Habits and Leverage

Tano Santos
Columbia University Graduate School of Business

Pietro Veronesi
University of Chicago Booth School of Business
Motivation

• Much discussion in the academic literature and in policy circles about leverage and its impact on the real economy and on financial markets

• Various related themes, such as:

 – Excess credit supply may lead to financial crisis

 – The excessive growth of household debt and the causal relation between households’ deleveraging and their low future consumption growth

 – Leverage cycle: Leverage is high when prices are high and volatility is low

 – Active deleveraging of financial institutions generate “fire sales” of risky financial assets, which further crash asset prices

 – The leverage ratio of financial institutions is a risk factor

 – Balance sheet recessions

 –
What we do

• Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences

 – Heterogeneous time varying risk-bearing capacity \implies leverage dynamics
What we do

• Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences
 – Heterogeneous time varying risk-bearing capacity \(\implies\) leverage dynamics

• Our model predicts:
 1. Aggregate debt ↑ in good times when prices ↑ and volatility ↓
 2. Poorer agents borrow more than richer agents
 3. Leveraged agents enjoy a “consumption boom” in good times, followed by a consumption slump
 4. Crisis time \(\implies\) leveraged agents delever by “fire-selling” stocks, but their debt/wealth ratio ↑ due to strong discount effects.
 5. Intermediaries leverage is a priced risk factor.
 6. Wealth dispersion ↑ in good times
What we do

- Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences

 - Heterogeneous time varying risk-bearing capacity \(\implies\) leverage dynamics

- Our model predicts:
 1. Aggregate debt \(\uparrow\) in good times when prices \(\uparrow\) and volatility \(\downarrow\)
 2. Poorer agents borrow more than richer agents
 3. Leveraged agents enjoy a “consumption boom” in good times, followed by a consumption slump
 4. Crisis time \(\implies\) leveraged agents delever by “fire-selling” stocks, but their debt/wealth ratio \(\uparrow\) due to strong discount effects.
 5. Intermediaries leverage is a priced risk factor.
 6. Wealth dispersion \(\uparrow\) in good times

- Model aggregates to standard representative agent models with external habit

 \(\implies\) It can be calibrated to yield reasonable asset pricing quantities.
• Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-pt} \log (C_{it} - X_{it}) \]
• Continuum of agents with external habit preferences:

$$u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it})$$

• Habit indices:

$$X_{it} = g_{it} \left(D_t - \int X_{jt} \, dj \right)$$
Preferences

- Continuum of agents with external habit preferences:
 \[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

- Habit indices:
 \[X_{it} = g_{it} \left(D_t - \int X_{jt} \, dj \right) \]

- External Habit in Utility: “Envy-the-Joneses”
Preferences

• Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

• Habit indices:

\[X_{it} = g_{it} \left(D_t - \int X_{jt} \, dj \right) \]

– *External Habit in Utility:* “Envy-the-Joneses”

• Habits’ loadings:

\[g_{it} = a_i \ Y_t + b_i \]
Preferences

- Continuum of agents with external habit preferences:
 \[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

- Habit indices:
 \[X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right) \]

 – *External Habit in Utility:* “Envy-the-Joneses”

- Habits’ loadings:
 \[g_{it} = a_i Y_t + b_i \]

 (i) **heterogeneous:** \(a_i > 0 \) with \(\int a_i di = 1 \)
Preferences

• Continuum of agents with external habit preferences:
 \[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

• Habit indices:
 \[X_{it} = g_{it} \left(D_t - \int X_{jt} d\bar{j} \right) \]

 – *External Habit in Utility:* “Envy-the-Joneses”

• Habits’ loadings:
 \[g_{it} = a_i \begin{pmatrix} Y_t \end{pmatrix} + b_i \]

 (i) heterogeneous: \(a_i > 0 \) with \(\int a_i d\bar{i} = 1 \)

 (ii) time varying: \(Y_t = \text{Recession Indicator} \) (next slide)
 \[\Rightarrow \text{Habits matter more in bad times.} \]
Preferences

• Continuum of agents with external habit preferences:

\[u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it}) \]

• Habit indices:

\[X_{it} = g_{it} \left(D_t - \int X_{jt} \, dj \right) \]

– External Habit in Utility: “Envy-the-Joneses”

• Habits’ loadings: \(g_{it} = a_i \, Y_t + b_i \)

 (i) heterogeneous: \(a_i > 0 \) with \(\int a_i \, di = 1 \)

 (ii) time varying: \(Y_t = \text{Recession Indicator} \) (next slide)

 \[\Rightarrow \] Habits matter more in bad times.

• Endowments \(w_i \) are also heterogeneous, with \(\int w_i \, di = 1 \)
• Aggregate output:

\[
\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t
\]

\(-\sigma_D(Y_t) : Economic\ Uncertainty.\)
• Aggregate output:

\[
\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t
\]

\(- \sigma_D(Y_t) : \textit{Economic Uncertainty.}\)

• Recession indicator \(Y_t\):

\[
dY_t = k(\bar{Y} - Y_t) dt - \nu Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right]
\]

\[\implies \text{Bad shocks:} \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right] < 0 \implies Y_t \uparrow\]
• Aggregate output:

\[\frac{dD_t}{D_t} = \mu_d dt + \sigma_D(Y_t) dZ_t \]

- \(\sigma_D(Y_t) \): Economic Uncertainty.

• Recession indicator \(Y_t \):

\[dY_t = k(\bar{Y} - Y_t)dt - v Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right] \]

\(\implies \) Bad shocks: \(\left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right] < 0 \implies Y_t \uparrow \)

• Technical restrictions:

-\(Y_t > \lambda \geq 1 \) for all \(t \): \(\sigma_D(Y_t) \rightarrow 0 \) as \(Y_t \rightarrow \lambda \). Otherwise \(\sigma_D(Y_t) \) general.
Aggregate Output

- Aggregate output:
 \[
 \frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t
 \]
 - \(\sigma_D(Y_t) \): Economic Uncertainty.

- Recession indicator \(Y_t \):
 \[
 dY_t = k(\overline{Y} - Y_t) dt - v Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right]
 \]
 \(\Rightarrow \) Bad shocks: \(\left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t} \right) \right] < 0 \Rightarrow Y_t \uparrow \)

- Technical restrictions:
 - \(Y_t > \lambda \geq 1 \) for all \(t \): \(\sigma_D(Y_t) \to 0 \) as \(Y_t \to \lambda \). Otherwise \(\sigma_D(Y_t) \) general.
 - Endowments satisfy
 \[
 w_i > \frac{a_i(\overline{Y} - \lambda) + \lambda - 1}{\overline{Y}}
 \]
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}$
Optimal Risk Sharing

- No consumption externalities \implies solve planner's problem

- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}$

 - High endowment w_i or low habit loading $a_i \implies s_{it} \uparrow$ when $Y_t \downarrow$ (good times)
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}$

 - High endowment w_i or low habit loading a_i \implies $s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- Risk aversion (curvature):

 $$Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i \bar{Y} - a_i(\bar{Y} - \lambda) - \lambda + 1}$$
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- **Consumption shares:**
 \[s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t} \]

 - High endowment w_i or low habit loading $a_i \implies s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- **Risk aversion** (curvature):
 \[Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i(Y - \lambda) - \lambda + 1} \]

 - **Cross-section:** risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}$
 - High endowment w_i or low habit loading $a_i \implies s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- Risk aversion (curvature):
 $$Curv_{it} = -\frac{C_{it} u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i \bar{Y} - a_i(\bar{Y} - \lambda) - \lambda + 1}$$
 - Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$
 - Time-series: (1) all agents’ risk aversion \uparrow if $Y_t \uparrow$
 - (2) risk aversion of $i \uparrow$ more if w_i is low or a_i is high
Optimal Risk Sharing

- No consumption externalities \implies solve planner’s problem

- **Consumption shares:**
 \[
s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i - a_i) \frac{\bar{Y}}{Y_t}
 \]
 - High endowment w_i or low habit loading a_i \implies $s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- **Risk aversion** (curvature):
 \[
 Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i \bar{Y} - a_i(\bar{Y} - \lambda) - \lambda + 1}
 \]
 - Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$
 - Time-series: (1) all agents’ risk aversion \uparrow if $Y_t \uparrow$
 (2) risk aversion of i \uparrow more if w_i is low or a_i is high

- Less risk averse agents provide insurance to more risk averse agents
Competitive Equilibrium

- Given price processes \(\{P_t, r_t\} \), agents solve

\[
\max_{ \{C_{it}, N_{it}, N_{0it}\} } \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log (C_{it} - X_{it}) \, dt \right] \quad \text{subject to}
\]

\[
dW_{it} = N_{it}(dP_t + D_t \, dt) + N_{0it} B_t r_t \, dt - C_{it} \, dt \quad \text{with} \quad W_{i,0} = w_i P_0
\]

- A competitive equilibrium is a set of stochastic processes for prices \(\{P_t, r_t\} \) and allocations \(\{C_{it}, N_{it}, N_{0it}\} \) such that agents maximize their utilities, and good and financial markets clear \(\int C_{it} \, di = D_t, \int N_{it} \, di = 1, \int N_{0it} = 0 \).
Our model aggregates to Menzly, Santos, and Veronesi (2004):

As in Campbell and Cochrane (1999), define

\[
Surplus\ consumption\ ratio = S_t = \frac{D_t - \int X_{it} di}{D_t} = \frac{1}{Y_t}
\]

(1)
Representative Agent and State Price Density

- Our model aggregates to Menzly, Santos, and Veronesi (2004):
- As in Campbell and Cochrane (1999), define

\[
Surplus \ consumption \ ratio = S_t = \frac{D_t - \int X_{it} di}{D_t} = \frac{1}{Y_t}
\]

(1)

- **Proposition.** The equilibrium state price density

\[
M_t = e^{-\rho t} D_t^{-1} S_t^{-1}
\]

(2)

- which follows

\[
dM_t/M_t = -r_t dt - \sigma_{M,t} dZ_t \quad \text{with} \quad \sigma_{M,t} = (1 + v)\sigma_D(S_t)
\]

- We use \(S_t \) as state variable for notational convenience.
• **Proposition.** The competitive equilibrium has:

(Stock price) \[P_t = \left(\frac{\rho + k\bar{Y}S_t}{\rho(\rho + k)} \right) D_t \]

(Risk-free rate) \[r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k\left(1 - \bar{Y}S_t\right) \]
Proposition. The competitive equilibrium has:

(stock price) \[P_t = \left(\frac{\rho + kY S_t}{\rho (\rho + k)} \right) D_t \]

(risk-free rate) \[r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k \left(1 - Y S_t \right) \]

(stock holdings) \[N_{it} = a_i + (\rho + k) (1 + v) (w_i - a_i) H(S_t) \]

(bond holdings) \[N^0_{it} B_t = -v (w_i - a_i) H(S_t) D_t \]

where \[H(S_t) = \frac{Y S_t}{\rho + k(1 + v)Y S_t} \]
• Proposition. The competitive equilibrium has:

\[
\begin{align*}
\text{(Stock price)} & \quad P_t = \left(\frac{\rho + k\bar{Y}S_t}{\rho (\rho + k)} \right) D_t \\
\text{(Risk-free rate)} & \quad r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k \left(1 - \bar{Y}S_t \right) \\
\text{(Stock holdings)} & \quad N_{it} = a_i + (\rho + k) (1 + v) (w_i - a_i) H(S_t) \\
\text{(Bond holdings)} & \quad N_{it}^0 B_t = -v (w_i - a_i) H(S_t) D_t
\end{align*}
\]

where

\[
H(S_t) = \frac{\bar{Y}S_t}{\rho + k(1 + v)\bar{Y}S_t}
\]

• Stock and bond holdings depend on \(w_i - a_i \) and the function \(H(S_t) \).
Proposition. The competitive equilibrium has:

- **(Stock price)** \(P_t = \left(\frac{\rho + kY S_t}{\rho (\rho + k)} \right) D_t \)

- **(Risk-free rate)** \(r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k \left(1 - \overline{Y} S_t \right) \)

- **(Stock holdings)** \(N_{it} = a_i + (\rho + k) (1 + v) (w_i - a_i) H(S_t) \)

- **(Bond holdings)** \(N_{it}^0 B_t = -v (w_i - a_i) H(S_t) D_t \)

where \(H(S_t) = \frac{\overline{Y} S_t}{\rho + k(1 + v)\overline{Y} S_t} \)

- Stock and bond holdings depend on \(w_i - a_i \) and the function \(H(S_t) \).
• **Proposition.** The competitive equilibrium has:

(Stock price) \[
P_t = \left(\frac{\rho + kY S_t}{\rho (\rho + k)} \right) D_t
\]

(Risk-free rate) \[
r_t = \rho + \mu_D - (1 + v)\sigma_D(S_t)^2 + k \left(1 - \bar{Y} S_t \right)
\]

(Stock holdings) \[
N_{it} = a_i + (\rho + k) (1 + v) (w_i - a_i) H(S_t)
\]

(Bond holdings) \[
N_{it}^0 B_t = -v (w_i - a_i) H(S_t) D_t
\]

where \[
H(S_t) = \frac{\bar{Y} S_t}{\rho + k(1 + v)\bar{Y} S_t}
\]

• Stock and bond holdings depend on \(w_i - a_i\) and the function \(H(S_t)\).

• **Stock price** and **risk-free rate** are independent of distribution of \(w_i\) and \(a_i\).

\[\Rightarrow\] Prices and quantities have no causal relation with each other.
• **Results**: Agents with $w_i - a_i > 0$:

 (i) take on leverage ($N^0_{it} B_t < 0$);
Results: Agents with $w_i - a_i > 0$:

(i) take on leverage ($N_{it}^0 B_t < 0$);

(ii) “over-invest” in risky assets ($\frac{N_{it}P_t}{W_{it}} > 1$)
Implications: Leverage, Consumption, and Business Cycle

- **Results**: Agents with $w_i - a_i > 0$:
 (i) take on leverage ($N_{it}^0 B_t < 0$);
 (ii) “over-invest” in risky assets ($\frac{N_{it}P_t}{W_{it}} > 1$)
 (iii) increase their debt in good times ($H'(S_t) > 0$)
 when $S_t \uparrow$, their risk aversion \downarrow, take on more aggregate risk
Implications: Leverage, Consumption, and Business Cycle

• **Results**: Agents with $w_i - a_i > 0$:

 (i) take on leverage ($N_{it}^0 B_t < 0$);

 (ii) “over-invest” in risky assets ($\frac{N_{it}P_t}{W_{it}} > 1$)

 (iii) increase their debt in good times ($H'(S_t) > 0$)

 when $S_t \uparrow$, their risk aversion \downarrow, take on more aggregate risk

 (iv) enjoy high consumption share s_{it} when their debt is high

 * Leverage \implies higher return \implies higher consumption in good times

 * Lower risk aversion \implies even more debt in good times
Implications: Leverage, Consumption, and Business Cycle

- **Results**: Agents with $w_i - a_i > 0$:

 (i) take on leverage ($N_{it}^0 B_t < 0$);

 (ii) “over-invest” in risky assets ($\frac{N_{it}P_t}{W_{it}} > 1$)

 (iii) increase their debt in good times ($H'(S_t) > 0$)
 when $S_t \uparrow$, their risk aversion \downarrow, take on more aggregate risk

 (iv) enjoy high consumption share s_{it} when their debt is high

 * Leverage \implies higher return \implies higher consumption in good times
 * Lower risk aversion \implies even more debt in good times

 (v) suffer consumption decline after consumption boom

 * Spatial interpretation: e.g. counties with high w_i or low a_i
 * Good times \implies debt \uparrow and consumption \uparrow \implies but lower future growth.
 * Crucial role of identification strategies to provide causal link between leverage and future consumption
• **Results (cntd.).** Agents with $w_i - a_i > 0$:

 (vi) increase stock holdings in good times (trend chasers)
Implications: Active Trading

- **Results (cntd.).** Agents with \(w_i - a_i > 0 \):

 (vi) increase stock holdings in good times (trend chasers)

(vii) drastically decrease stock holdings in bad times \((H(S)\text{ concave})\)
Implications for Intermediary Asset Pricing

- Much recent research on role of intermediaries’ leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
Implications for Intermediary Asset Pricing

• Much recent research on role of intermediaries’ leverage in asset prices
 – Households invest in risky assets through intermediaries, who issue debt
 – Empirically: leverage risk price is positive or negative depending on proxies
• In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others
Implications for Intermediary Asset Pricing

- Much recent research on role of intermediaries’ leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others
- If habit S_t is unobservable, leverage is a proxy for habit.
Implications for Intermediary Asset Pricing

• Much recent research on role of intermediaries’ leverage in asset prices
 – Households invest in risky assets through intermediaries, who issue debt
 – Empirically: leverage risk price is positive or negative depending on proxies

• In our model, agents with \(w_i > a_i \) leverage by issuing risk-free bonds to others

• If habit \(S_t \) is unobservable, leverage is a proxy for habit.

• Let \(\ell_t = Q(S_t) \), and hence \(S_t = q(\ell_t) = Q^{-1}(\ell_t) \)

 \[\Rightarrow SDF = M_t = e^{-\rho t} D_t^{-1} S_t^{-1} = e^{-\rho t} D_t^{-1} q(\ell_t)^{-1} \]
Implications for Intermediary Asset Pricing

• Much recent research on role of intermediaries’ leverage in asset prices
 – Households invest in risky assets through intermediaries, who issue debt
 – Empirically: leverage risk price is positive or negative depending on proxies

• In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others

• If habit S_t is unobservable, leverage is a proxy for habit.

• Let $\ell_t = Q(S_t)$, and hence $S_t = q(\ell_t) = Q^{-1}(\ell_t)$

\[SDF = M_t = e^{-\rho t}D_t^{-1}S_t^{-1} = e^{-\rho t}D_t^{-1}q(\ell_t)^{-1} \]

• The risk premium for any asset with return $dR_{it} = (dP_{it} + D_{it})/P_{it}$ is

\[E_t[dR_{it} - r_t dt] = Cov_t \left(\frac{dD_t}{D_t}, dR_{it} \right) + \frac{q'(\ell_t)}{q(\ell_t)} Cov_t (d\ell_t, dR_{it}) \]

 Consumption CAPM \hfill Leverage risk premium
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \(\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_0^i B_t}{D_t} = v (w_i - a_i) H (S_t) \)

 Debt/Equity Ratio: \(\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_0^i B_t}{W_{it}} = \frac{\sigma_{W_i}(S_t)}{\sigma_P(S)} - 1 \)
Implications for Intermediary Asset Pricing

• Two potential measures of leverage:

Debt/Output Ratio: \(\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N^0_{it}B_t}{D_t} = v(w_i - a_i) H(S_t) \)

Debt/Equity Ratio: \(\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N^0_{it}B_t}{W_{it}} = \frac{\sigma W_i(S_t)}{\sigma_P(S)} - 1 \)
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \(\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N^0_i B_t}{D_t} = v(w_i - a_i)H(S_t) \)

 Debt/Equity Ratio: \(\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N^0_i B_t}{W_{it}} = \frac{\sigma W_i(S_t)}{\sigma P(S)} - 1 \)
Implications for Intermediary Asset Pricing

- Two potential measures of leverage:

 Debt/Output Ratio: \(\ell_t = Q^{D/O}_{it} (S_t) = -\frac{N^0_{it}B_t}{D_t} = v (w_i - a_i) H (S_t) \)

 Debt/Equity Ratio: \(\ell_t = Q^{D/W}_{it} (S_t) = -\frac{N^0_{it}B_t}{W_{it}} = \frac{\sigma_{Wi}(S_t)}{\sigma_P(S)} - 1 \)

- **Result:** The price of leverage risk is

 (a) \(\lambda^{D/O}_t = \frac{q^{D/O}'(\ell_t)}{q^{D/O}(\ell_t)} > 0 \) if \(\ell_t \) = Debt/Output Ratio ("book leverage").

 (b) \(\lambda^{D/W}_t = \frac{q^{D/W}'(\ell_t)}{q^{D/W}(\ell_t)} < 0 \) if \(\ell_t \) = Debt/Equity Ratio ("market leverage").

- In bad times:

 - agents deleverage \(\Rightarrow \) debt/output ↓ \(\Rightarrow \) book leverage risk price > 0.

 - high discounts \(\Rightarrow \) debt/equity ↑ \(\Rightarrow \) market leverage risk price < 0.
Quantitative Predictions

• Previous results independent of the functional form of $\sigma_D(Y_t)$.

• Assume now a specific functional form to make model comparable to MSV and obtain reasonable asset pricing implications:

$$\sigma_D(Y_t) = \sigma_{\text{max}} (1 - \lambda Y_t^{-1})$$

• \Rightarrow Economic uncertainty increases in bad times, but bounded between $[0, \sigma_{\text{max}}]$

• \Rightarrow Obtain same process for Y_t as in MSV \Rightarrow Use their same parameters.
 - Additional parameter σ_{max} chosen to fit average consumption volatility

• All asset pricing results are similar (or stronger) than MSV.
Table 1. Parameters and Moments

Panel A. Parameters (MSV)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.0416</td>
</tr>
<tr>
<td>k</td>
<td>0.1567</td>
</tr>
<tr>
<td>\bar{Y}</td>
<td>34</td>
</tr>
<tr>
<td>λ</td>
<td>20</td>
</tr>
<tr>
<td>\bar{v}</td>
<td>1.1194</td>
</tr>
<tr>
<td>μ</td>
<td>0.0218</td>
</tr>
<tr>
<td>σ_{max}</td>
<td>0.0641</td>
</tr>
</tbody>
</table>

Panel B. Moments (1952 – 2014)

<table>
<thead>
<tr>
<th></th>
<th>$E[R]$</th>
<th>Std(R)</th>
<th>$E[r_f]$</th>
<th>Std(r_f)</th>
<th>$E[P/D]$</th>
<th>Std(P/D)</th>
<th>SR</th>
<th>$E[\sigma_t]$</th>
<th>Std(σ_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>7.13%</td>
<td>16.55%</td>
<td>1.00%</td>
<td>1.00%</td>
<td>38</td>
<td>15</td>
<td>43%</td>
<td>1.41%</td>
<td>0.52%</td>
</tr>
<tr>
<td>Model</td>
<td>8.19%</td>
<td>25.08%</td>
<td>0.54%</td>
<td>3.77%</td>
<td>30.30</td>
<td>5.80</td>
<td>32.64%</td>
<td>1.43%</td>
<td>1.18%</td>
</tr>
</tbody>
</table>

Panel C. P/D Predictability R^2

<table>
<thead>
<tr>
<th></th>
<th>1 year</th>
<th>2 year</th>
<th>3 year</th>
<th>4 year</th>
<th>5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>5.12%</td>
<td>8.25%</td>
<td>9.22%</td>
<td>9.59%</td>
<td>12.45%</td>
</tr>
<tr>
<td>Model</td>
<td>14.18%</td>
<td>23.67%</td>
<td>30.01%</td>
<td>33.81%</td>
<td>35.92%</td>
</tr>
</tbody>
</table>

- Model matches asset pricing moments well.
Conditional Moments

A. Stationary Distribution

B. Price-Consumption Ratio

C. Risk Premium, Volatility, and Risk Free Rate

D. Sharpe Ratio
The Cross-Section of Agents’ Behavior: Who Levers?
The Cross-Section of Agents’ Behavior: Who Levers?

Uniform distribution of habit a_i

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

LEVERAGED AGENTS

UNLEVERAGED AGENTS
The Cross-Section of Agents’ Behavior: Who Levers?

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

Positively skewed distribution of w_i
The Cross-Section of Agents’ Behavior: Who Levers?

Agents missing due to endowment constraint
The Cross-Section of Agents’ Behavior: Who Levers?

A. Distribution of Habit Loadings a_i

B. Distribution of Endowments w_i

C. Relation between w_i and a_i

D. Leveraged Agents

Poor agents Borrow

Wealthy agents borrow
Leverage in Good and Bad Times

Panel A. Agents’ Debt/Asset: Model.
Leverage in Good and Bad Times

Panel A. Agents' Debt/Asset: Model.

Panel B. Agents' Debt / Assets: Data.
“Fire Sales” in a Simulation Run

A. Surplus Consumption Ratio

B. Economic Uncertainty

C. Price / Dividend Ratio

D. Return Volatility

E. Leverage and Stock Holdings

F. Aggregate Debt/Wealth
• Consumption boom of levered agents during good times
• But expected negative consumption growth going forward
Wealth and Wealth Dispersion

- **Proposition.** Agent i’s wealth/output ratio:

\[
\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i (1 - \overline{Y}S_t) + w_i \overline{Y}S_t \right]
\]

- and wealth share:

\[
\frac{W_{it}}{\int W_{jt}dj} = a_i + (w_i - a_i) \frac{(\rho + k)\overline{Y}S_t}{\rho + k\overline{Y}S_t}
\]

- Higher w_i or lower $a_i \implies$ higher wealth in good times
Wealth and Wealth Dispersion

Proposition. Agent i’s wealth/output ratio:

$$\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i (1 - \bar{Y} S_t) + w_i \bar{Y} S_t \right]$$

and wealth share:

$$\frac{W_{it}}{\int W_{jt} dj} = a_i + (w_i - a_i) \frac{(\rho + k) \bar{Y} S_t}{\rho + k \bar{Y} S_t}$$

- Higher w_i or lower $a_i \implies$ higher wealth in good times

Proposition. Let w_i and a_i be independent. Then:

$$Var^{CS} \left(\frac{W_{it}}{\int W_{jt} dj} \right) = Var^{CS} (a_i) \left(1 - \frac{(\rho + k) \bar{Y} S_t}{\rho + k \bar{Y} S_t} \right)^2 + Var^{CS} (w_i) \left(\frac{(\rho + k) \bar{Y} S_t}{\rho + k \bar{Y} S_t} \right)^2$$

- Endowment dispersion \implies higher wealth dispersion in good times
- Preference heterogeneity \implies U-shaped wealth dispersion
 * Less risk averse richer in good times but poorer in bad times
Wealth and Wealth Dispersion

Proposition. Agent i’s wealth/output ratio:

$$
\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i (1 - \bar{Y} S_t) + w_i \bar{Y} S_t \right]
$$

and wealth share:

$$
\frac{W_{it}}{\int W_{jt} d j} = a_i + (w_i - a_i) \frac{(\rho + k) \bar{Y} S_t}{\rho + k \bar{Y} S_t}
$$

- Higher w_i or lower $a_i \implies$ higher wealth in good times

Proposition. Let w_i and a_i be independent. Then:

$$
Var^{CS} \left(\frac{W_{it}}{\int W_{jt} d j} \right) = Var^{CS} (a_i) \left(1 - \frac{(\rho + k) \bar{Y} S_t}{\rho + k \bar{Y} S_t} \right)^2 + Var^{CS} (w_i) \left(\frac{(\rho + k) \bar{Y} S_t}{\rho + k \bar{Y} S_t} \right)^2
$$

- **Endowment dispersion** \implies higher wealth dispersion in good times
- Preference heterogeneity \implies U-shaped wealth dispersion
 * Less risk averse richer in good times but poorer in bad times
Wealth and Wealth Dispersion

- **Proposition.** Agent i’s wealth/output ratio:

$$\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i (1 - \overline{Y} S_t) + w_i \overline{Y} S_t \right]$$

- and wealth share:

$$\frac{W_{it}}{\int W_{jt} dj} = a_i + (w_i - a_i) \frac{(\rho + k) \overline{Y} S_t}{\rho + k \overline{Y} S_t}$$

- Higher w_i or lower $a_i \implies$ higher wealth in good times

- **Proposition.** Let w_i and a_i be independent. Then:

$$Var^{CS} \left(\frac{W_{it}}{\int W_{jt} dj} \right) = Var^{CS} (a_i) \left(1 - \frac{(\rho + k) \overline{Y} S_t}{\rho + k \overline{Y} S_t} \right)^2 + Var^{CS} (w_i) \left(\frac{(\rho + k) \overline{Y} S_t}{\rho + k \overline{Y} S_t} \right)^2$$

- Endowment dispersion \implies higher wealth dispersion in good times
- **Preference heterogeneity** \implies U-shaped wealth dispersion
 - Less risk averse richer in good times but poorer in bad times
- Level effect: Wealth/output dispersion increases in good times
- Relative effect: Wealth-share dispersion decreases on some range
 - Poor but very leveraged agents become better off as times get better
• Relative wealth dispersion now increases in good times
 – Only agents with high endowment (i.e. $w_i > a$) borrow \implies they become even wealthier in good times
Conclusions

- A frictionless dynamic general equilibrium model with heterogeneous agents and external habits seem consistent with many stylized facts.
- Risk sharing motives generate endogenous leverage dynamics.
- Our model predicts:
 1. Aggregate debt \uparrow in good times when prices \uparrow and volatility \downarrow
 2. Poorer agents borrow more than richer agents.
 3. Leveraged agents enjoy a “consumption boom” in good times, followed by a consumption slump.
 4. Crisis time \implies leveraged agents delever by “fire-selling” stocks, but their debt/wealth ratio \uparrow due to strong discount effects.
 5. Intermediaries leverage is a priced risk factor.
 6. Wealth dispersion \uparrow in good times.

- Leverage dynamics is due to the differential impact of aggregate shocks on agents’ risk aversion.
The Cross-Section of Consumption and Wealth

A. Average Consumption Diffusion

B. Average Wealth Diffusion

C. Average Expected Consumption Growth

D. Average Expected Excess Return on Wealth