Asset Collateralizability and the Cross-Section of Expected Returns

Hengjie Ai¹ Jun Li² Kai Li³ Christian Schlag²

¹University of Minnesota

²Goethe University Frankfurt

³Hong Kong University of Science and Technology

May 23, 2017

Introduction

- Background: A large literature of macroeconomic models of financial frictions
 - Theory: Agency costs force firms to use collateral to borrow capital
 - Implications: Financial accelerator effect, affect aggregate asset market

Introduction

- Background: A large literature of macroeconomic models of financial frictions
 - Theory: Agency costs force firms to use collateral to borrow capital
 - Implications: Financial accelerator effect, affect aggregate asset market
- This paper: are there cross-sectional implications?
 - Theory: Countercylical tightness of the collateral constraint
 - Prediction: Collateralizable asset hedges for aggregate shocks

イロト 不得下 イヨト イヨト

Introduction

- Background: A large literature of macroeconomic models of financial frictions
 - Theory: Agency costs force firms to use collateral to borrow capital
 - Implications: Financial accelerator effect, affect aggregate asset market
- This paper: are there cross-sectional implications?
 - Theory: Countercylical tightness of the collateral constraint
 - Prediction: Collateralizable asset hedges for aggregate shocks
- Overview of the paper:
 - Theory: a canonical GE model of collateral constraint
 - Quantify the asset pricing implications in the cross-section
 - Supporting evidence: high collateralizability \Rightarrow lower return

Related Literature

- Macroeconomic effects of financial frictions
 - Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Calstrom and Fuerst (1997)
 - This paper: Quantitative asset pricing implications
- The effect of financial frictions on aggregate stock market
 - He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Li (2017)
 - This paper: Focus on the cross section
- Literature on whether financial constraints risk is priced: weak evidence
 - Lamount et. al. (2001), Gomes et. al. (2004), Whited and Wu (2006)
 - This paper: Business cycle fluctuations of collateral constraint
 - Asset collateralizability channel, interact with financial constraint

Overview

- A canonical GE model of financial frictions
- This paper: Quantify the asset pricing implications in the cross section.

Overview

- A canonical GE model of financial frictions
- This paper: Quantify the asset pricing implications in the cross section.
- Household: Two members, worker and entrepreneur
 - Worker
 - Consume, work and save
 - Can only save through a risk-free account with entrepreneur
 - Entrepreneur
 - Borrow from worker, and acquire capital and run a neoclassical firm
 - Face a collateral constraint (micro-funded by limited enforcement)
- Neoclassical non-financial firm

Worker and Non-financial Firm

• Worker's consumption and saving problem:

$$\max_{C_t, B_t, L_t} U_t = \left\{ (1-\beta) C_t^{1-\frac{1}{\psi}} + \beta (E_t[U_{t+1}^{1-\gamma}])^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right\}^{\frac{1}{1-\frac{1}{\psi}}}$$

s.t. $C_t + B_t = R_{t-1}^f B_{t-1} + W_t L_t + \Pi_t$

Model Setup

Worker and Non-financial Firm

• Worker's consumption and saving problem:

$$\max_{C_t, B_t, L_t} U_t = \left\{ (1 - \beta) C_t^{1 - \frac{1}{\psi}} + \beta (E_t [U_{t+1}^{1 - \gamma}])^{\frac{1 - \frac{1}{\psi}}{1 - \gamma}} \right\}^{\frac{1}{1 - \frac{1}{\psi}}}$$

s.t. $C_t + B_t = R_{t-1}^f B_{t-1} + W_t L_t + \Pi_t$

- Non-financial firm
 - Cobb-Douglas production function:

$$Y_t = A_t (K_t^{\phi} H_t^{1-\phi})^{\alpha} L_t^{1-\alpha}$$

- K_t is collateralizable asset, H_t is non-collateralizable asset
- A_t is the exogenous aggregate productivity.

イロト イヨト イヨト イヨト

1

- The entrepreneurs come in overlapping generations.
- Each period t, a (1- λ) fraction of entrepreneurs forced to liquidate, and their net worth paid off to household as dividend.
- The measure of new entrepreneurs will come at time t, with initial wealth provided by household.
- Standard assumption for agency frictions in persist in the long run.

イロト 不得下 イヨト イヨト

• Optimization problem of a typical generation-0 entrepreneur:

$$V_{0} = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_{t}\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1-\lambda) N_{t} \right]$$

イロン イロン イヨン イヨン

• Optimization problem of a typical generation-0 entrepreneur:

$$V_{0} = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_{t}\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1-\lambda) N_{t} \right]$$

$$N_t + B_t = q_t K_{t+1} + p_t H_{t+1}, t \ge 0$$

イロン イロン イヨン イヨン

• Optimization problem of a typical generation-0 entrepreneur:

$$V_{0} = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_{t}\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1-\lambda) N_{t} \right]$$
$$N_{t} + B_{t} = q_{t} K_{t+1} + p_{t} H_{t+1}, t \ge 0$$
$$N_{t+1} = R_{t+1}^{K} q_{t} K_{t+1} + R_{t+1}^{H} p_{t} H_{t+1} - R_{t}^{f} B_{t}, t \ge 0$$

<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

• Optimization problem of a typical generation-0 entrepreneur:

$$V_{0} = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_{t}\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1-\lambda) N_{t} \right]$$
$$N_{t} + B_{t} = q_{t} K_{t+1} + p_{t} H_{t+1}, t \ge 0$$
$$N_{t+1} = R_{t+1}^{K} q_{t} K_{t+1} + R_{t+1}^{H} p_{t} H_{t+1} - R_{t}^{f} B_{t}, t \ge 0$$
$$B_{t} \le \zeta q_{t} K_{t+1}, t \ge 0$$

ヘロン ヘロン ヘヨン ヘヨン

• Optimization problem of a typical generation-0 entrepreneur:

$$V_{0} = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_{t}\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1-\lambda) N_{t} \right]$$
$$N_{t} + B_{t} = q_{t} K_{t+1} + p_{t} H_{t+1}, t \ge 0$$
$$N_{t+1} = R_{t+1}^{K} q_{t} K_{t+1} + R_{t+1}^{H} p_{t} H_{t+1} - R_{t}^{f} B_{t}, t \ge 0$$
$$B_{t} \le \zeta q_{t} K_{t+1}, t \ge 0$$

• The stochastic discount factor is MRS from worker's problem.

Asset Markets

- Assets:
 - R_{t+1}^{K} : Return on collateralizable asset
 - R_{t+1}^H : Return on non-collateralizable asset
 - R_t^f : Risk-free rate for household loan
 - R_t^{\prime} : (Shadow) interest rate among entrepreneurs

<ロ> (日) (日) (日) (日) (日)

Asset Markets

- Assets:
 - R_{t+1}^{K} : Return on collateralizable asset
 - R_{t+1}^H : Return on non-collateralizable asset
 - R_t^f : Risk-free rate for household loan
 - R'_t : (Shadow) interest rate among entrepreneurs
- Recursive form of entrepreneurs' problem

$$V(N_{t}) = \max_{K_{t+1}, H_{t+1}, B_{t}, B_{t}^{I}, N_{t+1}} E_{t} M_{t+1} [\lambda V(N_{t+1}) + (1 - \lambda) N_{t+1}]$$

s.t. $N_{t} = q_{t} K_{t+1} + p_{t} H_{t+1} - B_{t} - B_{t}^{I}$
 $N_{t+1} = R_{t+1}^{K} q_{t} K_{t+1} + R_{t+1}^{H} p_{t} H_{t+1} - R_{t}^{f} B_{t} - R_{t}^{I} B_{t}^{I}$
 $B_{t} \leq \zeta q_{t} K_{t+1}$

Augmented SDF

- Entrepreneur's value function: conjecture and verify $V(N_t) = \mu_t N_t$
 - μ_t : marginal value of net worth

Augmented SDF

- Entrepreneur's value function: conjecture and verify $V(N_t) = \mu_t N_t$
 - μ_t : marginal value of net worth
- Augmented SDF for entrepreneurs:

$$\widetilde{M}_{t+1} = M_{t+1} \frac{\lambda \mu_{t+1} + (1 - \lambda)}{\mu_t}$$

- $\lambda \mu_{t+1} + (1 \lambda)$: weighted average of marginal value of net worth
- The augmented SDF prices R_{t+1}^{K} , R_{t+1}^{H} and R_{t}^{I}
- The worker's SDF prices R_t^f

Interest Rates

• Equilibrium conditions for R^f and R^I :

$$\begin{aligned} 1 &= E_t \left[\widetilde{M}_{t+1} \right] R_t^f + \eta_t \\ 1 &= E_t \left[\widetilde{M}_{t+1} \right] R_t^\prime \end{aligned}$$

• η_t Lagrangian multiplier of the collateral constraint

・ロト ・回ト ・ヨト ・ヨト

Interest Rates

• Equilibrium conditions for R^f and R^I :

$$\begin{aligned} 1 &= E_t \left[\widetilde{M}_{t+1} \right] R_t^f + \eta_t \\ 1 &= E_t \left[\widetilde{M}_{t+1} \right] R_t^f \end{aligned}$$

- η_t Lagrangian multiplier of the collateral constraint
- The interest rate spread

$$R_t^I - R_t^f = \eta_t R_t^I$$

- Limits to arbitrage: $R_t^l R_t^f > 0$ when constraint is binding, $\eta_t > 0$
- The spread disciplines the calibrated tightness of financial constraints

Model Asset Pricing Implications

Capital Returns

• Equilibrium conditions for R^{K} and R^{H} :

$$1 = E_t \left[\widetilde{M}_{t+1} R_{t+1}^H \right]$$

$$1 = E_t \left[\widetilde{M}_{t+1} R_{t+1}^K \right] + \zeta \eta_t$$

• Return on non-collateralizable asset

$$R_{t+1}^{H} = \frac{\overbrace{MPK_{t+1}^{H} + p_{t+1}(1 - \delta_{H})}^{Y_{t+1}^{H}}}{p_{t}}$$

• Return on collateralizable asset

$$R_{t+1}^{K} = rac{Y_{t+1}^{K}}{rac{MPK_{t+1}^{K} + q_{t+1}(1 - \delta_{K})}{q_{t}}}$$

Hengjie Ai, Jun Li, Kai Li, Christian Schlag

Model

Capital Returns

• Valuation for non-collateralizable asset:

$$p_{t} = \underbrace{\frac{E_{t}(Y_{t+1}^{H})}{R_{t}^{I}}}_{\text{time discount}} + \underbrace{Cov_{t}\left[\widetilde{M}_{t+1}, Y_{t+1}^{H}\right]}_{\text{discount for risk}}$$

• Valuation for collateralizable asset:

$$q_{t} = \frac{E_{t}(Y_{t+1}^{\kappa})}{R_{t}^{l}} + Cov_{t}\left[\widetilde{M}_{t+1}, Y_{t+1}^{\kappa}\right] + \underbrace{\frac{\zeta\eta_{t}}{1-\zeta\eta_{t}}E_{t}\left[\widetilde{M}_{t+1}Y_{t+1}^{\kappa}\right]}_{1-\zeta\eta_{t}}$$

marginal value of relaxing the constraint

イロト イヨト イヨト イヨト

• Hedging: countercyclical $\eta_t \Rightarrow$ countercyclical marginal value of relaxing constraint

Decomposition of Expected Return Spread

• Expected return spread

$$E_t[\widetilde{M}_{t+1}(R_{t+1}^H - R_{t+1}^K)] = \zeta \eta_t$$

Decomposition

$$E_{t}[R_{t+1}^{H} - R_{t+1}^{K}] = \underbrace{\frac{\zeta(R_{t}^{I} - R_{t}^{f})}{E_{t}[\widetilde{M}_{t+1}]}}_{\text{liquidity premium}} \underbrace{-R_{t}^{I} Cov_{t}(\widetilde{M}_{t+1}, R_{t+1}^{H} - R_{t+1}^{K})}_{\text{risk premium}}$$

• Testable implication: TED predicts expected return spread.

イロト イポト イヨト イヨ

Impulse Responses of Negative TFP shock

Figure : Impulse Responses of Negative TFP shock

Empirical Targets

- Measure Firm Collateralizability
- Sort portfolio on collateralizability
 - Finding: Firms with high proportion of collateralizable assets earn lower return.
- Interact portfolio sorting with financial constraint measure
 - Finding: The effect more pronounced among constrained firms.
- Conditional AP test
 - Finding: The effect more pronounced under tight aggregate liquidity condition.

Figure : Collateralizability Measurement Framework

Hengjie Ai, Jun Li, Kai Li, Christian Schlag

• The collateral constraint:

$$B \leq \zeta_S S + \zeta_E E$$

(ロ) (回) (三) (三)

• The collateral constraint:

$$B \leq \zeta_S S + \zeta_E E$$

• Empirical implementation: Focus on a subset of financing constrained firms:

$$\frac{B_{i,t}}{AT_{i,t}} = \zeta_{S}\theta_{i,t}^{S} + \zeta_{E}\theta_{i,t}^{E}.$$

• The collateral constraint:

$$B \leq \zeta_S S + \zeta_E E$$

• Empirical implementation: Focus on a subset of financing constrained firms:

$$\frac{B_{i,t}}{AT_{i,t}} = \zeta_S \theta_{i,t}^S + \zeta_E \theta_{i,t}^E.$$

• $\theta_{i,t}^S$ and $\theta_{i,t}^E$: the share of structure and equipment in book asset, $AT_{i,t}$.

$$\begin{split} \theta_{i,t}^{s} &= \frac{S_{j,t}}{FA_{j,t}} \times \frac{PPENT_{i,t}}{AT_{i,t}}, \\ \theta_{i,t}^{E} &= \frac{E_{j,t}}{FA_{j,t}} \times \frac{PPENT_{i,t}}{AT_{i,t}}, \end{split}$$

• $\frac{S_{j,t}}{FA_{j,t}}$ and $\frac{E_{j,t}}{FA_{j,t}}$: industry specific ratio of structure and equipment w.r.t. total fixed asset, from BEA fixed asset table.

Hengjie Ai, Jun Li, Kai Li, Christian Schlag

Asset Collateralizability

May 23, 2017 17 / 26

• Book leverage regression:

$$\frac{B_{i,t}}{AT_{i,t}} = const + \zeta_{S}\theta_{i,t}^{S} + \zeta_{E}\theta_{i,t}^{E} + \gamma X_{it} + \sum_{j} Industry_{j} + \sum_{t} Year + \varepsilon_{i,t},$$

where X_{it} are controls including profitability, Q, earnings volatility, marginal tax rate and the rating dummy.

• Book leverage regression:

$$\frac{B_{i,t}}{AT_{i,t}} = const + \zeta_{S}\theta_{i,t}^{S} + \zeta_{E}\theta_{i,t}^{E} + \gamma X_{it} + \sum_{j} Industry_{j} + \sum_{t} Year + \varepsilon_{i,t},$$

where X_{it} are controls including profitability, Q, earnings volatility, marginal tax rate and the rating dummy.

• The collateralizability measure:

$$\frac{\left(\widehat{\zeta}_{\mathcal{S}}\theta_{i,t}^{\mathcal{S}}+\widehat{\zeta}_{\mathcal{E}}\theta_{i,t}^{\mathcal{E}}\right)\mathcal{A}T_{i,t}}{\mathcal{P}\mathcal{E}\mathcal{N}\mathcal{T}_{i,t}+\mathcal{I}n\tan_{i,t}}.$$

- It measures the proportion of firms collateralizable assets with respect to the firm's total physical plus intangible asset.
- Intangible capital measure: Peters and Taylor (2016)

Capital Structure Regression

Table : Capital Structure Regressions (Book Leverage)

	Whole sample	Dividend		SA ir	ndex	WW Index	
		uncons.	cons.	uncons.	cons.	uncons.	cons.
ζs	0.110***	0.0849***	0.142***	0.0952***	0.0799***	0.0982***	0.0774***
	(15.29)	(9.81)	(11.47)	(11.15)	(5.83)	(11.46)	(5.96)
ζE	0.0330***	0.0101	0.0672***	0.00959	0.0399***	0.0104	0.0257**
	(5.41)	(1.42)	(6.19)	(1.34)	(3.39)	(1.44)	(2.34)
Obs	73614	34753	38779	42934	29735	37994	35157
r2	0.277	0.285	0.288	0.280	0.304	0.289	0.292

t statistics in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01

Univariate Portfolio Sorting

Table : Univariate Portfolio Sorting on Asset Collateralizability, Equal Weighted

	1	2	3	4	5	1-5		
	Fina	ns, SA iı	ıdex					
$R^{e}(\%)$	1.60	1.33	1.21	1.03	0.89	0.71		
(<i>t</i>)	4.26	4.35	4.25	3.80	3.19	3.04		
$\sigma(\%)$	8.17	6.66	6.18	5.90	6.09	5.05		
	Finan	Financially unconstrained firms, SA						
$R^{e}(\%)$	1.14	1.00	0.94	0.85	0.77	0.37		
(<i>t</i>)	4.55	3.99	3.64	3.36	2.94	2.87		
$\sigma(\%)$	5.47	5.48	5.61	5.47	5.69	2.84		
	Whole sample							
$R^{e}(\%)$	1.49	1.21	1.03	0.96	0.81	0.67		
(<i>t</i>)	4.42	4.41	3.98	3.67	3.00	3.72		
σ (%)	7.32	5.98	5.63	5.67	5.92	3.93		

Hengjie Ai, Jun Li, Kai Li, Christian Schlag

Univariate Portfolio Sorting

Table : Univariate Portfolio Sorting on Asset Collateralizability, Value Weighted

	1	2	3	4	5	1-5	
	Fina	ndex					
$R^e(\%)$	0.90	0.83	0.86	0.66	0.37	0.54	
(<i>t</i>)	2.54	2.39	2.76	2.36	1.23	2.21	
$\sigma(\%)$	7.77	7.58	6.80	6.09	6.49	5.28	
	Finan	Financially unconstrained firms, SA					
$R^{e}(\%)$	0.76	0.59	0.64	0.63	0.53	0.23	
(<i>t</i>)	3.60	2.60	2.79	3.03	2.44	1.39	
$\sigma(\%)$	4.58	4.98	4.99	4.57	4.69	3.64	
	Whole sample						
$R^{e}(\%)$	0.77	0.62	0.55	0.60	0.48	0.29	
(<i>t</i>)	3.62	2.75	2.56	2.77	1.81	1.55	
σ (%)	4.61	4.93	4.67	4.69	5.74	4.05	

Hengjie Ai, Jun Li, Kai Li, Christian Schlag

Univariate Portfolio Sorting

Table : Univariate Portfolio Sorting, Other Financial Constraints Measure

	SA index		Divide	Dividend		ıdex
	uncons.	cons.	uncons.	cons.	uncons.	cons.
		Va	ue Weighted Portfolios			
(1)-(5)	0.23	0.54	0.09	0.40	0.19	0.43
t-stat	1.39	2.21	0.53	2.22	1.23	1.94
		Eq	ual Weightee	l Portf	olios	
(1)-(5)	0.37	0.70	0.39	0.65	0.42	0.70
t-stat	2.87	3.04	3.02	3.32	4.23	3.37

Table : Asset Pricing Tests (sort on collateralizability)

	1	2	3	4	5	1-5			
	Financially constrained firms, SA inde								
α	0.28	0.20	0.23	-0.03	-0.40	0.68			
(t)	1.92	1.51	2.05	-0.31	-2.65	3.05			
	Fina	ancially	unconstr	ained firm	ns, SA inc	ex			
α	0.30	0.10	0.15	0.08	-0.12	0.42			
(t)	3.49	1.19	2.24	1.03	-1.11	2.55			
	Whole sample								
α	0.31	0.08	0.05	0.03	-0.20	0.50			
(t)	3.29	0.95	0.75	0.41	-1.58	2.97			
Pan	Panel B: Fama-French Five-Factor M								
i an		ama-i	renen	I IVC-I		ouci			
	1	2	3	4	5	1-5			
	Financially constrained firms SA index								

Panel A: Carhart Four-Factor Model

	1	2	3	4	5	1-5		
	Financially constrained firms, SA inde							
α	0.51	0.38	0.28	-0.07	-0.56	1.07		
(t)	3.12	2.86	2.42	-0.81	-3.08	4.08		
	Financially unconstrained firms, SA index							
α	0.23	-0.01	0.12	-0.05	-0.26	0.49		
(t)	2.62	-0.12	1.69	-0.56	-2.28	2.73		
	Whole sample							
α	0.25	0.10	-0.01	-0.07	-0.28	0.53		
(t)	2.75	1.20	-0.09	-1.08	-1.64	2.53		

Conditional Moments

- TED spread: LIBOR minus Tbill, aggregate funding liquidity measure
- Predictive regression: TED predicts 1-month ahead excess return spread.

	Whole Sample	SA index		Dividend		WW Index	
		uncons.	cons.	uncons.	cons.	uncons.	cons.
TED(-1)	0.063	0.087*	0.203***	0.016	0.107**	0.095*	0.106*
	(0.057)	(0.051)	(0.074)	(0.060)	(0.052)	(0.056)	(0.064)
const	0.088	-0.194	-0.410	-0.023	0.067	-0.273	-0.020
	(0.383)	(0.305)	(0.436)	(0.356)	(0.304)	(0.290)	(0.365)
N	359	`359 ´	`359 ´	`359 ´	<u>`</u> 359 ´	`359 ´	359

Table : Predictive Regression by TED

Summary

- This paper: cross-sectional implications of collateral constraint
 - Theory: Countercylical tightness of the collateral constraint
 - Prediction: Collateralizable asset hedges for aggregate shocks
- Overview of the paper:
 - Theory: a canonical GE model of collateral constraint
 - Quantify the asset pricing implications in the cross-section
 - Compelling evidence: high collateralizability \Rightarrow lower return

イロト イポト イヨト イヨ

Appendix: Firm Characteristics

Table : Firm Characteristics on Collateralizability Sorted Portfolios

	1	2	3	4	5
Collateralizability	0.029	0.049	0.066	0.087	0.130
Collateralizable/AT	0.041	0.047	0.051	0.063	0.071
Book leverage	0.090	0.173	0.197	0.214	0.209
Market leverage	0.049	0.135	0.181	0.205	0.198
BM	0.432	0.568	0.637	0.658	0.649
log(ME)	4.270	5.034	5.145	5.196	5.156
KZ	-3.503	-1.678	-1.043	-0.240	-0.435
WW	-0.186	-0.247	-0.267	-0.275	-0.272
SA	-2.518	-2.967	-3.090	-3.119	-3.118
Dividend Paying (%)	31.90	44.11	51.57	53.16	49.76

Hengjie Ai, Jun Li, Kai Li, Christian Schlag