LEVERAGE INDUCED FIRE SALES AND STOCK PRICES

ZHIGUO HE (何治国)
PROFESSOR OF FINANCE
UNIVERSITY OF CHICAGO, BOOTH SCHOOL OF BUSINESS; AND NBER

JOINT WITH JIANGZE BIAN, WILL CONG, KELLY SHUE, AND HAO ZHOU

CHICAGO BOOTH
The University of Chicago Booth School of Business
LEVERAGE AND FIRE SALES

EXCESSIVE LEVERAGE AND FIRE SALES ARE CONSIDERED TO BE THE UNDERLYING MECHANISMS OF MANY CRISES IN FINANCIAL MARKETS

- 2007/08 financial and housing market crises
- Chinese stock market crash in 2015

YET, VERY LIMITED EMPIRICAL EVIDENCE ON FIRE-SALE, AND NOT IN THE CONTEXT OF LEVERAGE

- Coval and Stafford (2007) and Edmans, Goldstein and Jiang (2012): fire-sale of mutual funds due to fund outflows
- Ellul, Jotikasthira, and Lundblad (2011): fire-sale of downgraded corporate bonds due to regulatory constraint
- Campbell, Giglio, and Pathak (2011): foreclosure housing price

THIS PAPER: DIRECT EVIDENCE OF LEVERAGE-INDUCED FIRE SALES

- Based on account level data in Chinese stock market in 2015
- Bian et al (2017) using similar dataset but focuses on amplification in leverage network
CHINESE STOCK MARKET CRASH IN 2015

- CHINESE STOCK MARKET RISES QUICKLY IN THE FIRST HALF OF 2015 AND CRASHED THEREAFTER

 - Shanghai Composite Index: started around 3100 on Jan 2015, peaked 5166 on June 15th, 2015, then collapsed to 3663 at the end of July

- FORCED FIRE-SALE OF LEVERAGED ACCOUNTS IS ACCUSED AS THE LEADING CAUSE OF CHINA’S STOCK MARKET CRASH

 - May 22 2015, CSRC (China Securities Regulation Commission) announces to start investigating “illegal” shadow margin accounts
 - June 12 2015, release draft rules that cap brokerage margin financing; reiterate ban on shadow margin financing
 - Both are leveraged accounts; the latter is with higher leverage and much less regulation
DATA DESCRIPTION

- DETAILED ACCOUNT LEVEL DAILY TRADING RECORDS DURING CRISIS (MAY-JULY 2015)
 - Brokerage margin financing (Brokerage later on) is from a leading brokerage in China, with a market share of ~10% in brokerage margin service
 - Shadow margin financing (Shadow later on) is from a leading web-based peer-to-peer lending platform
 - Hard to estimate its market share in shadow margin accounts; one reasonable estimate is about 11%

- EACH INDIVIDUAL ACCOUNT IN BOTH CATEGORIES:
 - Daily stock holdings and trading
 - Daily asset and debt data, hence leverage defined as asset/(asset-debt)
 - Account maximum allowable leverage (pingcang level, 平仓线)

- STOCK DAILY INFORMATION: PRICES, RETURNS, OUTSTANDING SHARES, ETC
MEAN LEVERAGE FOR TWO ACCOUNTS AND MARKET INDEX

- Leverage: Asset/Equity. Unregulated shadow has higher leverage.
LEVERAGE DISPERSION AND FIRE-SALE PRESSURE
LEVERAGE INDUCED FIRE-SALE: ACCOUNT LEVEL EVIDENCE (2)

- \(\overline{lev}_j \): THE MAXIMUM ALLOWABLE LEVERAGE OF THIS ACCOUNT
 - So-called Pingcang level;
 - \(lev_{j,t} > \overline{lev}_j \) possible,: cannot sell if hit -10% daily limit rule; lenders are unsophisticated investors as well

DEFINE DISTANCE TO MAXIMUM ALLOWABLE LEVERAGE

\[d_{j,t} = \frac{lev_{j,t} - 1}{\overline{lev}_j - 1} \]

- Sort accounts into equally-spaced bins by \(d_{j,t} \)
- \(I_{k,t}^j = 1 \) if \(d_{j,t} \in \left[k/10, (k + 1)/10 \right) \)
LEVERAGE INDUCED FIRE-SALE: ACCOUNT LEVEL EVIDENCE (1)

ACCOUNT-STOCK-DATE-LEVEL LEVEL

REGRESSION:

\[\delta_{i,t}^j = \sum_{k=1}^{10} (-\lambda_k) \cdot I_{k,t}^j + \alpha_{i,t} + \alpha_j + \varepsilon_{i,t}^j \]

- \(\delta_{i,t}^j \) = Account j's net buying of stock i at date t
- \(\delta_{i,t}^j \) = Account j's initial holding of stock i at date t
- Stock-date fixed effect \(\alpha_{i,t} \) and account fixed effect \(\alpha_j \)
- Identification comes from account j’s time-varying \(d_{j,t} \)

LEVERAGE INDUCED SELLING IMPLIES

THAT \(\lambda_k \) INCREASES WITH \(k \)
LEVERAGE INDUCED FIRE-SALE: ACCOUNT LEVEL EVIDENCE (2)

- Benchmark: classify accounts with $k \geq 6$ as "fire-sale accounts," cut-off rule
- Robustness later: using these λ_k's as weights
LEVERAGE INDUCED FIRE-SALE: STOCK LEVEL EVIDENCE (1)

- IF STOCK i IS HELD BY MORE FIRE-SALE ACCOUNTS, IT WILL BE SOLD MORE HEAVILY BY THESE ACCOUNTS

- RUN REGRESSION

\[\delta_{i,t} = \lambda \cdot FSP_{i,t} + \text{controls} + \varepsilon_{i,t} \]

- \(\delta_{i,t} = \) Net buying of stock i during date t in fire-sale accounts
- \(\delta_{i,t} = \) Outstanding shares of stock i at date t

- Fire-sale accounts: accounts with $d_{j,t} \geq 0.6$ at the beginning of t

- $FSP_{i,t}$ is stock i's fire-sale pressure, defined as

\[FSP_{i,t} = \frac{\text{Total shares of stock } i \text{ in fire-sale accounts at the beginning of date } t}{\text{Outstanding shares of stock } i \text{ at date } t} \]
Leverage Induced Fire-Sale: Stock Level Evidence (2)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net buy of fire-sale accounts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Sale Pressure (FSP)</td>
<td>-0.0908***</td>
<td>-0.0936***</td>
<td>-0.0935***</td>
<td>-0.102***</td>
</tr>
<tr>
<td></td>
<td>(0.0202)</td>
<td>(0.0229)</td>
<td>(0.0230)</td>
<td>(0.0255)</td>
</tr>
<tr>
<td>Return Volatility</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Size (Market Cap)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Past 10-day cum. return</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Past 10-day daily return</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Stock FE</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Date FE</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Observations</td>
<td>142,849</td>
<td>142,843</td>
<td>142,465</td>
<td>125,057</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.124</td>
<td>0.165</td>
<td>0.166</td>
<td>0.186</td>
</tr>
</tbody>
</table>
STOCK RETURNS FOLLOWING FIRE-SALE

KEY QUESTION: DO LEVERAGE-INDUCED FIRE SALES CAUSE SUBSEQUENT LOW STOCK RETURN?

EMPIRICAL PREDICTIONS:

- Stocks with high FSP underperform in the short-run but not in the long-run

TWO METHODS

- Double sort on past return and FSP; long-short strategy based on FSP
- Regression of stock return on FSP with various controls
STOCK RETURNS FOLLOWING FIRE-SALE: NONPARAMETRIC

DOUBLE SORT: EACH DAY, WE

- First, sort stocks into quartiles by $R_{i,t} = (D_{i,t} + P_{i,t})/P_{i,t-1}$;
- Second, sort each quintile into deciles by $FSP_{i,t+1}$ (recall this is measured at the beginning of date $t + 1$)

CUMULATIVE ABNORMAL RETURN OF LONG-TOP-SHORT-BOTTOM FSP DECILES

LEVERAGE INDUCED FIRE-SALE STORY

- Negative abnormal return of this long-short strategy, but disappears in long-run
STOCK RETURNS FOLLOWING FIRE-SALE: LONG-SHORT PORTFOLIO

Recent Return $[t-10,t-1]$ Lowest Quartile

Recent Return $[t-10,t-1]$ Quartile 2

Recent Return $[t-10,t-1]$ Quartile 3

Recent Return $[t-10,t-1]$ Highest Quartile
STOCK RETURNS FOLLOWING FIRE-SALE

REGRESSION

\[CAR_{i,t+h} = \gamma_h \cdot FSP_{i,t} + \text{controls} + \varepsilon_{i,t+h} \]

- Abnormal return is based on CAPM with stock beta calculated using 2014 data
- \(h = 1, 3, 5, 10, 20, \) and 40

MODEL PREDICTION

- \(\gamma_h < 0 \) for small \(k \) but \(\gamma_h \approx 0 \) for large \(h \)
STOCK RETURNS FOLLOWING FIRE-SALE

CAR identified by FSP

<table>
<thead>
<tr>
<th></th>
<th>1 Day</th>
<th>3 Days</th>
<th>5 Days</th>
<th>10 Days</th>
<th>20 Days</th>
<th>40 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSP</td>
<td>-1.356***</td>
<td>-3.346***</td>
<td>-4.898***</td>
<td>-5.829***</td>
<td>-2.629***</td>
<td>0.200</td>
</tr>
<tr>
<td>SE</td>
<td>(0.265)</td>
<td>(0.547)</td>
<td>(0.865)</td>
<td>(1.218)</td>
<td>(0.947)</td>
<td>(0.555)</td>
</tr>
</tbody>
</table>

- Robust standard errors in parentheses, clustered at date level
- Controls include return volatility; market cap; past 10-day daily returns; past 10-day cumulative return; turnover; stock fixed effect; date fixed effect
ROBUSTNESS: CONSTRUCTING \(FSP \) BASED ON WEIGHTS

- CONSTRUCTING STOCK LEVEL FIRE-SALE PRESSURE \(FSP_{i,t} \) BASED ON \(\lambda_k \)

\[
FSP_{i,t} = \frac{\sum_j x_{i,t}^j \cdot I_{k,t}^j \lambda_k}{\text{Outstanding shares of stock } i \text{ at date } t}
\]

- \(x_{i,t}^j \): number of shares of stock \(i \) in account \(j \)
- Numerator: weighted sum of shares of stock \(i \) in account \(j \); if account \(j \) belongs to group \(k \) then the weight is \(\lambda_k \)
- Again, leverage is measured at the beginning of date \(t \)

- ROBUST RESULTS AND CONCLUSIONS
BROKERAGE & SHADOW ACCOUNTS

Date

% of Market Cap
0.00 0.002 0.004 0.006

Shanghai A Index
3500 4000 4500 5000

Brokerage Size
Shadow Size
Shanghai A Index
LEVERAGE-INDUCED SELLING ON BROKERAGE AND SHADOW

\[\delta^{j}_{i,t} = \sum_{k=1}^{10} (-\lambda_k) \cdot I^{j}_{k,t} + \alpha_{i,t} + \alpha_j + \varepsilon^{j}_{i,t}, \]

now separately for Brokerage and Shadow
FSP: BROKERAGE VS SHADOW

- Benchmark cut-off $d = 0.6$
MARGIN OR SHADOW?

<table>
<thead>
<tr>
<th></th>
<th>1 Day</th>
<th>3 Days</th>
<th>5 Days</th>
<th>10 Days</th>
<th>20 Days</th>
<th>40 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSP of shadow</td>
<td>-2.074***</td>
<td>-5.214***</td>
<td>-8.230***</td>
<td>-11.24***</td>
<td>-3.072</td>
<td>0.507</td>
</tr>
<tr>
<td>SE</td>
<td>(0.459)</td>
<td>(1.092)</td>
<td>(1.650)</td>
<td>(2.217)</td>
<td>(1.913)</td>
<td>(0.839)</td>
</tr>
<tr>
<td>FSP of brokerage</td>
<td>-0.574***</td>
<td>-1.452***</td>
<td>-1.663**</td>
<td>-0.856</td>
<td>-2.238***</td>
<td>-0.0573</td>
</tr>
<tr>
<td>SE</td>
<td>(0.205)</td>
<td>(0.450)</td>
<td>(0.696)</td>
<td>(0.791)</td>
<td>(0.467)</td>
<td>(0.649)</td>
</tr>
</tbody>
</table>

- Robust standard errors in parentheses, clustered at date level
CONCLUDING REMARKS

❖ **DIRECT EVIDENCE ON LEVERAGE-INDUCED FIRE SALES**

❖ The closer to the maximum allowable leverage, the more you sell (including both forced sale and preemptive sale)
❖ The resulting selling downward price pressures cause negative abnormal return in the short-run

❖ **REGULATED BROKERAGE VS UNREGULATED SHADOW MARGIN ACCOUNTS**

❖ Brokerage margin accounts are dominant in holdings, but relatively low fire-sale pressure
❖ Shadow margin accounts are the major force of leverage-induced fire-sale in 2015 stock market crash

❖ **BIAN ET AL (2017) STUDY THE AMPLIFICATION EFFECT THROUGH THE LENS OF A NETWORK FRAMEWORK**

❖ Full-blown amplification and propagation requires a structural model, work to be done in the future