Fiscal Conditions and Long-term Interest Rates

Koji Nakamura*
kouji.nakamura@boj.or.jp

Tomoyuki Yagi*
tomoyuki.yagi@boj.or.jp

Papers in the Bank of Japan Working Paper Series are circulated in order to stimulate discussion and comments. Views expressed are those of authors and do not necessarily reflect those of the Bank.

If you have any comment or question on the working paper series, please contact each author.

Papers in the Bank of Japan Working Paper Series are circulated in order to stimulate discussion and comments. Views expressed are those of authors and do not necessarily reflect those of the Bank.

If you have any comment or question on the working paper series, please contact each author.

When making a copy or reproduction of the content for commercial purposes, please contact the Public Relations Department (post.prd8@boj.or.jp) at the Bank in advance to request permission. When making a copy or reproduction, the source, Bank of Japan Working Paper Series, should explicitly be credited.
Fiscal Conditions and Long-term Interest Rates*

Koji Nakamura† and Tomoyuki Yagi‡

Abstract

We conduct a quantitative analysis of the effects of fiscal conditions and other factors on nominal long-term interest rates based on panel data of 23 member states of the Organisation for Economic Co-operation and Development (OECD) for the period from 1980 to 2013. In addition to labor productivity, labor input, and inflation rates, our analysis shows that the fiscal balance, national burden ratio, and current account balance (= domestic savings) influence nominal long-term interest rates. The elasticity of nominal long-term interest rates to the fiscal balance vary, depending on the levels of government debt outstanding, which are thought to affect perceptions of fiscal sustainability in the future. This implies that the elasticity of nominal long-term interest rates to the fiscal balance is non-linear depending on the levels of government debt outstanding. We also find that a low national burden ratio nurtures future expectations of fiscal consolidation and thus keeps long-term interest rates at low levels. In addition, non-traditional monetary policy measures in recent years are found to keep nominal long-term interest rates at low levels.

Key words: long-term interest rates, fiscal conditions, monetary policy
JEL classification: E43, E52, H62, H63

* The authors would like to thank staff members of the Bank of Japan for their useful comments. The opinions expressed here, as well as any remaining errors, are those of the authors and should not be ascribed to the Bank of Japan.

† Research and Statistics Department, Bank of Japan (E-mail: kouji.nakamura@boj.or.jp)
‡ Research and Statistics Department, Bank of Japan (E-mail: tomoyuki.yagi@boj.or.jp)
1. Introduction

Yields on government bonds (hereafter referred to as “nominal long-term interest rates”) serve as the basis for lending interest rates and for pricing various financial products. As such, their fluctuations greatly affect financial and economic activities. Theoretically, nominal long-term interest rates can be explained by the term structure model of interest rates (Equation (1) below) and the Fisher equation (Equation (2) below). According to these formulae, nominal long-term interest rates are explained by real long-term interest rates, long-term inflation expectations, and risk premiums (Equation (3) below).¹

Term structure model of interest rates : \[i^L_h = \frac{1}{T} \sum_{t=0}^{T-1} i^S_{h+t} + RP^S_h \cdots (1) \]

Fisher equation : \[i^S_{h+t} = r^S_{h+t} + \pi^S_{h+t} \cdots (2) \]

Nominal long-term interest rate : \[i^L_h = \frac{1}{T} \sum_{t=0}^{T-1} r^S_{h+t} + \frac{1}{T} \sum_{t=0}^{T-1} \pi^S_{h+t} + RP^S_h = r^L_h + \pi^L_h + RP^L_h \cdots (3) \]

- \(i^L_h \) : Nominal long-term interest rate
- \(i^S_h \) : Nominal short-term interest rate
- \(RP^S_h \) : Risk premium
- \(r^S_h \) : Real short-term interest rate
- \(\pi^S_h \) : Expected short-term inflation rate
- \(r^L_h \) : Real long-term interest rate
- \(\pi^L_h \) : Expected long-term inflation rate

Risk premiums are seen to comprise, among others, the term premium stemming from uncertainties about the future term structure and the sovereign risk premium stemming from the creditworthiness of the issuer-state.

Past empirical studies on the impact of fiscal conditions on nominal long-term interest rates show varying results from case to case. By conducting an empirical analysis of U.S. data through 2004, Gale and Orszag (2004) report that fiscal deficits and government debt outstanding indeed influence long-term interest rates differently from

¹ In equations, L, S, h, and T mean long-term, short-term, point of time, and maturity, respectively.
case to case (Table 1). Meanwhile, Gale and Orszag (2004) conclude that it is the
expectation for future fiscal deficits rather than the current fiscal deficits that influence
long-term interest rates. Based on international panel data, Alesina et al. (1992) state
that there is a strong relationship between government debt outstanding and long-term
interest rates. More recently, some empirical studies have found that the relationship
between fiscal conditions and long-term interest rates is not linear and that the
deterioration in fiscal conditions beyond a certain extent results in a non-linear
increase in long-term interest rates while past empirical studies found that the
relationship was linear and an expansion of fiscal deficits resulted in a proportionate
increase in long-term interest rates. Based on panel data from advanced economies,
Ardagna et al. (2007) show that high levels of government debt outstanding result in a
non-linear relationship between primary balances and long-term interest rates. They
point out that when comparing a country with a large government debt outstanding to
that with a smaller one, the increase in long-term interest rates is greater in the former
even when the levels of primary deficits of these countries are the same. Égert (2010)
also states that a government debt outstanding beyond a certain level results in higher
long-term interest rates. In addition, Gros (2011) shows that there is a non-linear
relationship between the amount of the current account balance and long-term interest
rates.

Many of these findings show that a deterioration in fiscal conditions results in higher
interest rates, though in varying degrees. In today’s Japan, however, nominal long-term
interest rates remain low despite the country’s record high gross and net government
debt levels. On this point, Krugman (2011) notes the fact that Japan’s government debt
outstanding does not lead to higher interest rates “seems to be an important puzzle to
resolve.” Also, Caporale and Williams (2002) state that Japan is the only country in
which government debt outstanding does not seem to affect interest rates. According to
Krugman (2011), this peculiarity of Japan’s long-term interest rates is attributable to
the country’s current account surplus, which keeps long-term interest rates from rising.
Hoshi and Ito (2012) attribute Japan’s peculiar status to its domestic savings, a home
bias, economic stagnation, and the expectation for future fiscal consolidation. Ichiuie
and Shimizu (2015) cite the increase in demand for safety assets as Japan’s population
rapidly ages and the country’s external assets as factors curbing increases in long-term
interest rates. Ichiuie and Shimizu (2015) empirically conclude that fiscal factors (i.e.,
government debt outstanding) have linear effects on long-term interest rates.

We attempt to empirically identify the determinants of government bond yields (i.e.,
nominal long-term interest rates) based on panel data from advanced economies. Specifically, by performing an empirical analysis, we aim at finding how fiscal variables (e.g., government debt outstanding and fiscal balance) influence nominal long-term interest rates and the reason why Japan’s long-term interest rates remain low despite the nation’s severe fiscal conditions. For details on the data used in this study, see the attached Appendix.

This paper is organized as follows: Section 2 examines the relationship between fiscal conditions and long-term interest rates based on the data; Section 3 describes the outline of the empirical analysis; Section 4 presents the results of the empirical analysis; and Section 5 presents conclusions.

2. Relationship between fiscal conditions and long-term interest rates

This section shows stylized facts regarding the relationship between long-term interest rates and fiscal conditions such as government debt outstanding as well as fiscal and primary balances based on data from 23 member states of the OECD for the period from 1980 to 2013.

First, there is almost no correlation between gross government debt outstanding (as a ratio to nominal GDP) and nominal long-term interest rates (Chart 1).\(^2\) Added to this, there is almost no correlation between net government debt outstanding (i.e., gross government debt minus the amount of financial assets held by the government, and as a ratio to nominal GDP) and nominal long-term interest rates (Chart 2). Therefore, the statistical tests based on the two simple variables do not reveal any relationship between government debt outstanding and nominal long-term interest rates.

Next, the relationship between the fiscal balance on a flow basis and nominal long-term interest rates is examined. The correlation is found to be low between the fiscal balance including interest payments (as a ratio to nominal GDP) and nominal long-term interest rates (Chart 3). The primary balance (i.e., fiscal balance excluding interest payments, and as a ratio to nominal GDP) is also found to have a tenuous correlation with nominal long-term interest rates (Chart 4).

\(^2\) The relationship between real long-term interest rates and government debt outstanding on both gross and net bases is also examined. It was found that there was almost no correlation with real long-term interest rates on either base, as was the case with nominal long-term interest rates.
Then, samples, in which the amounts of government debt outstanding are above a certain value, are selected to see the relationship between the fiscal balance and nominal long-term interest rates. First, samples, in which the ratio of gross government debt outstanding to GDP is 50 percent or more, are selected to show the relationship between the fiscal balance and nominal long-term interest rates (Chart 5). The chart indicates that the correlation for these samples is somewhat greater than that for all samples, and that the elasticity of nominal long-term interest rates to the fiscal balance for these samples is higher as well. Furthermore, for those samples in which the ratios of gross government debt outstanding to GDP are 70 percent or more, the correlation between the two proves to be stronger and the elasticity higher. The same trend is observed for the samples in which the ratio of debt outstanding to GDP is 90 percent or more. The findings are the same when the relationship between the fiscal balance and nominal long-term interest rates is examined based on net debt outstanding. The correlation is also found to be stronger and the elasticity greater when the analysis is based on net debt outstanding than when it is based on gross debt outstanding.

Next, we use the data samples excluding those of Japan (Chart 6). For both gross and net debts outstanding, the correlation between the fiscal balance and nominal long-term interest rates becomes stronger and the elasticity higher. These tendencies are more pronounced when we use data excluding those of Japan. When only the samples predating the financial crisis are selected and when data from Japan are excluded, the correlation between the fiscal balance and nominal long-term interest rates clearly becomes even stronger and the elasticity higher as the levels of government debt outstanding rise (Chart 7).

In prior studies, the results are divided as to whether it is the current fiscal variables or future fiscal variables that affect long-term interest rates. Given the findings presented above, one interpretation would be: (1) the present fiscal balance influences nominal long-term interest rates, but to a small degree, and that (2) a large fiscal deficit, combined with a high government debt outstanding, increases concerns about the sustainability of future fiscal conditions, thus increasing the impact on nominal long-term interest rates. In the latter case, information on the fiscal balance combined with that on government debt outstanding can be interpreted as a proxy variable representing the “expectation” for the sustainability of future fiscal conditions.
3. Outline of the empirical analysis

Based on the findings in the previous section, we examine the various factors that can influence nominal long-term interest rates. Here, we use yields on 10-year government bonds (spot rates), which are dependent variables, as nominal long-term interest rates.³

(1) Variables related to the real economy

As seen in Section 1, nominal long-term interest rates can be broken down into real long-term interest rates, long-term inflation expectations, and risk premiums. Labor productivity and labor input are to be examined here as factors influencing real long-term interest rates.

(2) Inflation rates

The long-term inflation expectation is an essential independent variable for nominal long-term interest rates. In many countries, however, data on long-term inflation expectation are not always available for an extended period. Therefore, we use actual inflation rates in order to include as many countries as possible. As for inflation rates, this study uses the headline rate of increase in consumer prices.

(3) Nominal short-term interest rates

Based on a term-structure model of interest rates, nominal short-term interest rates may possibly be counted as one independent variable. Indeed, taking the Taylor rule into account, these rates move, to some extent, in harmony with real economic variables and inflation rate trends. However, assuming that monetary policy reacts to short-term economic fluctuations in a forward-looking manner, changes in nominal short-term interest rates reflect not only the current levels of labor productivity, labor input, and inflation rates, but also their future expectations. Therefore, we use nominal short-term interest rates as explanatory variables.

(4) Fiscal balance and government debt outstanding

It is thought that there is a correlation between fiscal or primary balances and nominal

³ Ichiue and Shimizu (2015) use forward rates of 10 countries from 1990 as nominal long-term interest rates. In this paper, we use spot rates as nominal long-term interest rates in order to include more countries (23 countries) and longer time series data from 1980.
long-term interest rates. In addition, there is a strong correlation between “the fiscal balance conditional on the levels of government debt outstanding,” which could reflect the expectation of future fiscal sustainability, and nominal long-term interest rates, as shown in Section 2. Therefore, this panel estimation takes into account, along with the fiscal balance itself, the fact that the impact of the fiscal balance conditional on the levels of government debt outstanding on nominal long-term interest rates increases in a non-linear fashion when the levels of government debt outstanding exceed certain levels. We use the ratios of fiscal variables to nominal GDP, as in the preceding section.

We use the net government debt outstanding and the fiscal balance including interest payments as explanatory variables for the following panel estimations. This is because net government debt outstanding (which is obtained after offsetting the debt with the government’s financial asset holdings) would be a more appropriate indicator of the government’s ability to pay. Previous studies demonstrated that net government debt outstanding had a significant impact compared with gross government debt outstanding. As to the choice between fiscal balance and primary balance, in order to assess the government’s ability to pay, we think it appropriate to include interest payments, and therefore use the fiscal balance as an explanatory variable. Later in this paper, we examine the robustness of this analysis using different variables such as gross government debt outstanding and primary balance.

(5) Expectations for fiscal consolidation

Even if the current fiscal conditions are severe, a high expectation for future fiscal consolidation would keep the government’s ability to pay from being questioned and therefore would not raise the fiscal risk premium, an element of nominal long-term interest rates. One of the factors which keep Japan’s nominal long-term interest rates from rising is said to be the expectation for fiscal consolidation (Hoshi and Ito [2012]). We use the national burden ratio (as a ratio to nominal GDP), that is the sum of tax payments and social security fees, as a variable representing the expectation for fiscal consolidation. In the actual estimation exercise, we use the deviations from the all-sample averages as explanatory variables. Despite a severe current fiscal condition, a low national burden ratio would lead to the expectation that future increases in tax payments and social security fees are likely to be lower than the historical average, which in turn would reduce the expectation for fiscal consolidation.

For example, Ichiiue and Shimizu (2015) state, “if the financial assets held by the government can be used to repay debts, it is appropriate to consider that the effect of default risk is determined by net debt, which is calculated by offsetting those financial assets.” pp. 46.
payments or social security fees would contribute to a fiscal consolidation, which, in turn, may keep long-term interest rates from rising. In contrast, a high government debt outstanding and a large fiscal deficit, despite an already high national burden ratio, would put to question the sustainability of fiscal health, leading to higher levels of nominal long-term interest rates. In fact, Japan’s national burden ratio is below those of other countries in this analysis. Japan’s low national burden ratio may have affected expectations for future fiscal consolidation.

(6) Current account balance

The current account balance is also said to affect nominal long-term interest rates (Krugman [2011], and Hoshi and Ito [2012]). A current account surplus equivalent to excess domestic savings would facilitate the domestic absorption of government bonds and is thought to keep long-term interest rates from rising. By contrast, a current account deficit equivalent to a domestic savings shortfall makes it difficult to absorb government bonds domestically, making it necessary to raise funds from overseas. Assuming that there is a home bias, raising funds overseas is likely to result in higher interest rates. We use the ratio of the current account balance to nominal GDP as an explanatory variable.

(7) Non-traditional monetary policy measures

Faced with low growth rates and low inflation following the global financial crisis, central banks of advanced economies have faced the zero lower bound of nominal short-term interest rates and have attempted to stimulate the economy by using non-traditional monetary policy measures. Although non-traditional monetary policy measures may take different forms, many of them are characterized by techniques designed to reduce the term premium through large purchases of long-term government bonds. We adopt the monetary base (as a ratio to nominal GDP) as a proxy variable of the non-traditional monetary policy measure applicable on a cross-country basis.\(^5\)

\(^5\) A government bond-purchasing dummy in which the period after the introduction of large-scale government bond purchase programs by central banks as their policy measures is represented by 1 and other periods by 0. The value of the dummy multiplied by that for the monetary base is used as a proxy variable for the degree of monetary easing. Specifically, the dummy is 1 for Japan from 2001 and onward, from 2009 and onward for the United Kingdom (U.K.) and the United States (U.S.), and 2010 and onward for the euro-zone. We show the results of analyses in which the monetary base \textit{per se}, rather than the dummy variables, are used to verify the robustness of the estimation, although the sample size becomes smaller.
(8) Impact of the European sovereign debt crisis

The analysis here includes countries in which nominal long-term interest rates surged due to the European sovereign debt crisis. These countries immediately suffered sharp increases in their long-term interest rates due to the above-mentioned factors plus an intensive “fire sale” of their sovereign bonds by investors who were hit by concerns over the possibility of defaults. Such short-term investors’ behavior cannot be captured by the above-mentioned explanatory variables. Therefore, for these countries, dummy variables are used as explanatory variables for the periods in which they received support from the International Monetary Fund (IMF) or other organizations.

4. Results of the empirical analysis

This section presents the results of the empirical analysis. The analysis covers 23 member countries of the OECD, whose panel data are used for the sample period which runs from 1980 through 2013. Following the procedures taken by numerous earlier studies, we include the fixed effect attached to each country in order to control country-specific factors.\(^6\)

(1) Method of setting the government debt level as a condition

In the preceding section, we used the fiscal balance as an explanatory variable conditional on the level of government debt outstanding. Specifically, estimations are made by applying two methodologies.

The first method assumes the dummy variable to be 1 when the level of government debt outstanding exceeds a certain threshold. We estimate the parameters for cases with different levels of debt outstanding. Hereafter, this dummy is to be referred to as the “simple dummy variable.” The specification of the function is presented in Equation (4). For the samples, if the ratio of net government debt outstanding to GDP is at a certain threshold, \(\rho\)%, or above, the dummy for the debt outstanding would be 1, otherwise 0. In order to measure the impacts of the different levels of net government debt outstanding, we estimate the coefficients of fiscal balance with different debt levels as we change the threshold \(\rho\), when the dummy variable takes 1.

\(^6\) The merits of estimation using panel data are to control differences of economic entities and to use many samples with high degree of freedom. See Baltagi (1995) and Hsiao (1986).
\[a^* \text{fiscal balance} + \alpha^* \text{debt outstanding dummy}^\# \text{fiscal balance} \cdots (4) \]

The second methodology is to make an estimation using the debt outstanding dummy which is obtained by making a logit transformation of government debt outstanding in such a way that the impact of the fiscal balance increases continuously, along with the rise in the level of government debt outstanding. Hereafter, this dummy is to be referred to as the “logit transformation dummy variable.” It means that the government debts outstanding are lined up in ascending order of their ratios to nominal GDP (i.e., the dummy is zero when the ratio is low) so that the dummy variable would keep growing as the debt outstanding-to-GDP ratio rises, increasing the fiscal balance’s impact until the variable converges to 1.

(2) Estimation results (relating to fiscal conditions)

(2-1) Results when the simple dummy variable is used

Specification 1 of Table 2 shows the estimation results without the dummy variable of government debt outstanding. Specification 2-4 of Table 2 shows the estimation results with dummy variables when the ratios of the government debt outstanding-to-GDP are above certain levels. The threshold levels, \(\rho \), at which the dummy variables take 1, are set at 50 percent for Specification 2, 70 percent for Specification 3, and 90 percent for Specification 4. They show that the signs of the parameters match those assumed in the previous section. That is, the parameters for the fiscal balance are negative and significant. This implies that the higher the fiscal deficits, the higher the nominal long-term interest rates. When the levels of government debt outstanding are above certain thresholds, the parameters of dummy variables are also negative and significant as shown in Specifications 3 and 4. These results indicate that fiscal balance with higher levels of government debt would put additional upward pressure on nominal long-term interest rates. Comparing Specifications 3 and 4, we find that the absolute value of the parameter on the dummy variable of Specification 4 with the debt threshold of 90 percent is larger than that of Specification 3. This indicates that the impact of fiscal deficits with higher levels of government debt on long-term interest rates becomes larger.

Chart 8 shows the estimation results with different thresholds for dummy variables of government debt outstanding as we change \(\rho \) by one percentage point. The parameters of fiscal balance, which measures the direct impacts of fiscal balance on
nominal long-term interest rates, are more or less constant regardless of the levels of government debt outstanding. On the other hand, the absolute levels of parameters of dummy variables, which are assumed to be additional impacts of fiscal deficits on nominal long-term interest rates, become larger as the threshold levels of government debt outstanding become larger. These results show that the impacts of fiscal deficits on nominal long-term interest rates become larger as the levels of government debt outstanding increase.

Next, we look at the impact of the national burden ratio on nominal long-term interest rates. We use the deviations of the actual levels from the all-sample average as explanatory variables. The results show that a high national burden-to-GDP ratio leads to a high level of nominal long-term interest rates, while a low national burden-to-GDP ratio leads to low long-term interest rates. These results are what we assumed in the previous section. When the national burden-to-GDP ratios are low, it is expected that there is room for future fiscal consolidation, and the impact of budget deficits on nominal long-term interest rates is offset even when the government debt level is high.

(2-2) Results when the logit transformation dummy variable is used

We construct the logit transformation dummy variables, which are the conditions of government debt outstanding, taking into account the results of simple dummy variables (Chart 9).\footnote{Specifically, the following formulae are used to make logit transformation.}

\[
\text{Debt outstanding dummy} = \frac{\exp[\gamma (\text{Net debt outstanding} - \theta)]}{1 + \exp[\gamma (\text{Net debt outstanding} - \theta)]}
\]

Based on all-sample data, θ denotes average net debt outstanding $\times 3$, γ denotes the standard deviation of net debt outstanding/300.

\[7\]
The estimation results in Table 2 are compared from the viewpoint of the adjusted coefficient of determinants and Akaike Information Criterion (AIC). The values for the former are greater for Specifications 3-5 which assume that the fiscal balance’s impact on the long-term interest rates is non-linear than that for Specification 1 which does not. As to the AIC, the values for Specifications 3-5 are smaller than those for Specification 1. In addition, standard errors of Specifications 3-5 are smaller. Based on these results, we conclude that the assumption on non-linear impacts of fiscal deficits on long-term interest rates conditional on the levels of government debt outstanding is appropriate.

(3) Estimation results (other variables)

The results are about the same for each specification for the other variables. First, the impact of non-traditional monetary policy measures is significant as the sign of parameters is appropriate. This is consistent with the fact that low long-term interest rates in recent years were attributable to the non-traditional monetary policy measures, which has compressed the term-premium (Chart 11). Comparing our results here with those of previous studies, the impacts of non-traditional monetary policy measures on long-term interest rates are more or less the same. The Bank of Japan's Monetary Affairs Department (2015) shows that the increase in the Bank’s purchases of long-term government bonds from March 2013 to December 2014, which is about 110 trillion yen, reduced long-term interest rates by 0.8 percentage point. Based on Specification 5 in this paper, we estimate that the reduction in long-term interest rates for the same period is 0.9 percentage point. Fukunaga et al. (2015) estimates that the combination of purchasing long-term government bonds and extending the duration of bond holdings from April 2013 to September 2014 contribute to a reduction in long-term interest rates by 0.6 percentage point. Based on Specification 5 in this paper, we estimate that the increase in the Bank’s purchases of long-term government bonds contribute to a reduction in long-term interest rates by 0.7 percentage point.

The parameters for the current account balance are negative: a greater current account deficit boosts nominal long-term interest rates, while a greater current account surplus depresses long-term interest rates. The parameters for other factors, such as labor productivity and input, inflation rates, and short-term interest rates are positive: any increase in these factors leads to higher long-term interest rates.
(4) Robustness check of estimation

Here, we examine the robustness of our estimation results.

We use gross government debt outstanding instead of net, which reduces government debt outstanding by the amount of its financial asset holdings. Table 3 shows that the signs and values of parameters and the fitness of equations are almost the same as those of net government debt outstanding.

Next, we use primary balance as an explanatory variable instead of fiscal balance, which includes interest payments. Table 4 shows that some of the coefficients estimated by using primary balance are less significant and the fitness of some specifications are lower than those of fiscal balance.

In the previous section, we examined the impacts of non-traditional monetary policy measures by using the dummy variable. Here, we use monetary base as a proxy of non-traditional monetary policy measures without dummy variables not only for the period of the non-traditional monetary policy regime, but also for the period of the traditional monetary policy regime. Table 5 shows the results. While the coefficients of monetary base are significant and the signs of those are correct, the fitness of the equations is lower than those of the previous specification.

In order to control common movements across countries, we examine the results of the estimation with time dummy variables. Table 6 shows that while the fitness improves, the signs of coefficients are incorrect and their significance is low.

Finally, we examine the case where we use not only fiscal balance, but also net government debt outstanding as explanatory variables. In section 2, we showed that simple scattered diagrams did not reveal a clear relationship between the levels of government debt outstanding and long-term interest rates. Table 7 shows the estimation results using government debt outstanding with other explanatory variables. The significance of the parameter of government debt outstanding is low and the sign of the parameter is opposite. Based on the result, we conclude that there is no clear relationship between the levels of government debt outstanding and long-term interest rates. Note that the coefficients of fiscal balance conditional on the debt level and national burden ratio are both significant and that the signs of the coefficients are correct.
(5) Decomposition of nominal long-term interest rates in various nations

The following are the results of factor decomposition of estimated nominal long-term interest rates in various nations based on the parameters obtained thus far. Chart 12 shows the factors of these interest rates in various countries which are decomposed based on the averages for 2012 and 2013. For the peripheral countries in Europe, which experienced a debt crisis during this period, the impact of the European crisis dummy, which reflects the rush to “fire sale” and other behaviors due to market panic, is significant. The fiscal balance factors also helped boost interest rates. On the other hand, in the United States and Japan, the upward pressure on interest rates from their fiscal balance factors was offset by the expectation for fiscal consolidation, which was represented by national burden ratios. As for Japan, in addition to the depressing effects of diminishing labor input (resulting from the decline in working age population), its non-traditional monetary policy measures and current account surplus helped depress long-term interest rates.

The actual levels of interest rates in the United States, Japan, and Germany, among other countries, are lower than the estimated results. It is because demand for safe assets (so-called “flight to safety”) increased and investors purchased sovereign bonds of these countries during the European debt crisis. In addition, central banks in advanced economies adopted forward guidance and other commitment policies, and therefore market investors assumed that accommodative monetary conditions would be maintained for a prolonged period. As for Japan, the high share of bondholding by domestic investors may contribute to lower levels of long-term interest rates.

An examination of the contribution from the overall fiscal factors, including fiscal balance, the national burden ratio level, and the factors of the debt crisis, reveals that the level of such contribution in the European peripheral countries is higher than those in Japan or the United States (Chart 13). This may be attributed to the fact that the national burden ratios in Europe are already high, making it difficult for these countries to raise their national burden ratios further to increase fiscal sustainability.

8 Chart 12 shows the decomposition of the degree of contribution when the estimation is based on logit transformation dummy variables (Specification 5 of Table 2). The estimation based on simple dummy variables generally produces the same results.
5. Conclusion

We conduct a quantitative analysis of the effects of fiscal conditions and other factors on nominal long-term interest rates based on panel data of 23 member states of the Organisation for Economic Co-operation and Development (OECD) for the period from 1980 to 2013. In addition to labor productivity, labor input, and inflation rates, our analysis shows that the fiscal balance, national burden ratio, and current account balance (= domestic savings) influence nominal long-term interest rates. The elasticity of nominal long-term interest rates to the fiscal balance vary, depending on the levels of government debt outstanding, which are thought to affect perceptions of fiscal sustainability in the future. This implies that the elasticity of nominal long-term interest rates to the fiscal balance is non-linear depending on the levels of government debt outstanding. We also find that a low national burden ratio nurtures future expectations of fiscal consolidation and thus keeps long-term interest rates at low levels. In addition, non-traditional monetary policy measures in recent years are found to keep nominal long-term interest rates at low levels.

Based on these findings, we point out four reasons why nominal long-term interest rates in Japan is so low despite the fact that its government debt level is high and fiscal deficits continue to be large. First, the national burden ratio in Japan is below those of other advanced economies and therefore leaves room for future raises. This sustains the expectation for future fiscal consolidation. Second, Japan’s fiscal deficits are being funded domestically thanks to the continuing presence of domestic excess savings (= the current account surplus). Third, the non-traditional monetary policy measure is depressing the term premium. Fourth, the decline in working age population is reducing real interest rates.

Before concluding this report, attention should be paid to the following points concerning the analysis presented above.

First, caution must be paid in handling the variables representing expectations for the future. The variables comprising nominal long-term interest rates are all those referring to future expectations, such as future real interest rates, inflation expectations, and risk premiums. For future variables, the empirical analysis here uses dummy variables conditional on the levels of government debt outstanding and the national burden ratio to indicate future fiscal sustainability, in addition to the actual values of various indicators. Added to the methods used here, there may be room for improvement
regarding the variables for expressing expected future fiscal conditions. In fact, indicators directly measuring expectations or forecasts, including questionnaire surveys and financial market indicators (such as the forward rate and implied volatility indicator), have recently become available. Time-series data are becoming increasingly accessible. We attempt to secure the robustness of the analysis by including as many countries as possible and by expanding the coverage of the time-series data as much as possible in this paper. This is why we do not make use of questionnaire surveys relating to expectations or financial market indicators which have become available only recently. However, in the future, if variables for future expectations can be used appropriately by adopting these indicators, it would be possible to verify the robustness of this analysis.

Second, an analysis could be expanded to use high frequency data. This study is based on annual data, because its focus is to examine the impact of fiscal conditions on nominal long-term interest rates. If the focus is also on short-term fluctuations of nominal long-term interest rates, analyses based on data which are available at greater frequency, such as quarterly, monthly, and daily data, would be necessary. In that case, even though the analyses would be based on the specifications used in this paper, along with additional explanatory variables needed to capture short-term fluctuations, more dynamic specifications of the functions would be needed.

Third, a comparison with structural models would be needed. It should be examined whether the dynamics of each variable verified in this study are consistent with the general equilibrium model explicitly incorporating expectations.
References

Appendix: Data sources

- Countries covered: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, South Korea, Luxemburg, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States.

- Nominal long-term interest rates (10-year), short-term interest rates, current account balance (as a ratio to nominal GDP), national burden ratio (as a ratio to nominal GDP), government debt outstanding (as a ratio to nominal GDP), fiscal balance (as a ratio to nominal GDP), primary balance (as a ratio to nominal GDP), inflation rates (CPI), real growth rates: OECD’s *Economic Outlook* and IMF’s *World Economic Outlook* (WEO).

- Monetary base: (as a ratio to nominal GDP): HAVER and central banks.

- Labor productivity is obtained by subtracting the rate of change in working age population from the real economic growth rate. Labor input is obtained by subtracting the rate of change in total population from the rate of change in working age population.

9 Due to constraints in data availability, sample periods are shorter than others, and/or the latest values are used to fill in data of unavailable periods for some countries.

10 For monetary base data of some countries in the euro zone, the all-euro zone value is used instead.
Table 1 Empirical Studies: Effects of Fiscal Conditions on Long-term Interest Rates

<table>
<thead>
<tr>
<th>Predominately Positive Significant Effect</th>
<th>Mixed Effect</th>
<th>Predominately Insignificant Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current deficit or debt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected or unanticipated deficit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Thomas and Abderezzak (1988b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Thorbecke (1993)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR-based dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Evans (1987b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Plosser (1987)</td>
</tr>
</tbody>
</table>

Note: Survey results in Gale and Orszag (2004).
Table 2 Results of Panel Regressions

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coef</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal balance (Fiscal balance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.09</td>
<td>-0.10</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>National burden ratio (deviation from all-sample average)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>0.11</td>
<td>0.12</td>
<td>0.09</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>Current account (Current account)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>-0.06</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Labor productivity (Labor productivity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Labor input (Labor input)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.73</td>
<td>0.84</td>
<td>0.80</td>
<td>0.99</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(0.22)</td>
<td>(0.26)</td>
<td>(0.26)</td>
<td>(0.26)</td>
<td>(0.26)</td>
<td></td>
</tr>
<tr>
<td>Inflation rates (Inflation rates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>0.23</td>
<td>0.25</td>
<td>0.29</td>
<td>0.26</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>(0.05)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Short-term interest rates (Short-term interest rates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.55</td>
<td>0.54</td>
<td>0.51</td>
<td>0.52</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Government bond-purchasing dummy (Government bond-purchasing dummy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.05</td>
<td>-0.03</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Constant (Constant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td></td>
</tr>
<tr>
<td>European sovereign debt crisis dummy (European sovereign debt crisis dummy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.55</td>
<td>6.50</td>
<td>6.44</td>
<td>6.40</td>
<td>6.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.55</td>
<td>(0.46)</td>
<td>(0.46)</td>
<td>(0.46)</td>
<td>(0.46)</td>
<td>(0.46)</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared (Adjusted R-squared)</td>
<td>0.832</td>
<td>0.837</td>
<td>0.841</td>
<td>0.841</td>
<td>0.840</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression (S.E. of regression)</td>
<td>1.266</td>
<td>1.269</td>
<td>1.255</td>
<td>1.256</td>
<td>1.259</td>
<td></td>
</tr>
<tr>
<td>Number of countries (Number of countries)</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Number of samples (Number of samples)</td>
<td>539</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Standard errors are given in parentheses. * denotes significance at 10%; ** at 5%; *** at 1%.
2. Independent variables are lagged by one year, variables of monetary base and European sovereign debt crisis dummy have no time lags, and those of current account, inflation rate, and debt outstanding dummy have almon lags (three years).
3. Spec 5 is estimated by using the logit transformation dummy variable.

Simple dummy threshold

<table>
<thead>
<tr>
<th>D2=1 : Net government debt outstanding (ρ)</th>
<th></th>
<th>ρ≥50%</th>
<th>ρ≥70%</th>
<th>ρ≥90%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

Dependent variable: Nominal long-term interest rates (10-year bonds)
Table 3 Results of Panel Regressions (Robustness Check)

Gross Government Debt Outstanding

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coeff.</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal balance</td>
<td>a</td>
<td>-0.12 **</td>
<td>-0.12 **</td>
<td>-0.11 **</td>
<td>-0.12 **</td>
</tr>
<tr>
<td>Debt outstanding dummy (D_D)</td>
<td>α</td>
<td>-0.05</td>
<td>-0.10 **</td>
<td>-0.18 **</td>
<td>-0.27 **</td>
</tr>
<tr>
<td>×Fiscal balance</td>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>National burden ratio (deviation from all-sample average)</td>
<td>b</td>
<td>0.07 **</td>
<td>0.07 **</td>
<td>0.07 **</td>
<td>0.07 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Current account</td>
<td>c</td>
<td>-0.06 **</td>
<td>-0.07 **</td>
<td>-0.08 **</td>
<td>-0.09 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Labor productivity</td>
<td>d</td>
<td>0.08 **</td>
<td>0.09 **</td>
<td>0.09 **</td>
<td>0.10 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Labor input</td>
<td>e</td>
<td>1.18 **</td>
<td>1.25 **</td>
<td>1.35 **</td>
<td>1.54 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.28)</td>
<td>(0.28)</td>
<td>(0.28)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Inflation rates</td>
<td>f</td>
<td>0.27 **</td>
<td>0.28 **</td>
<td>0.30 **</td>
<td>0.32 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Short-term interest rates</td>
<td>g</td>
<td>0.54 **</td>
<td>0.53 **</td>
<td>0.51 **</td>
<td>0.49 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Government bond-purchasing dummy</td>
<td>h</td>
<td>-0.03 **</td>
<td>-0.03 **</td>
<td>-0.04 **</td>
<td>-0.05 **</td>
</tr>
<tr>
<td>×Monetary base</td>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1.88 **</td>
<td>1.88 **</td>
<td>1.91 **</td>
<td>1.92 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>European sovereign debt crisis dummy</td>
<td></td>
<td>6.37 **</td>
<td>6.33 **</td>
<td>6.15 **</td>
<td>6.13 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.45)</td>
<td>(0.45)</td>
<td>(0.45)</td>
<td>(0.44)</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td></td>
<td>0.827</td>
<td>0.828</td>
<td>0.834</td>
<td>0.840</td>
</tr>
<tr>
<td>AIC</td>
<td></td>
<td>3.309</td>
<td>3.301</td>
<td>3.268</td>
<td>3.231</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td></td>
<td>1.225</td>
<td>1.220</td>
<td>1.200</td>
<td>1.178</td>
</tr>
<tr>
<td>Number of countries</td>
<td></td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Number of samples</td>
<td></td>
<td>486</td>
<td>486</td>
<td>486</td>
<td>486</td>
</tr>
</tbody>
</table>

Simple dummy threshold

<table>
<thead>
<tr>
<th>D_D=1: Gross government debt outstanding (ρ)</th>
<th>ρ ≥ 90%</th>
<th>ρ ≥ 100%</th>
<th>ρ ≥ 110%</th>
<th>ρ ≥ 120%</th>
</tr>
</thead>
</table>

Notes:
1. Standard errors are given in parentheses. * denotes significance at 10%; ** at 5%; *** at 1%.
2. Independent variables are lagged by one year, variables of monetary base and European sovereign debt crisis dummy have no time lags, and those of current account, inflation rate, and debt outstanding dummy have almon lags (three years).
<table>
<thead>
<tr>
<th>Variables</th>
<th>Coeff.</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary balance</td>
<td>(a')</td>
<td>-0.09**</td>
<td>-0.08**</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Debt outstanding dummy ((D_2)) × Primary Balance</td>
<td>(a'')</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.07)</td>
</tr>
<tr>
<td>National burden ratio (deviation from all-sample average)</td>
<td>(b)</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Current account</td>
<td>(c)</td>
<td>-0.10**</td>
<td>-0.09**</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Labor productivity</td>
<td>(d)</td>
<td>0.10**</td>
<td>0.10**</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Labor input</td>
<td>(e)</td>
<td>1.34**</td>
<td>1.26**</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.31)</td>
<td></td>
</tr>
<tr>
<td>Inflation rates</td>
<td>(f)</td>
<td>0.23**</td>
<td>0.25**</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>Short-term interest rates</td>
<td>(g)</td>
<td>0.56**</td>
<td>0.55**</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Government bond-purchasing dummy × Monetary base</td>
<td>(h)</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>2.12**</td>
<td>2.13**</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.17)</td>
<td></td>
</tr>
<tr>
<td>European sovereign debt crisis dummy</td>
<td></td>
<td>6.69**</td>
<td>6.69**</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.47)</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td></td>
<td>0.825</td>
<td>0.825</td>
</tr>
<tr>
<td>AIC</td>
<td></td>
<td>3.391</td>
<td>3.405</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td></td>
<td>1.277</td>
<td>1.283</td>
</tr>
<tr>
<td>Number of countries</td>
<td></td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Number of samples</td>
<td></td>
<td>486</td>
<td>464</td>
</tr>
</tbody>
</table>

Notes:
1. Standard errors are given in parentheses. * denotes significance at 10%; ** at 5%; *** at 1%.
2. Independent variables are lagged by one year, variables of monetary base and European sovereign debt crisis dummy have no time lags, and those of current account, inflation rate, and debt outstanding dummy have almon lags (three years).
3. Spec 11 is estimated by using the logit transformation dummy variable.
| Dependent variable: Nominal long-term interest rates (10-year bonds) |
|---------------------------------|-----------------|-----|-----|
| Variables | Coeff. | 12 | 13 |
| Fiscal balance | -0.11 " | | |
| | (0.03) | | |
| Debt outstanding dummy (Dₐ) α | -0.19 " | | |
| ×Fiscal balance | | | |
| | (0.07) | | |
| National burden ratio (deviation from all-sample average) | 0.14 " | 0.12 " |
| | (0.06) | | |
| Current account | -0.07 " | | |
| | (0.04) | | |
| Labor productivity | 0.05 | 0.05| |
| | (0.03) | | |
| Labor input | 1.11 " | 1.32 "| |
| | (0.36) | | |
| Inflation rates | 0.31 " | 0.33 "| |
| | (0.09) | | |
| Short-term interest rates | 0.50 " | 0.51 "| |
| | (0.05) | | |
| Monetary base | -0.04 " | | |
| | (0.02) | | |
| Constant | 2.29 " | 2.24 "| |
| | (0.25) | | |
| European sovereign debt crisis dummy | 6.28 " | 6.15 "| |
| | (0.47) | | |
| Adjusted R-squared | 0.768 | 0.772| |
| AIC | 3.358 | 3.347| |
| S.E. of regression | 1.246 | 1.237| |
| Number of countries | 21 | 21 | |
| Number of samples | 355 | 354 | |

Notes:
1. Standard errors are given in parentheses. * denotes significance at 10%; ** at 5%; *** at 1%.
2. Independent variables are lagged by one year, variables of monetary base and European sovereign debt crisis dummy have no time lags, and those of current account, inflation rate, and debt outstanding dummy have almon lags (three years).
3. Spec 13 is estimated by using the logit transformation dummy variable.
Table 6 Results of Panel Regressions (Robustness Check)

--- Time Dummy Variables ---

Dependent variable: Nominal long-term interest rates (10-year bonds)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coeff. 14</th>
<th>Coeff. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal balance</td>
<td>-0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Debt outstanding dummy (D ŷ) × Fiscal balance</td>
<td>-0.13</td>
<td>**</td>
</tr>
<tr>
<td>National burden ratio (deviation from all-sample average)</td>
<td>0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>Current account</td>
<td>-0.03</td>
<td>-0.05</td>
</tr>
<tr>
<td>Labor productivity</td>
<td>-0.05</td>
<td>-0.08</td>
</tr>
<tr>
<td>Labor input</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>Inflation rates</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td>Short-term interest rates</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>Government bond-purchasing dummy × Monetary base</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Constant</td>
<td>3.48</td>
<td>3.93</td>
</tr>
<tr>
<td>European sovereign debt crisis dummy</td>
<td>6.00</td>
<td>5.78</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.903</td>
<td>0.908</td>
</tr>
<tr>
<td>AIC</td>
<td>2.866</td>
<td>2.857</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.961</td>
<td>0.953</td>
</tr>
<tr>
<td>Number of countries</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Number of samples</td>
<td>539</td>
<td>512</td>
</tr>
</tbody>
</table>

Notes:
1. Standard errors are given in parentheses. * denotes significance at 10%; ** at 5%; *** at 1%.
2. Independent variables are lagged by one year, variables of monetary base and European sovereign debt crisis dummy have no time lags, and those of current account, inflation rate, and debt outstanding dummy have almon lags (three years).
3. Spec 15 is estimated by using the logit transformation dummy variable.
Table 7 Results of Panel Regressions (Robustness Check)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coeff</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal balance a</td>
<td>-0.12 **</td>
<td>-0.11 **</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Net government debt outstanding a"</td>
<td>-0.00</td>
<td>-0.01</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Debt outstanding dummy (Dₜ) α ×Fiscal balance</td>
<td>-0.16 **</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>National burden ratio (deviation from all-sample average) b</td>
<td>0.12 **</td>
<td>0.11 **</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Current account c</td>
<td>-0.06 **</td>
<td>-0.07 **</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Labor productivity d</td>
<td>0.11 **</td>
<td>0.11 **</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Labor input e</td>
<td>0.82 **</td>
<td>0.89 **</td>
<td>(0.26)</td>
</tr>
<tr>
<td>Inflation rates f</td>
<td>0.24 **</td>
<td>0.25 **</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Short-term interest rates g</td>
<td>0.54 **</td>
<td>0.53 **</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Government bond-purchasing dummy ×Monetary base h</td>
<td>-0.03</td>
<td>-0.03</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.00 **</td>
<td>2.10 **</td>
<td>(0.18)</td>
</tr>
<tr>
<td>European sovereign debt crisis dummy</td>
<td>6.49 **</td>
<td>6.46 **</td>
<td>(0.47)</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.837</td>
<td>0.841</td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>3.371</td>
<td>3.358</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>1.266</td>
<td>1.256</td>
<td></td>
</tr>
<tr>
<td>Number of countries</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Number of samples</td>
<td>517</td>
<td>512</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Standard errors are given in parentheses. * denotes significance at 10%; ** at 5%; *** at 1%.
2. Independent variables are lagged by one year, variables of monetary base and European sovereign debt crisis dummy have no time lags, and those of current account, inflation rate, and debt outstanding dummy have almon lags (three years).
3. Spec 17 is estimated by using the logit transformation dummy variable.
Chart 1 Gross Government Debt Outstanding and Nominal Long-term Interest Rates

\[
y = -0.01x + 6.97 \\
R^2 = 0.02
\]

Chart 2 Net Government Debt Outstanding and Nominal Long-term Interest Rates

\[
y = 0.00x + 6.23 \\
R^2 = 0.00
\]
Chart 3 Fiscal Balance and Nominal Long-term Interest Rates

$y = -0.18x + 5.96$
$R^2 = 0.06$

Chart 4 Primary Balance and Nominal Long-term Interest Rates

$y = -0.03x + 6.10$
$R^2 = 0.00$
Chart 5 Fiscal Balance and Nominal Long-term Interest Rates Conditional on the Level of Government Debt Outstanding

(All samples)

(1) All samples

(Reprint of Chart 3)

(2) Sub-samples (conditional on the level of gross government debt outstanding)

(i) over 50%

(ii) over 70%

(iii) over 90%

(3) Sub-samples (conditional on the level of net government debt outstanding)

(i) over 20%

(ii) over 40%

(iii) over 60%
Chart 6 Fiscal Balance and Nominal Long-term Interest Rates Conditional on the Level of Government Debt Outstanding
(Samples exclude Japan)

(1) All samples
(2) Sub-samples (conditional on the level of gross government debt outstanding)
 (i) over 50%
 (ii) over 70%
 (iii) over 90%

(3) Sub-samples (conditional on the level of net government debt outstanding)
 (i) over 20%
 (ii) over 40%
 (iii) over 60%
Chart 7 Fiscal Balance and Nominal Long-term Interest Rates Conditional on the Level of Government Debt Outstanding
(Samples before the financial crisis and exclude Japan)

(1) All samples

(2) Sub-samples (conditional on the level of gross government debt outstanding)

(i) over 50%

(ii) over 70%

(iii) over 90%

(3) Sub-samples (conditional on the level of net government debt outstanding)

(i) over 20%

(ii) over 40%

(iii) over 60%

Note: Samples before the financial crisis use data from 1980 to 2007.
Chart 8 Impact of Fiscal Balance on Nominal Long-term Interest Rates
(Estimated using simple dummy variables)

(1) Direct Impact

(2) Additional Impact

Note: The rolling threshold of net government debt outstanding is used here for estimation. For the samples, if the ratio of net government debt outstanding to nominal GDP is at a certain threshold of \(\rho \)%, or above, the debt outstanding dummy takes 1, otherwise 0. Shaded areas indicate \(\pm 1 \text{S.E.} \).

Chart 9 Logit Transformation Dummy Variables (Government Debt Outstanding)
Chart 10 Impact of Fiscal Balance on Nominal Long-term Interest Rates
(Estimated using logit transformation dummy variables)

Note: This chart shows the degree of contribution when the estimation is based on logit transformation dummy variables (Specification 5 of Table 2).

Chart 11 Impact of Non-Traditional Monetary Policy on Nominal Long-term Interest Rates

Note: This chart shows the degree of contribution when the estimation is based on logit transformation dummy variables (Specification 5 of Table 2). The vertical line indicates ±1S.E.
Chart 12 Decomposition of Nominal Long-term Interest Rates (CY2012-2013 average)

(1) Countries in debt crisis
(2) Other advanced countries

Notes: 1. This chart shows the degree of contribution when the estimation is based on logit transformation dummy variables (Specification 5 of Table 2).
2. The fiscal balance effect, expectation for fiscal consolidation effect, and monetary easing effect are explained by the terms “fiscal balance” and “debt outstanding dummy × fiscal balance,” “national burden ratio,” and “government bond-purchasing dummy × monetary base” respectively in Table 2.

Chart 13 Impact of Overall Fiscal Factors on Nominal Long-term Interest Rates (CY2012-2013 average)

(1) Countries in debt crisis
(2) Other advanced countries

Note: This chart shows the sum total of the fiscal balance effect, expectation for fiscal consolidation effect, and the European sovereign debt crisis dummy in Chart 12.