Asset Collateralizability and the Cross-Section of Expected Returns

Hengjie Ai1 Jun Li2 Kai Li3 Christian Schlag2

1University of Minnesota
2Goethe University Frankfurt
3Hong Kong University of Science and Technology

May 23, 2017
Introduction

- **Background:** A large literature of macroeconomic models of financial frictions
 - **Theory:** Agency costs force firms to use collateral to borrow capital
 - **Implications:** Financial accelerator effect, affect aggregate asset market

This paper: are there cross-sectional implications?

Theory: Countercyclical tightness of the collateral constraint

Prediction: Collateralizable asset hedges for aggregate shocks

Overview of the paper:
- **Theory:** a canonical GE model of collateral constraint
- Quantify the asset pricing implications in the cross-section
- Supporting evidence: high collateralizability ⇒ lower return
Introduction

- **Background**: A large literature of macroeconomic models of financial frictions
 - Theory: Agency costs force firms to use collateral to borrow capital
 - Implications: Financial accelerator effect, affect aggregate asset market
- **This paper**: are there cross-sectional implications?
 - Theory: Countercyclical tightness of the collateral constraint
 - Prediction: Collateralizable asset hedges for aggregate shocks
Introduction

Background: A large literature of macroeconomic models of financial frictions

- **Theory:** Agency costs force firms to use collateral to borrow capital
- **Implications:** Financial accelerator effect, affect aggregate asset market

This paper: are there cross-sectional implications?
- **Theory:** Countercyclical tightness of the collateral constraint
- **Prediction:** Collateralizable asset hedges for aggregate shocks

Overview of the paper:
- **Theory:** a canonical GE model of collateral constraint
- **Quantify the asset pricing implications in the cross-section**
- **Supporting evidence:** high collateralizability ⇒ lower return
Related Literature

- Macroeconomic effects of financial frictions
 - This paper: Quantitative asset pricing implications

- The effect of financial frictions on aggregate stock market
 - He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Li (2017)
 - This paper: Focus on the cross section

- Literature on whether financial constraints risk is priced: weak evidence
 - Lamount et. al. (2001), Gomes et. al. (2004), Whited and Wu (2006)
 - This paper: Business cycle fluctuations of collateral constraint
 - Asset collateralizability channel, interact with financial constraint
Overview

- A canonical GE model of financial frictions
- This paper: Quantify the asset pricing implications in the cross section.
Overview

- A canonical GE model of financial frictions
- **This paper**: Quantify the asset pricing implications in the cross section.
- Household: Two members, worker and entrepreneur
 - Worker
 - Consume, work and save
 - Can only save through a risk-free account with entrepreneur
 - Entrepreneur
 - Borrow from worker, and acquire capital and run a neoclassical firm
 - Face a collateral constraint (micro-funded by limited enforcement)
- Neoclassical non-financial firm
Worker and Non-financial Firm

- Worker’s consumption and saving problem:

\[
\max_{C_t, B_t, L_t} U_t = \left\{ (1 - \beta)C_t^{1-\frac{1}{\psi}} + \beta(E_t[U_{t+1}^{1-\gamma}])^{1-\frac{1}{\psi}} \right\}^{\frac{1}{1-\frac{1}{\psi}}}
\]

s.t. \(C_t + B_t = R_{t-1}B_{t-1} + W_tL_t + \Pi_t \)
Worker and Non-financial Firm

- Worker’s consumption and saving problem:

\[
\max_{C_t,B_t,L_t} U_t = \left\{ (1 - \beta) C_t^{1-\frac{1}{\psi}} + \beta (E_t[U_{t+1}^{1-\gamma}]^{1-\frac{1}{\psi}} \right\}^{\frac{1}{1-\frac{1}{\psi}}}
\]

s.t. \(C_t + B_t = R_{t-1} B_{t-1} + W_t L_t + \Pi_t \)

- Non-financial firm

 - Cobb-Douglas production function:

\[
Y_t = A_t (K_t^\phi H_t^{1-\phi})^\alpha L_t^{1-\alpha}
\]

- \(K_t \) is collateralizable asset, \(H_t \) is non-collateralizable asset

- \(A_t \) is the exogenous aggregate productivity.
Entrepreneurs

- The entrepreneurs come in overlapping generations.
- Each period t, a $(1-\lambda)$ fraction of entrepreneurs forced to liquidate, and their net worth paid off to household as dividend.
- The measure of new entrepreneurs will come at time t, with initial wealth provided by household.
- Standard assumption for agency frictions in persist in the long run.
Entrepreneurs

- Optimization problem of a typical generation-0 entrepreneur:

\[V_0 = \max \left\{ N_{t+1}, K_{t+1}, H_{t+1}, B_t \right\}_{t=0}^\infty E_0 \left[\sum_{t=1}^\infty M_{0,t} \lambda^{t-1} (1 - \lambda) N_t \right] \]
Entrepreneurs

Optimization problem of a typical generation-0 entrepreneur:

\[V_0 = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_t\}} \sum_{t=0}^{\infty} E_0 \left[M_{0,t} \lambda^{t-1}(1 - \lambda)N_t \right] \]

\[N_t + B_t = q_t K_{t+1} + p_t H_{t+1}, \quad t \geq 0 \]
Entrepreneurs

Optimization problem of a typical generation-0 entrepreneur:

\[V_0 = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_t\}_{t=0}^\infty} E_0 \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1 - \lambda) N_t \right] \]

\[N_t + B_t = q_t K_{t+1} + p_t H_{t+1}, \quad t \geq 0 \]

\[N_{t+1} = R^K_{t+1} q_t K_{t+1} + R^H_{t+1} p_t H_{t+1} - R^f_t B_t, \quad t \geq 0 \]
Optimization problem of a typical generation-0 entrepreneur:

\[V_0 = \max \{ N_{t+1}, K_{t+1}, H_{t+1}, B_t \} \sum_{t=0}^{\infty} E_0 \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1 - \lambda) N_t \right] \]

\[N_t + B_t = q_t K_{t+1} + p_t H_{t+1}, \quad t \geq 0 \]

\[N_{t+1} = R^K_{t+1} q_t K_{t+1} + R^H_{t+1} p_t H_{t+1} - R^f_t B_t, \quad t \geq 0 \]

\[B_t \leq \zeta q_t K_{t+1}, \quad t \geq 0 \]
Optimization problem of a typical generation-0 entrepreneur:

\[V_0 = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_t\}_{t=0}^{\infty}} E_0 \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1}(1 - \lambda) N_t \right] \]

\[N_t + B_t = q_t K_{t+1} + p_t H_{t+1}, \ t \geq 0 \]

\[N_{t+1} = R^K_{t+1} q_t K_{t+1} + R^H_{t+1} p_t H_{t+1} - R^f_t B_t, \ t \geq 0 \]

\[B_t \leq \zeta q_t K_{t+1}, \ t \geq 0 \]

The stochastic discount factor is MRS from worker’s problem.
Asset Markets

- **Assets:**
 - R^K_{t+1}: Return on collateralizable asset
 - R^H_{t+1}: Return on non-collateralizable asset
 - R^f_t: Risk-free rate for household loan
 - R^I_t: (Shadow) interest rate among entrepreneurs
Asset Markets

- **Assets:**
 - R^K_{t+1}: Return on collateralizable asset
 - R^H_{t+1}: Return on non-collateralizable asset
 - R_f^t: Risk-free rate for household loan
 - R_I^t: (Shadow) interest rate among entrepreneurs

- Recursive form of entrepreneurs' problem

$$V(N_t) = \max_{K_{t+1}, H_{t+1}, B_t, B_I^t, N_{t+1}} E_t M_{t+1} [\lambda V(N_{t+1}) + (1 - \lambda) N_{t+1}]$$

s.t. $N_t = q_t K_{t+1} + p_t H_{t+1} - B_t - B_I^t$

$N_{t+1} = R^K_{t+1} q_t K_{t+1} + R^H_{t+1} p_t H_{t+1} - R_f^t B_t - R_I^t B_I^t$

$B_t \leq \zeta q_t K_{t+1}$
Augmented SDF

- Entrepreneur’s value function: conjecture and verify $V(N_t) = \mu_t N_t$
 - μ_t: marginal value of net worth
Augmented SDF

- Entrepreneur’s value function: conjecture and verify $V(N_t) = \mu_t N_t$
 - μ_t: marginal value of net worth
- Augmented SDF for entrepreneurs:
 $$\tilde{M}_{t+1} = M_{t+1} \frac{\lambda \mu_{t+1} + (1 - \lambda)}{\mu_t}$$
 - $\lambda \mu_{t+1} + (1 - \lambda)$: weighted average of marginal value of net worth
 - The augmented SDF prices R^K_{t+1}, R^H_{t+1} and R^I_t
 - The worker’s SDF prices R^f_t
Interest Rates

- Equilibrium conditions for R^f and R^I:

\[
1 = E_t \left[\tilde{M}_{t+1} \right] R^f_t + \eta_t \\
1 = E_t \left[\tilde{M}_{t+1} \right] R^I_t
\]

- η_t Lagrangian multiplier of the collateral constraint
Interest Rates

- Equilibrium conditions for R^f and R^l:

\[
1 = E_t \left[\tilde{M}_{t+1} \right] R^f_t + \eta_t \\
1 = E_t \left[\tilde{M}_{t+1} \right] R^l_t
\]

- η_t Lagrangian multiplier of the collateral constraint

- The interest rate spread

\[
R^l_t - R^f_t = \eta_t R^l_t
\]

- Limits to arbitrage: $R^l_t - R^f_t > 0$ when constraint is binding, $\eta_t > 0$

- The spread disciplines the calibrated tightness of financial constraints
Capital Returns

- Equilibrium conditions for R^K and R^H:

 \[
 1 = E_t \left[\tilde{M}_{t+1} R^H_{t+1} \right] \\
 1 = E_t \left[\tilde{M}_{t+1} R^K_{t+1} \right] + \zeta \eta_t
 \]

- Return on non-collateralizable asset

 \[
 R^H_{t+1} = \frac{Y^H_{t+1}}{p_t} = \frac{\text{MPK}^H_{t+1} + p_{t+1}(1 - \delta^H)}{p_t}
 \]

- Return on collateralizable asset

 \[
 R^K_{t+1} = \frac{Y^K_{t+1}}{q_t} = \frac{\text{MPK}^K_{t+1} + q_{t+1}(1 - \delta^K)}{q_t}
 \]
Capital Returns

- **Valuation for non-collateralizable asset:**

\[p_t = \frac{E_t(Y_{t+1}^H)}{R_t^l} + \text{Cov}_t \left[\tilde{M}_{t+1}, Y_{t+1}^H \right] \]

- **Valuation for collateralizable asset:**

\[q_t = \frac{E_t(Y_{t+1}^K)}{R_t^l} + \text{Cov}_t \left[\tilde{M}_{t+1}, Y_{t+1}^K \right] + \frac{\zeta \eta_t}{1 - \zeta \eta_t} E_t \left[\tilde{M}_{t+1} Y_{t+1}^K \right] \]

- **Hedging:** countercyclical \(\eta_t \) ⇒ countercyclical marginal value of relaxing the constraint
Decomposition of Expected Return Spread

- Expected return spread
 \[E_t[\tilde{M}_{t+1}(R^H_{t+1} - R^K_{t+1})] = \zeta \eta_t \]

- Decomposition
 \[E_t[R^H_{t+1} - R^K_{t+1}] = \frac{\zeta (R^I_t - R^f_t)}{E_t[\tilde{M}_{t+1}]} - R^I_t \text{Cov}_t(\tilde{M}_{t+1}, R^H_{t+1} - R^K_{t+1}) \]
 - liquidity premium
 - risk premium

- Testable implication: TED predicts expected return spread.
Impulse Responses of Negative TFP shock

Figure: Impulse Responses of Negative TFP shock
Empirical Targets

- Measure Firm Collateralizability
- Sort portfolio on collateralizability
 - Finding: Firms with high proportion of collateralizable assets earn lower return.
- Interact portfolio sorting with financial constraint measure
 - Finding: The effect more pronounced among constrained firms.
- Conditional AP test
 - Finding: The effect more pronounced under tight aggregate liquidity condition.
Collateralizability Measure

Figure: Collateralizability Measurement Framework
Collateralizability Measure

- The collateral constraint:

\[B \leq \zeta_S S + \zeta_E E \]
Collateralizability Measure

- The collateral constraint:
 \[B \leq \zeta_S S + \zeta_E E \]

- Empirical implementation: Focus on a subset of financing constrained firms:
 \[\frac{B_{i,t}}{AT_{i,t}} = \zeta_S \theta_{i,t}^S + \zeta_E \theta_{i,t}^E. \]
Collateralizability Measure

- The collateral constraint:
 \[B \leq \zeta_S S + \zeta_E E \]

- Empirical implementation: Focus on a subset of financing constrained firms:
 \[\frac{B_{i,t}}{AT_{i,t}} = \zeta_S \theta_{i,t}^S + \zeta_E \theta_{i,t}^E. \]

- \(\theta_{i,t}^S \) and \(\theta_{i,t}^E \): the share of structure and equipment in book asset, \(AT_{i,t} \).

\[
\theta_{i,t}^S = \frac{S_{j,t}}{FA_{j,t}} \times \frac{PPENT_{i,t}}{AT_{i,t}},
\]
\[
\theta_{i,t}^E = \frac{E_{j,t}}{FA_{j,t}} \times \frac{PPENT_{i,t}}{AT_{i,t}},
\]

- \(\frac{S_{j,t}}{FA_{j,t}} \) and \(\frac{E_{j,t}}{FA_{j,t}} \): industry specific ratio of structure and equipment w.r.t. total fixed asset, from BEA fixed asset table.
Collateralizability Measure

- Book leverage regression:

\[
\frac{B_{i,t}}{AT_{i,t}} = const + \zeta_S \theta_{i,t}^S + \zeta_E \theta_{i,t}^E + \gamma X_{it} + \sum_j \text{Industry}_j + \sum_t \text{Year} + \varepsilon_{i,t},
\]

where \(X_{it} \) are controls including profitability, \(Q \), earnings volatility, marginal tax rate and the rating dummy.
Collateralizability Measure

- Book leverage regression:

\[
\frac{B_{i,t}}{AT_{i,t}} = const + \zeta_S \theta_{i,t}^S + \zeta_E \theta_{i,t}^E + \gamma X_{it} + \sum_j Industry_j + \sum_t Year + \epsilon_{i,t},
\]

where \(X_{it}\) are controls including profitability, Q, earnings volatility, marginal tax rate and the rating dummy.

- The collateralizability measure:

\[
\left(\hat{\zeta}_S \theta_{i,t}^S + \hat{\zeta}_E \theta_{i,t}^E\right) \frac{AT_{i,t}}{PPENT_{i,t} + \ln \tan_{i,t}}.
\]

- It measures the proportion of firms collateralizable assets with respect to the firm’s total physical plus intangible asset.

- Intangible capital measure: Peters and Taylor (2016)
Capital Structure Regression

<table>
<thead>
<tr>
<th></th>
<th>Whole sample</th>
<th>Dividend</th>
<th>SA index</th>
<th>WW Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uncons.</td>
<td>cons.</td>
<td>uncons.</td>
<td>cons.</td>
</tr>
<tr>
<td>ζ_S</td>
<td>0.110***</td>
<td>0.142***</td>
<td>0.0952***</td>
<td>0.0799***</td>
</tr>
<tr>
<td></td>
<td>(15.29)</td>
<td>(11.47)</td>
<td>(11.15)</td>
<td>(5.83)</td>
</tr>
<tr>
<td>ζ_E</td>
<td>0.0330***</td>
<td>0.0672***</td>
<td>0.00959</td>
<td>0.0399***</td>
</tr>
<tr>
<td></td>
<td>(5.41)</td>
<td>(6.19)</td>
<td>(1.34)</td>
<td>(3.39)</td>
</tr>
</tbody>
</table>

	Obs	73614	34753	38779	42934	29735	37994	35157
	r2	0.277	35157	0.285	0.288	0.280	0.304	0.289

t statistics in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Univariate Portfolio Sorting

Table: Univariate Portfolio Sorting on Asset Collateralizability, Equal Weighted

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financially constrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^e(%)$</td>
<td>1.60</td>
<td>1.33</td>
<td>1.21</td>
<td>1.03</td>
<td>0.89</td>
<td>0.71</td>
</tr>
<tr>
<td>(t)</td>
<td>4.26</td>
<td>4.35</td>
<td>4.25</td>
<td>3.80</td>
<td>3.19</td>
<td>3.04</td>
</tr>
<tr>
<td>$\sigma(%)$</td>
<td>8.17</td>
<td>6.66</td>
<td>6.18</td>
<td>5.90</td>
<td>6.09</td>
<td>5.05</td>
</tr>
<tr>
<td>Financially unconstrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^e(%)$</td>
<td>1.14</td>
<td>1.00</td>
<td>0.94</td>
<td>0.85</td>
<td>0.77</td>
<td>0.37</td>
</tr>
<tr>
<td>(t)</td>
<td>4.55</td>
<td>3.99</td>
<td>3.64</td>
<td>3.36</td>
<td>2.94</td>
<td>2.87</td>
</tr>
<tr>
<td>$\sigma(%)$</td>
<td>5.47</td>
<td>5.48</td>
<td>5.61</td>
<td>5.47</td>
<td>5.69</td>
<td>2.84</td>
</tr>
<tr>
<td>Whole sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^e(%)$</td>
<td>1.49</td>
<td>1.21</td>
<td>1.03</td>
<td>0.96</td>
<td>0.81</td>
<td>0.67</td>
</tr>
<tr>
<td>(t)</td>
<td>4.42</td>
<td>4.41</td>
<td>3.98</td>
<td>3.67</td>
<td>3.00</td>
<td>3.72</td>
</tr>
<tr>
<td>$\sigma(%)$</td>
<td>7.32</td>
<td>5.98</td>
<td>5.63</td>
<td>5.67</td>
<td>5.92</td>
<td>3.93</td>
</tr>
</tbody>
</table>
Univariate Portfolio Sorting

Table: Univariate Portfolio Sorting on Asset Collateralizability, Value Weighted

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financially constrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^e(%)$</td>
<td>0.90</td>
<td>0.83</td>
<td>0.86</td>
<td>0.66</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>(t)</td>
<td>2.54</td>
<td>2.39</td>
<td>2.76</td>
<td>2.36</td>
<td>1.23</td>
<td>2.21</td>
</tr>
<tr>
<td>$\sigma(%)$</td>
<td>7.77</td>
<td>7.58</td>
<td>6.80</td>
<td>6.09</td>
<td>6.49</td>
<td>5.28</td>
</tr>
<tr>
<td>Financially unconstrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^e(%)$</td>
<td>0.76</td>
<td>0.59</td>
<td>0.64</td>
<td>0.63</td>
<td>0.53</td>
<td>0.23</td>
</tr>
<tr>
<td>(t)</td>
<td>3.60</td>
<td>2.60</td>
<td>2.79</td>
<td>3.03</td>
<td>2.44</td>
<td>1.39</td>
</tr>
<tr>
<td>$\sigma(%)$</td>
<td>4.58</td>
<td>4.98</td>
<td>4.99</td>
<td>4.57</td>
<td>4.69</td>
<td>3.64</td>
</tr>
<tr>
<td>Whole sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^e(%)$</td>
<td>0.77</td>
<td>0.62</td>
<td>0.55</td>
<td>0.60</td>
<td>0.48</td>
<td>0.29</td>
</tr>
<tr>
<td>(t)</td>
<td>3.62</td>
<td>2.75</td>
<td>2.56</td>
<td>2.77</td>
<td>1.81</td>
<td>1.55</td>
</tr>
<tr>
<td>$\sigma(%)$</td>
<td>4.61</td>
<td>4.93</td>
<td>4.67</td>
<td>4.69</td>
<td>5.74</td>
<td>4.05</td>
</tr>
</tbody>
</table>
Table: Univariate Portfolio Sorting, Other Financial Constraints Measure

<table>
<thead>
<tr>
<th></th>
<th>SA index</th>
<th>Dividend</th>
<th>WW Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uncons.</td>
<td>cons.</td>
<td>uncons.</td>
</tr>
<tr>
<td>(1)-(5)</td>
<td>0.23</td>
<td>0.54</td>
<td>0.09</td>
</tr>
<tr>
<td>t-stat</td>
<td>1.39</td>
<td>2.21</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Value Weighted Portfolios</th>
<th>Equal Weighted Portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)-(5)</td>
<td>0.37 0.70 0.39 0.65 0.42 0.70</td>
<td>2.87 3.04 3.02 3.32 4.23 3.37</td>
</tr>
<tr>
<td>t-stat</td>
<td>1.94</td>
<td>3.37</td>
</tr>
</tbody>
</table>
Table: Asset Pricing Tests (sort on collateralizability)

Panel A: Carhart Four-Factor Model

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financially constrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.28</td>
<td>0.20</td>
<td>0.23</td>
<td>-0.03</td>
<td>-0.40</td>
<td>0.68</td>
</tr>
<tr>
<td>(t)</td>
<td>1.92</td>
<td>1.51</td>
<td>2.05</td>
<td>-0.31</td>
<td>-2.65</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>Financially unconstrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.30</td>
<td>0.10</td>
<td>0.15</td>
<td>0.08</td>
<td>-0.12</td>
<td>0.42</td>
</tr>
<tr>
<td>(t)</td>
<td>3.49</td>
<td>1.19</td>
<td>2.24</td>
<td>1.03</td>
<td>-1.11</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>Whole sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.31</td>
<td>0.08</td>
<td>0.05</td>
<td>0.03</td>
<td>-0.20</td>
<td>0.50</td>
</tr>
<tr>
<td>(t)</td>
<td>3.29</td>
<td>0.95</td>
<td>0.75</td>
<td>0.41</td>
<td>-1.58</td>
<td>2.97</td>
</tr>
</tbody>
</table>

Panel B: Fama-French Five-Factor Model

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financially constrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.51</td>
<td>0.38</td>
<td>0.28</td>
<td>-0.07</td>
<td>-0.56</td>
<td>1.07</td>
</tr>
<tr>
<td>(t)</td>
<td>3.12</td>
<td>2.86</td>
<td>2.42</td>
<td>-0.81</td>
<td>-3.08</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td>Financially unconstrained firms, SA index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.23</td>
<td>-0.01</td>
<td>0.12</td>
<td>-0.05</td>
<td>-0.26</td>
<td>0.49</td>
</tr>
<tr>
<td>(t)</td>
<td>2.62</td>
<td>-0.12</td>
<td>1.69</td>
<td>-0.56</td>
<td>-2.28</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td>Whole sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.25</td>
<td>0.10</td>
<td>-0.01</td>
<td>-0.07</td>
<td>-0.28</td>
<td>0.53</td>
</tr>
<tr>
<td>(t)</td>
<td>2.75</td>
<td>1.20</td>
<td>-0.09</td>
<td>-1.08</td>
<td>-1.64</td>
<td>2.53</td>
</tr>
</tbody>
</table>
Testable Implications

Conditional Moments

- TED spread: LIBOR minus Tbill, aggregate funding liquidity measure
- Predictive regression: TED predicts 1-month ahead excess return spread.

Table: Predictive Regression by TED

<table>
<thead>
<tr>
<th></th>
<th>Whole Sample</th>
<th>SA index</th>
<th>Dividend</th>
<th>WW Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uncons.</td>
<td>cons.</td>
<td>uncons.</td>
<td>cons.</td>
</tr>
<tr>
<td>TED(-1)</td>
<td>0.063</td>
<td>0.087*</td>
<td>0.203***</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.051)</td>
<td>(0.074)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>const</td>
<td>0.088</td>
<td>-0.194</td>
<td>-0.410</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.383)</td>
<td>(0.305)</td>
<td>(0.436)</td>
<td>(0.356)</td>
</tr>
<tr>
<td>N</td>
<td>359</td>
<td>359</td>
<td>359</td>
<td>359</td>
</tr>
</tbody>
</table>
Summary

- **This paper**: cross-sectional implications of collateral constraint
 - Theory: Countercyclical tightness of the collateral constraint
 - Prediction: Collateralizable asset hedges for aggregate shocks

- **Overview of the paper**:
 - Theory: a canonical GE model of collateral constraint
 - Quantify the asset pricing implications in the cross-section
 - Compelling evidence: high collateralizability \Rightarrow lower return
Appendix: Firm Characteristics

Table: Firm Characteristics on Collateralizability Sorted Portfolios

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collateralizability</td>
<td>0.029</td>
<td>0.049</td>
<td>0.066</td>
<td>0.087</td>
<td>0.130</td>
</tr>
<tr>
<td>Collateralizable/AT</td>
<td>0.041</td>
<td>0.047</td>
<td>0.051</td>
<td>0.063</td>
<td>0.071</td>
</tr>
<tr>
<td>Book leverage</td>
<td>0.090</td>
<td>0.173</td>
<td>0.197</td>
<td>0.214</td>
<td>0.209</td>
</tr>
<tr>
<td>Market leverage</td>
<td>0.049</td>
<td>0.135</td>
<td>0.181</td>
<td>0.205</td>
<td>0.198</td>
</tr>
<tr>
<td>BM</td>
<td>0.432</td>
<td>0.568</td>
<td>0.637</td>
<td>0.658</td>
<td>0.649</td>
</tr>
<tr>
<td>log(ME)</td>
<td>4.270</td>
<td>5.034</td>
<td>5.145</td>
<td>5.196</td>
<td>5.156</td>
</tr>
<tr>
<td>KZ</td>
<td>-3.503</td>
<td>-1.678</td>
<td>-1.043</td>
<td>-0.240</td>
<td>-0.435</td>
</tr>
<tr>
<td>WW</td>
<td>-0.186</td>
<td>-0.247</td>
<td>-0.267</td>
<td>-0.275</td>
<td>-0.272</td>
</tr>
<tr>
<td>Dividend Paying (%)</td>
<td>31.90</td>
<td>44.11</td>
<td>51.57</td>
<td>53.16</td>
<td>49.76</td>
</tr>
</tbody>
</table>