estimator of component variances
Period weights (PCSE) standard errors & covariance (d.f. corrected)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFP_M / TFP_F</td>
<td>0.078</td>
<td>0.030</td>
<td>2.567</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Weighted Statistics
R-squared 0.040284
Adjusted R-squared 0.035311

Unweighted Statistics
R-squared -0.108925
Sum squared resid 0.363481

Martin Berka (VUW)
Macro-Fin Comp. Adv and Current Account
May 2013
Comments: Empirics

- Results go in opposite direction from yours: pool insignificant, CFX significantly positive
- Time-series drive the results
- But with only 15 years of data, your growth story should really come through in cross sectional results
- This does happen when using Y/L but not when using TFP