## Exploring the Link between the Macroeconomic and Financial Cycles Adam Cagliarini and Fiona Price



#### Motivation

- Literature suggests that the financial cycle longer in length and larger in amplitude than the business cycle *Claessens, Ayhan Kose and Terrones (2011); Drehmann, Borio and Tsatsaronis* 
  - (2012); Aikman, Haldane and Nelson (2015); Rünstler and Vlekke (2015)
- Increased attention on managing the financial cycle separately from the business cycle (e.g. countercyclical capital buffer)



#### **Research** questions

- 1. Is there evidence of a financial cycle that is longer than the business cycle?
- 2. How might these cycles be related and what are the main policy implications?



# Is there evidence of a financial cycle that is longer than the business cycle?



#### Data

- Financial variables: credit, housing prices, equity prices, 10-year government bond rates
- Economic variables: GDP, employment, unemployment rate

# Methodology

- Multivariate spectral analysis
- Multivariate Bry-Boschan quarterly algorithm (MBBQ)

#### **Multivariate Spectral Densities\***

Australia



\* Smoothed with a Parzen window; using quarterly data 1980Q1 to 2016Q1; dotted lines are the 95% confidence bands

- \*\* Credit growth, housing price growth, equity price growth, corporate bond spreads, change in 10 year government bond yields
- \*\*\* GDP growth, change in unemployment rate and employment growth Sources: BIS; OECD; RBA



### Multivariate spectral analysis

#### Estimates of financial and macroeconomic cycles

Years

|           | Financial    | variables <sup>(a)</sup> | Economic variables <sup>(b)</sup> |             |  |
|-----------|--------------|--------------------------|-----------------------------------|-------------|--|
|           | Cycle length | 95% CI                   | Cycle length                      | 95% CI      |  |
| Australia | 8.1          | [2.9, 18.1]              | 4.3                               | [3.6, 10.4] |  |
| US        | 8.2          | [5.3, 22.6]              | 5.7                               | [4.5, 11.3] |  |
| UK        | 5.2          | [4.3, 94.0]              | 8.5                               | [4.5, 15.7] |  |
| Germany   | 7.5          | [5.7, 22.6]              | 9.1                               | [4.7, 18.1] |  |
| France    | 12.6         | [3.5, 17.7]              | 9.8                               | [3.1, 14.8] |  |

(a) Financial variables include credit growth, housing price growth, equity price growth and change in 10-year government bond rates (b) Economic variables include GDP growth, employment growth and change in unemployment rate

Note: sample period differs across countries due to data availability, but generally begins between 1970 and 1980, and ends in 2016

Sources: Bank of England; BIS; INSEE; OECD; RBA



#### MBBQ

#### Estimates of financial and macroeconomic cycles

Years

|           | Financial variables <sup>(a)</sup> | Economic variables <sup>(b)</sup> |
|-----------|------------------------------------|-----------------------------------|
| Australia | 5.8                                | 9.8                               |
| US        | 6.5                                | 6.4                               |
| UK        | 6.4                                | 7.0                               |
| Germany   | 4.6                                | 5.1                               |
| France    | 7.3                                | 8.5                               |

(a) Financial variables include credit, housing prices, equity prices and 10-year government bond rates

(b) Economic variables include GDP, employment and unemployment rate

Note: sample period differs across countries due to data availability, but generally begins between 1970 and 1980, and ends in 2016

Sources: Bank of England; BIS; INSEE; OECD; RBA



# How might these cycles be related?



#### Data

• Only use credit and GDP growth

# Methodology

- Time series: Christiano-Fitzgerald band-pass filter and HP filter
- Synchronisation: Bry-Boschan quarterly algorithm (BBQ)
- Relationship: cross-correlograms, cross-spectral analysis and Granger Causality tests

#### **Real Credit and GDP Growth – Australia**



- \* Using a Christiano-Fitzgerald band-pass filter with a lower cut-off frequency of 8 years and upper cut-off frequency of 30 years
- \*\* Using a Christiano-Fitzgerald band-pass filter with a lower cut-off frequency of 2.5 years and upper cut-off frequency of 8 years

Sources: BIS; OECD; RBA



#### **Granger Causality Tests**

*p*-values, sample period 1980:1 – 2016:1

| Alternative hypothesis                 | Australia | US    | UK    | France | Germany |
|----------------------------------------|-----------|-------|-------|--------|---------|
| Longer cycle                           |           |       |       |        |         |
| Credit growth $\rightarrow$ GDP growth | 0.06      | 0.05  | 0.39  | 0.24   | 0.01    |
| GDP growth $\rightarrow$ credit growth | <0.00     | <0.00 | <0.00 | <0.00  | <0.00   |
| Shorter cycle                          |           |       |       |        |         |
| Credit growth $\rightarrow$ GDP growth | 0.01      | 0.18  | 0.23  | 0.58   | 0.09    |
| GDP growth $\rightarrow$ credit growth | 0.10      | 0.06  | <0.00 | <0.00  | 0.08    |



### Synthesis of results

- Little evidence to be able to conclude that cycles in financial and economic variables fluctuate at different frequencies
- Economic and financial variables do have cycles, these cycles are linked, but can be at different phases
- Evidence is more suggestive of economic activity leading financial conditions



### What are the drivers of financial cycle?

- If drivers are real (e.g. productivity), business cycle leads financial cycle
- If drivers are financial, financial cycle can lead business cycle
- The drivers of 'financial cycles' are still unclear
  - Most explanations relate to risk sentiment and expectations
  - Some argue monetary policy plays a role



### What should policy do?

 In a first-best world, address distortions and market failures that produce a financial cycle that is different from the business cycle



## Role of monetary policy

- Monetary policy can affect agents' risk taking
- Financial booms can lead to financial crises, which have severe economic consequences
- However, there can be a trade-off in the short-term
  - May need to balance short-term costs of missing inflation target against the longer-term benefit of avoiding or mitigating the effects of a financial crisis

### Issues with using monetary policy

- Monetary policy is a blunt tool and unable to target specific risks
- Tinbergen (1952) principle number of instruments should be equal to the number of policy objectives
  - Are we asking too much of monetary policy?
- When is risk-taking 'over-exuberant'?

ESERVE BANK OF AUSTRALIA

• Smets (2013) and others suggest that prudential policy plays a role in managing some of these risks



ESERVE BANK OF AUSTRALIA

# Role of macroprudential policy

- Can be more flexible in addressing risks more tools are available and the scope of these tools can be varied
- Can strengthen financial system resilience
- However:
  - Leakages may occur (e.g. unregulated financial sector)
  - These tools are not very well understood
  - Institutional arrangements can be difficult



## Monetary and macroprudential policies

- Macroprudential policy could be a valuable complement to monetary policy
- However, the use of macroprudential tools could limit the effectiveness of some channels of transmission of monetary policy
- As a result, coordination is required



### Conclusions

- The evidence is still not strong enough to suggest that there is a financial cycle that is longer than the business cycle
- Policy, broadly defined, should not solely focus on managing the business cycle – needs to be aware of managing the risks from financial booms
- Macroprudential policy can be a good complement to monetary policy in managing these risks, but it is not perfect



# Spares



#### Spectral analysis – robustness: financial variables

#### Estimates of financial and macroeconomic cycles

Years

|           | Financial va                 | ariables*   | Economic variables**         |             |  |
|-----------|------------------------------|-------------|------------------------------|-------------|--|
|           | Frequency of peak<br>(years) | 95% CI      | Frequency of peak<br>(years) | 95% CI      |  |
| Australia | 14.5                         | [4.3,18.1]  | 4.3                          | [3.6, 10.4] |  |
| US        | 12.9                         | [7.5, 22.6] | 5.7                          | [4.5, 11.3] |  |
| UK        | 13.4                         | [4.7, 23.5] | 8.5                          | [4.5, 15.7] |  |
| Germany   | 12.9                         | [7.5, 22.6] | 9.1                          | [4.7, 18.1] |  |
| France    | 12.6                         | [4.9, 17.7] | 9.8                          | [3.1, 14.8] |  |

\* Financial variables include credit growth, housing price growth

\*\* Economic variables include GDP growth, employment growth and change in unemployment rate

Note: sample period differs across countries due to data availability, but generally begins between 1970 and 1980, and ends in 2016

Sources: Bank of England; BIS; INSEE; OECD; RBA



# Spectral analysis – robustness: sample length

#### Estimates of financial and macroeconomic cycles

Years

|           | Financial va                 | ariables*   | Economic variables**         |             |  |
|-----------|------------------------------|-------------|------------------------------|-------------|--|
|           | Frequency of peak<br>(years) | 95% CI      | Frequency of peak<br>(years) | 95% CI      |  |
| Australia | 8.1                          | [3.2, 24.2] | 4.3                          | [3.5, 14.5] |  |
| US        | 8.1                          | [6.0, 36.3] | 8.1                          | [4.3, 14.5] |  |
| UK        | 12.1                         | [4.5, 24.2] | 8.1                          | [4.8, 18.1] |  |
| Germany   | 8.1                          | [3.2,14.5]  | 10.4                         | [3.8, 18.1] |  |
| France    | 10.4                         | [5.2, 24.2] | 9.1                          | [4.5, 72.5] |  |

\* Financial variables include credit growth, housing price growth, equity price growth and change in 10-year government bond rates

\*\* Economic variables include GDP growth, employment growth and change in unemployment rate

Note: Sample period limited to 1980:1 to 2016:1 for all countries

Sources: Bank of England; BIS; INSEE; OECD; RBA



# Spectral analysis – robustness: annual data

#### Estimates of financial and macroeconomic cycles

Years

|           | Financial va                 | ariables*   | Economic variables**                 |             |  |
|-----------|------------------------------|-------------|--------------------------------------|-------------|--|
|           | Frequency of peak<br>(years) | 95% CI      | 95% CI Frequency of peak 95% (years) |             |  |
| Australia | 4.2                          | [2.6, 42.0] | 6.7                                  | [2.2, 30.3] |  |
| US        | 7.9                          | [5.2, 49.5] | 6.2                                  | [5.0, 19.8] |  |
| UK        | 13.0                         | [4.2, 18.2] | 7.6                                  | [2.5, 91.0] |  |
| Germany   | 12.7                         | [2.0, 29.7] | 12.7                                 | [3.0, 29.7] |  |
| France    | 14.1                         | [6.3, 56.5] | 12.6                                 | [2.6, 56.5] |  |

\* Financial variables include credit growth, housing price growth, equity price growth and change in 10-year government bond rates

\*\* Economic variables include GDP growth, employment growth and change in unemployment rate

Note: using the annual Jordà, Schularick and Taylor (forthcoming) database, using data from 1920 onwards

Sources: Jordà, Schularick and Taylor (forthcoming); RBA



#### Spectral analysis - robustness: No Parzen window

#### Estimates of financial and macroeconomic cycles

Years

|           | Financial va                 | ariables*   | Economic variables**         |             |  |
|-----------|------------------------------|-------------|------------------------------|-------------|--|
|           | Frequency of peak<br>(years) | 95% CI      | Frequency of peak<br>(years) | 95% CI      |  |
| Australia | 14.5                         | [3.0,18.1]  | 4.3                          | [3.5, 10.4] |  |
| US        | 12.9                         | [6.0, 18.1] | 8.2                          | [2.6, 10.1] |  |
| UK        | 13.4                         | [3.2, 31.3] | 8.5                          | [4.7, 15.7] |  |
| Germany   | 7.0                          | [4.8, 30.2] | 5.3                          | [3.4, 22.6] |  |
| France    | 12.6                         | [3.2, 17.7] | 5.2                          | [3.1, 29.5] |  |

\* Financial variables include credit growth, housing price growth

\*\* Economic variables include GDP growth, employment growth and change in unemployment rate

Note: sample period differs across countries due to data availability, but generally begins between 1970 and 1980, and ends in 2016

Sources: Bank of England; BIS; INSEE; OECD; RBA



### MBBQ – robustness: financial variables

#### Estimates of financial and macroeconomic cycles

|           | Tears                |           |       |                      |           |       |
|-----------|----------------------|-----------|-------|----------------------|-----------|-------|
|           | Financial variables* |           |       | Economic variables** |           |       |
|           | Contraction          | Expansion | Cycle | Contraction          | Expansion | Cycle |
| Australia | 3.1                  | 2.5       | 5.6   | 1.8                  | 7.4       | 9.8   |
| US        | 2.3                  | 9.6       | 11.5  | 1.2                  | 4.7       | 6.4   |
| UK        | 6.4                  | 5.6       | 8.2   | 1.8                  | 5.2       | 7.0   |
| Germany   | 2.8                  | 0.5       | 3.3   | 2.0                  | 2.9       | 5.1   |
| France    | 3.8                  | 4.9       | 9.8   | 1.6                  | 6.0       | 8.5   |

\* Financial variables include credit, housing prices

\*\* Economic variables include GDP, employment and unemployment rate

Note: sample period differs across countries due to data availability, but generally begins between 1970 and 1980, and ends in 2016

Sources: Bank of England; BIS; INSEE; OECD; RBA



#### Power Cohesion

We follow Schuler *et al* (2016) and calculate a measure of the multivariate spectral density called the Power Cohesion:

$$PCoh_X(\omega) = \frac{1}{(M-1)M} \sum_{\substack{a \neq b}} |f_{x_a x_b}(\omega)|$$
$$f_{x_a x_b}(\omega) = \frac{s_{x_a x_b}(\omega)}{\sigma_{x_a} \sigma_{x_b}} = \frac{1}{2\pi} \sum_{\substack{k=-\infty}}^{\infty} \frac{Cov[x_{a,t}, x_{b,t+k}]}{\sigma_{x_a} \sigma_{x_b}} e^{-ik\omega}$$



# Bootstrapping

- **1. Berkowitz and Diebold (1998)**: Estimate smoothed and unsmoothed spectral densities. The ratio should follow a Chi-squared distribution. Draw randomly from a Chi-squared distribution to estimate *i*<sup>th</sup> bootstrap of unsmoothed spectral density.
- 2. Circular block bootstrap: Replicate time series using fixed block lengths. Randomly choose to create *i* new time series of same length as original data

#### → Both methods produce similar results

#### **United States\***



#### **United Kingdom\***



#### France\*



#### Germany\*













# BBQ

#### **Degree of synchronisation**

|           | Longer cycles* | Shorter cycles* |
|-----------|----------------|-----------------|
| Australia | 0.73           | 0.61            |
| USA       | 0.77           | 0.55            |
| UK        | 0.57           | 0.60            |
| France    | 0.65           | 0.51            |
| Germany   | 0.64           | 0.54            |
| Average   | 0.67           | 0.57            |

\* Longer (shorter) cycles are determined using a Christiano-Fitzgerald band-pass filter with a lower cut-off frequency of 8 (2.5) years and a upper cut-off frequency of 30 (8) years

Sources: BIS;OECD; RBA

#### **Cross-spectral Densities**

Real credit and GDP growth



Sources: BIS; OECD; RBA

#### **Cross-correlograms\*** Longer cycles in real credit and GDP growth\*\* 0.8 8.0 Cross-correlation function UK Australia 0.4 0.4 0.0 0.0 -0.4 -0.4 US -0.8 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 -0.8 20 25 30 35 Lag/lead

- \* Shows the correlation between the cycle in credit growth at time 0 and 36 leads and lags of the cycle in GDP growth; dashed lines represent the approximate 95% confidence interval
- \*\* Longer cycles correspond to cycle frequencies between 8 and 30 years Sources: BIS; OECD; RBA