LEVERAGE INDUCED FIRE SALES AND STOCK PRICES

ZHIGUO HE (何治国)

PROFESSOR OF FINANCE

UNIVERSITY OF CHICAGO, BOOTH SCHOOL OF BUSINESS; AND NBER

JOINT WITH JIANGZE BIAN, WILL CONG, KELLY SHUE, AND HAO ZHOU

LEVERAGE AND FIRE SALES

* EXCESSIVE LEVERAGE AND FIRE SALES ARE CONSIDERED TO BE THE UNDERLYING MECHANISMS OF MANY CRISES IN FINANCIAL MARKETS

- 2007/08 financial and housing market crises
- Chinese stock market crash in 2015

* YET, VERY LIMITED EMPIRICAL EVIDENCE ON FIRE-SALE, AND NOT IN THE CONTEXT OF LEVERAGE

- Coval and Stafford (2007) and Edmans, Goldstein and Jiang (2012): fire-sale of mutual funds due to fund outflows
- Ellul, Jotikasthira, and Lundblad (2011): fire-sale of downgraded corporate bonds due to regulatory constraint
- Campbell, Giglio, and Pathak (2011): foreclosure housing price

* THIS PAPER: DIRECT EVIDENCE OF LEVERAGE-INDUCED FIRE SALES

- Based on account level data in Chinese stock market in 2015
- Bian et al (2017) using similar dataset but focuses on amplification in leverage network

<u>CHINESE STOCK MARKET CRASH IN</u> 2015

* CHINESE STOCK MARKET RISES QUICKLY IN THE FIRST HALF OF 2015 AND CRASHED THEREAFTER

Shanghai Composite Index: started around 3100 on Jan 2015, peaked 5166 on June 15th, 2015, then collapsed to 3663 at the end of July

* FORCED FIRE-SALE OF LEVERAGED ACCOUNTS IS ACCUSED AS THE LEADING CAUSE OF CHINA'S STOCK MARKET CRASH

- May 22 2015, CSRC (China Securities Regulation Commission) announces to start investigating "illegal" shadow margin accounts
- June 12 2015, release draft rules that cap brokerage margin financing; reiterate ban on shadow margin financing
- Both are leveraged accounts; the latter is with higher leverage and much less regulation

DATA DESCRIPTION

* DETAILED ACCOUNT LEVEL DAILY TRADING RECORDS DURING CRISIS (MAY-JULY 2015)

- Brokerage margin financing (Brokerage later on) is from a leading brokerage in China, with a market share of ~10% in brokerage margin service
- Shadow margin financing (Shadow later on) is from a leading web-based peer-to-peer lending platform
 - Hard to estimate its market share in shadow margin accounts; one reasonable estimate is about 11%

*** EACH INDIVIDUAL ACCOUNT IN BOTH CATEGORIES:**

- Daily stock holdings and trading
- Daily asset and debt data, hence leverage defined as asset/(asset-debt)
- ✤ Account maximum allowable leverage (pingcang level, 平仓线)

* STOCK DAILY INFORMATION: PRICES, RETURNS, OUTSTANDING SHARES, ETC

MEAN LEVERAGE FOR TWO ACCOUNTS AND MARKET INDEX

Leverage: Asset/Equity. Unregulated shadow has higher leverage

LEVERAGE DISPERSION AND FIRE-SALE PRESSURE

LEVERAGE INDUCED FIRE-SALE: ACCOUNT LEVEL EVIDENCE (2)

* $\overline{lev_j}$: THE MAXIMUM ALLOWABLE LEVERAGE OF THIS ACCOUNT

- So-called Pingcang level;
- ✤ $lev_{j,t} > \overline{lev}_j$ possible,: cannot sell if hit -10% daily limit rule; lenders are unsophisticated investors as well

*** DEFINE DISTANCE TO MAXIMUM ALLOWABLE**

LEVERAGE
$$d_{j,t} = \frac{lev_{j,t} - 1}{\overline{lev}_j - 1}$$

Sort accounts into equally-spaced bins by $d_{j,t}$

•
$$I_{k,t}^{j} = 1 \text{ if } d_{j,t} \in [k/10, (k+1)/10)$$

LEVERAGE INDUCED FIRE-SALE: ACCOUNT LEVEL EVIDENCE (1)

* ACCOUNT-STOCK-DATE LEVEL REGRESSION:

$$\delta_{i,t}^{j} = \sum_{k=1}^{10} \left(-\lambda_{k}\right) \cdot I_{k,t}^{j} + \alpha_{i,t} + \alpha_{j} + \varepsilon_{i,t}^{j}$$

 $\delta_{i,t}^{j} = \frac{\text{Account } j \text{'s net buying of stock } i \text{ at date } t }{\text{Account } j \text{'s initial holding of stock } i \text{ at date } t }$

- ↔ Stock-date fixed effect $\alpha_{i,t}$ and account fixed effect α_j
- Identification comes from account j's time-varying $d_{j,t}$

***** LEVERAGE INDUCED SELLING IMPLIES THAT λ_k INCREASES WITH k

LEVERAGE INDUCED FIRE-SALE: ACCOUNT LEVEL EVIDENCE (2)

↔ Benchmark: classify accounts with $k \ge 6$ as "fire-sale accounts," cut-off rule

• Robustness later: using these λ_k 's as weights

LEVERAGE INDUCED FIRE-SALE: STOCK LEVEL EVIDENCE (1)

- * IF STOCK *i* IS HELD BY MORE FIRE-SALE ACCOUNTS, IT WILL BE SOLD MORE HEAVILY BY THESE ACCOUNTS
- RUN REGRESSION

$$\delta_{i,t} = \lambda \cdot FSP_{i,t} + \text{controls} + \varepsilon_{i,t}^{j}$$

- ♦ Fire-sale accounts: accounts with $d_{j,t} \ge 0.6$ at the beginning of *t*
- $FSP_{i,t}$ is stock *i*'s fire-sale pressure, defined as

 $FSP_{i,t} = \frac{\text{Total shares of stock } i \text{ in fire-sale accounts at the beginning of date } t}{\text{Outstanding shares of stock } i \text{ at date } t}$

LEVERAGE INDUCED FIRE-SALE: STOCK LEVEL EVIDENCE (2)

	(1)	(2)	(3)	(4)			
VARIABLES	Net buy of fire-sale accounts						
Fire Sale Pressure (FSP)	-0.0908***	-0.0936***	-0.0935***	-0.102***			
	(0.0202)	(0.0229)	(0.0230)	(0.0255)			
Return Volatility			Х	Х			
Size (Market Cap)			Х	Х			
Turnover			Х	Х			
Past 10-day cum. return			Х	Х			
Past 10-day daily return				Х			
Stock FE		Х	Х	Х			
Date FE		Х	Х	Х			
Observations	142,849	142,843	142,465	125,057			
R-squared	0.124	0.165	0.166	0.186			

STOCK RETURNS FOLLOWING FIRE-SALE

* KEY QUESTION: DO LEVERAGE-INDUCED FIRE SALES CAUSE SUBSEQUENT LOW STOCK RETURN?

***** EMPIRICAL PREDICTIONS:

Stocks with high *FSP* underperform in the short-run but not in the long-run

*** TWO METHODS**

- Double sort on past return and FSP; long-short strategy based on FSP
- Regression of stock return on FSP with various controls

STOCK RETURNS FOLLOWING FIRE-SALE: NONPARAMETRIC

***** DOUBLE SORT: EACH DAY, WE

- First, sort stocks into quartiles by $R_{i,t} = (D_{i,t} + P_{i,t})/P_{i,t-1}$;
- Second, sort each quintile into deciles by $FSP_{i,t+1}$ (recall this is measured at the beginning of date t + 1)

CUMULATIVE ABNORMAL RETURN OF LONG-TOP-SHORT-BOTTOM FSP DECILES

- ***** LEVERAGE INDUCED FIRE-SALE STORY
 - Negative abnormal return of this long-short strategy, but disappears in long-run

STOCK RETURNS FOLLOWING FIRE-SALE: LONG-SHORT PORTFOLIO

STOCK RETURNS FOLLOWING FIRE-SALE

***REGRESSION**

$$CAR_{i,t+h} = \gamma_h \cdot FSP_{i,t} + \text{controls} + \varepsilon_{i,t+h}$$

Abnormal return is based on CAPM with stock beta calculated using 2014 data

$$h = 1, 3, 5, 10, 20, and 40$$

***MODEL PREDICTION**

 $\mathbf{v}_h < 0$ for small k but $\gamma_h \approx 0$ for large h

STOCK RETURNS FOLLOWING FIRE-SALE

CAR identified by FSP

	1 Day	3 Days	5 Days	10 Days	20 Days	40 Days
FSP	-1.356***	-3.346***	-4.898***	-5.829***	-2.629***	0.200
SE	(0.265)	(0.547)	(0.865)	(1.218)	(0.947)	(0.555)

- Robust standard errors in parentheses, clustered at date level
- Controls include return volatility; market cap; past 10-day daily returns; past 10-day cumulative return; turnover; stock fixed effect; date fixed effect

ROBUSTNESS: CONSTRUCTING *FSP* **BASED ON WEIGHTS**

* CONSTRUCTING STOCK LEVEL FIRE-SALE PRESSURE $FSP_{i,t}$ BASED ON λ_k

 $FSP_{i,t} = \frac{\sum_{j} x_{i,t}^{j} \cdot I_{k,t}^{j} \lambda_{k}}{\text{Outstanding shares of stock } i \text{ at date } t}$

- $x_{i,t}^{j}$: number of shares of stock *i* in account *j*
- Numerator: weighted sum of shares of stock *i* in account *j*; if account *j* belongs to group *k* then the weight is λ_k
- Again, leverage is measured at the beginning of date t

*** ROBUST RESULTS AND CONCLUSIONS**

BROKERAGE & SHADOW ACCOUNTS

LEVERAGE-INDUCED SELLING ON BROKERAGE AND SHADOW

FSP: BROKERAGE VS SHADOW

• Benchmark cut-off d = 0.6

MARGIN OR SHADOW?

	1 Day	3 Days	5 Days	10 Days	20 Days	40 Days
FSP of shadow	-2.074***	-5.214***	-8.230***	-11.24***	-3.072	0.507
SE	(0.459)	(1.092)	(1.650)	(2.217)	(1.913)	(0.839)
FSP of brokerage	-0.574***	-1.452***	-1.663**	-0.856	-2.238***	-0.0573
SE	(0.205)	(0.450)	(0.696)	(0.791)	(0.467)	(0.649)

Robust standard errors in parentheses, clustered at date level

CONCLUDING REMARKS

OIRECT EVIDENCE ON LEVERAGE-INDUCED FIRE SALES

- The closer to the maximum allowable leverage, the more you sell (including both forced sale and preemptive sale)
- The resulting selling downward price pressures cause negative abnormal return in the short-run

* REGULATED BROKERAGE VS UNREGULATED SHADOW MARGIN ACCOUNTS

- Brokerage margin accounts are dominant in holdings, but relatively low firesale pressure
- Shadow margin accounts are the major force of leverage-induced fire-sale in 2015 stock market crash

SIAN ET AL (2017) STUDY THE AMPLIFICATION EFFECT THROUGH THE LENS OF A NETWORK FRAMEWORK

 Full-blown amplification and propagation requires a structural model, work to be done in the future

