Conclusion

Interest Rate Liberalization and Capital Misallocation¹

Zheng Liu¹ Pengfei Wang² Zhiwei Xu³

¹Federal Reserve Bank of San Francisco

²Hong Kong University of Science and Technology

³Shanghai Jiao Tong University

ABFER May 22, 2018

¹The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Conclusion

China's interest rates have been tightly regulated

China deposit and lending rates

Recent liberalization: lending rates (2013); deposit rates (2015)

Standard theory: Interest rate liberalization should improve capital allocation and productivity

- Financial frictions lead to misallocation and depressed productivity (e.g., Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Buera, et al. 2011; Midrigan and Xu, 2014; Moll, 2014)
- Liberalization policy that alleviates financial frictions also improves allocation and productivity
 - Interest-rate liberalization raises deposit rate and lowers lending rate
 - Low-productivity firms choose to save instead of investing

• Reallocation of capital improves aggregate productivity

With multiple distortions, consequences of interest-rate liberalization less clear

- China's SOEs have distorted incentives
 - SOEs face mandate of maintaining employment, not just maximizing profit (Bai, et al, 2006)
 - Government subsidizes SOEs to keep them operating despite low productivity: soft budget constraints (Lin, et al, 1998; Lin and Tan, 1999)
 - Gov't also gives SOE favorable access to credit (Brandt and Zhu, 2000)

• If private firms face tighter borrowing constraints than SOEs, interest-rate liberalization may exacerbate misallocation between SOEs and private firms

Studying full consequences of financial liberalization requires GE framework with multiple distortions

We build such a framework

- Two-sector model (SOE and POE), with heterogeneous firms and financial frictions
- Private firms (POE): profit-maximizing, facing borrowing constraints
- State firms (SOE): care about scale of production (soft budget constraints), less productive than POEs, but have easier access to credit

Interest-rate liberalization incurs tradeoff

- Improved allocation efficiency across firms within each sector (similar to one-sector model of Moll (2014))
- Exacerbated misallocation across sectors
- Overall effects on TFP and welfare ambiguous
- Tradeoff implies an interior optimum of interest-rate wedge

Quantitative results

- Calibrate model to Chinese data to study transition dynamics
- Liberalization: deposit rate rises and lending rate falls (the rates converge)
- Short-run recession caused by cross-sector misallocation: over-investment by SOEs
- Long-run expansion: increased aggregate saving and capital accumulation raise output
- During transition, cross-sector capital misallocation reduces TFP and output
- Complete liberalization leads to welfare loss of 2.9% consumption equivalent

A static model

- Two types of firms: state-owned enterprises (SOEs) with measure μ and private-owned enterprises (POEs) with measure 1 - μ; Each firm endowed with h units of capital
- SOE firm uses 1 unit of capital to produces z^sε units output, with TFP z^s and idiosyncratic productivity ε ~ F (ε)
- POE firm uses 1 unit of capital to produces $z^{p}\varepsilon$ units output, where TFP $z^{p} > z^{s}$
- Interest rate wedge: $r^{l} = r^{d} + \phi$
 - Base model: ϕ controlled by gov't, r^{l} and r^{d} endogenous
 - Isomorphic setup: r^d controlled by gov't, r^l and ϕ endogenous

POE's problem

• POE firm with productivity ε solves

$$\max_{\left\{k^{p}(\varepsilon),l^{p}(\varepsilon),s^{p}(\varepsilon)\right\}}z^{p}\varepsilon k^{p}\left(\varepsilon\right)-\left(r^{d}+\phi\right)l^{p}\left(\varepsilon\right)+r^{d}s^{p}\left(\varepsilon\right),$$

subject to flow-of-funds constraints

$$k^{p}\left(\varepsilon\right)=h+l^{p}\left(\varepsilon
ight)-s^{p}\left(\varepsilon
ight)$$
, $0\leq s^{p}\left(\varepsilon
ight)\leq h.$

and borrowing constraint

$$I^{p}\left(\varepsilon\right) \leq \theta^{p}h$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction

SOE's problem

• SOE firm's objective function

$$\tau z^{s} \varepsilon k^{s}(\varepsilon) - \left(r^{d} + \phi\right) l^{s}(\varepsilon) + r^{d} s^{s}(\varepsilon),$$

- $\tau > 1$: distorted SOE incentive
 - Parsimony for soft budget constraints: gov't subsidies, monopoly rents, or fixed costs
 - SOE's private MPK exceeds social MPK \Rightarrow incentive to expand scale
- Flow-of-funds constraints

$$k^{s}(\varepsilon) = h + l^{s}(\varepsilon) - s^{s}(\varepsilon), \quad 0 \leq s^{s}(\varepsilon) \leq h$$

Borrowing constraint

$$I^{s}(\varepsilon) \leq \theta^{s}h$$

• SOEs have easier access to credit: $\theta^p < \theta^s$

Equilibrium

Given interest-rate controls (ϕ), an equilibrium consists of the interest rate r^{d} and allocations $\{k^{j}(\varepsilon), l^{j}(\varepsilon), s^{j}(\varepsilon)\}, j \in \{s, p\}$, such that

- Taking the interest rate as given, all firms solve their optimization problems
- Capital market clears

$$\mu \int k^{s}(\varepsilon) d\mathbf{F}(\varepsilon) + (1-\mu) \int k^{p}(\varepsilon) d\mathbf{F}(\varepsilon) = h.$$

Aggregate output

$$Y = \mu \int z^{s} \varepsilon k^{s}(\varepsilon) \, d\mathbf{F}(\varepsilon) + (1-\mu) \int z^{p} \varepsilon k^{p}(\varepsilon) \, d\mathbf{F}(\varepsilon).$$

Key frictions

- Interest rate wedge (ϕ) captures existing interest rate regulations
- Borrowing constraints for all firms; SOEs have better access to credit (θ^p < θ^s)
- Policy wedge $(\tau > 1)$: SOEs care about scale of production
- Second-best analysis: Would interest rate liberalization (reducing ϕ) by itself improve aggregate productivity and welfare?

A simple example with homogeneous firms

- Assume τz^s > z^p > z^s (SOEs' private MPK exceeds their social MPK)
- Consider sufficiently large interest-rate wedge $\phi > \tau z^s z^p$
- Consider equilibrium with $r^d = z^p$ so that POEs self-finance production $(k^p = h)$
- Since $r' = z^p + \phi > \tau z^s$, SOEs also self finance $(k^s = h)$
- This is an autarkic equilibrium with aggregate output

$$Y = [\mu z^s + (1-\mu)z^p]h.$$

Interest rate liberalization with homogeneous firms

- Now remove the interest rate wedge: $\phi = 0 \Rightarrow r^l = r^d \equiv r$
- Interest rate

$$r = \begin{cases} z^{p} & \text{if } \theta^{s} < \frac{1}{\mu} - 1\\ \tau z^{s} & \text{if } \theta^{s} \ge \frac{1}{\mu} - 1 \end{cases}$$

- If SOE borrowing capacity sufficiently large, then *r* would be pinned down by SOE's MPK
- Aggregate output

$$Y^* = \begin{cases} \mu z^s h(1+\theta^s) + (1-\mu)z^p h\left(1-\frac{\mu}{1-\mu}\theta^s\right) & \text{if } \theta^s < \frac{1}{\mu}-1\\ z^s h & \text{if } \theta^s \ge \frac{1}{\mu}-1 \end{cases}$$

 Liberalization leads to capital flows from POEs to SOEs, reducing aggregate output (Y* < Y)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The role of heterogeneity

• If firms are heterogeneous, interest rate liberalization improves resource allocation within each sector

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- It can still cause misallocation across sectors
- Thus, there exists a trade-off \rightarrow complete interest rate liberalization may not be desirable

Optimal capital allocations

• There exist two cutoff productivity levels \underline{e}^{j} and \overline{e}^{j} for each sector $j \in \{s, p\}$ such that

$$s^{j}(\varepsilon) = \begin{cases} h & \text{if } \varepsilon < \underline{\varepsilon}^{j} \\ 0 & \text{if } \underline{\varepsilon}^{j} \leq \varepsilon \end{cases}$$
$$l^{j}(\varepsilon) = \begin{cases} 0 & \text{if } \varepsilon < \overline{\varepsilon}^{j} \\ \theta^{j}h & \text{if } \overline{\varepsilon}^{j} \leq \varepsilon \end{cases}$$
$$k^{j}(\varepsilon) = \begin{cases} 0 & \text{if } \varepsilon < \underline{\varepsilon}^{j} \\ h & \text{if } \underline{\varepsilon}^{j} \leq \varepsilon < \overline{\varepsilon}^{j} \\ (1+\theta^{j})h & \text{if } \overline{\varepsilon}^{j} \leq \varepsilon \end{cases}$$

The cutoff productivity levels are given by

$$\underline{\varepsilon}^{j} = \frac{r}{z^{j}\tau^{j}}$$
$$\overline{\varepsilon}^{j}_{t} = \frac{r+\phi}{z^{j}\tau^{j}}$$

where $\tau^s > \tau^p = 1$

Equilibrium

• Aggregate capital in sector $j \in \{s, p\}$

$$\mathcal{K}^{j} = \left[\int_{\underline{arepsilon}^{j}}^{\overline{arepsilon}^{j}} d\mathbf{F}\left(arepsilon
ight) + \left(1 + heta^{j}
ight) \int_{\overline{arepsilon}^{j}}^{arepsilon_{\max}} d\mathbf{F}\left(arepsilon
ight)
ight] h,$$

Capital market clearing

$$K = \mu K^s + (1 - \mu) K^p = h.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aggregate output and TFP

- Aggregate output $Y=\mu Y^{\mathfrak{s}}+(1-\mu)Y^{p},$ where

$$Y^{j} = \left[\int_{\underline{\varepsilon}^{j}}^{\overline{\varepsilon}^{j}} \varepsilon d\mathbf{F}\left(\varepsilon\right) + \left(1 + \theta^{j}\right) \int_{\overline{\varepsilon}^{j}}^{\infty} \varepsilon d\mathbf{F}\left(\varepsilon\right)\right] z^{j}h, \quad j \in \{s, p\}$$

• Measured TFP at sector levels

$$A^{j} = \frac{\mathbf{Y}^{j}}{\mathbf{K}^{j}} = z^{j} \frac{\int_{\underline{\varepsilon}^{j}}^{\underline{\varepsilon}^{j}} \varepsilon d\mathbf{F}(\varepsilon) + (1 + \theta^{j}) \int_{\underline{\varepsilon}^{j}}^{\infty} \varepsilon d\mathbf{F}(\varepsilon)}{\int_{\underline{\varepsilon}^{j}}^{\underline{\varepsilon}^{j}} d\mathbf{F}(\varepsilon) + (1 + \theta^{j}) \int_{\underline{\varepsilon}^{j}}^{\infty} d\mathbf{F}(\varepsilon)},$$

Aggregate TFP

$$TFP = \frac{Y}{K} = A^{s} + (A^{p} - A^{s})(1 - \mu)\frac{K^{p}}{h}$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Macro effects of interest rate liberalization

• Liberalization (lower ϕ) \Rightarrow capital flows from POE to SOE

$$rac{\partial K^s}{\partial \phi} < 0, \quad rac{\partial K^p}{\partial \phi} > 0.$$

- Liberalization raises POE TFP, but has ambiguous effect on SOE TFP
 - As deposit rate rises, low productivity firms in each sector become savers, raising sectoral TFP
 - But improvements within SOE sector partly offset by capital inflows
- Overall effects of liberalization on aggregate TFP ambiguous

Interest rate liberalization: a numerical example

- Consider effects of removing interet-rate wedge (set ϕ to 0)
- Parameters:

$$\frac{z^p}{z^s} = 2, \quad \theta^s = 0.75, \quad \theta^p = 0.25, \quad \tau = 3, \quad \mu = 0.5,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Log-normal distribution of idiosyncratic productivity shocks

Conclusion

Interior optimum of interest rate controls

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ● ● ●

Introduction

A dynamic model

- Firms operating in two sectors (SOE and POE) each faces an idiosyncratic productivity
- Firms in both sectors produce a final consumption good, using labor and capital as inputs
- Firms also accumulate capital
- A representative household owns firms, consumes the good, and supplies labor to firms

Introduction

Firms

• Firms in sector *j* face idiosyncratic productivity and borrowing constraints, with CRS production function

$$y_t^j = \left(z^j \varepsilon_{t-1}^j k_t^j\right)^{\alpha} \left(n_t^j\right)^{1-\alpha}$$

• A firm chooses labor input to maximize the profit

$$\pi_{t}^{j}\left(\varepsilon_{t-1}^{j},k_{t}^{j}\right) = \max_{n_{t}^{j}}\tilde{\tau}^{j}\left(z^{j}\varepsilon_{t-1}^{j}k_{t}^{j}\right)^{\alpha}\left(n_{t}^{j}\right)^{1-\alpha} - W_{t}n_{t}^{j}$$

- Maximum profit $\pi_t^j \left(\varepsilon_{t-1}^j, k_t^j \right) = \tau^j R_t z^j \varepsilon_{t-1}^j k_t^j$
- Stochastic exits: a fraction δ_e of firms exit in each period.
 - Pay out dividends upon exits
 - Equal mass of new firms enter, h_{0t}^{j} startup funds

Firm's decision problem

• Firm with productivity ε_t^j chooses k_{t+1}^j , l_{t+1}^j , and s_{t+1}^j to maximize the value function

$$V_t^j = \mathbf{E}_t \left[\sum_{s=1}^{\infty} \left(1 - \delta_e \right)^s \beta^s \frac{\Lambda_{t+s}}{\Lambda_t} h_{t+s}^j \right]$$

• Net worth *h*_t is given by

$$h_{t}^{j} = \left(\tau^{j} z^{j} \varepsilon_{t-1}^{j} R_{t} + 1 - \delta\right) k_{t}^{j} - (1 + r_{l,t-1}) l_{t}^{j} + (1 + r_{d,t-1}) s_{t}^{j}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion

Constraints for firm's optimizing decisions

• Firm faces flow of funds constraint

$$h_t^j = k_{t+1}^j + s_{t+1}^j - l_{t+1}^j$$
,

and borrowing constraint

$$l_{t+1}^j \leq \theta^j h_t^j.$$

Savings satisfy

$$0 \leq s_{t+1}^j \leq h_t^j$$

The representative household

• The utility function

$$\sum_{t=0}^{\infty} \beta^t \log C_t,$$

Budget constraint

$$C_t + \frac{B_t}{R_t} \le W_t N_t + B_{t-1} + D_t - T_t$$

where B_t denotes risk-free bonds, R_t real interest rate, D_t dividends (net of startup funds), and T_t lump-sum taxes

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

Market clearing and equilibrium

Loanable funds market clearing

$$\sum_{j \in \{s, p\}} L^j_{t+1} = \sum_{j \in \{s, p\}} S^j_{t+1}.$$

- Capital market clearing: $K_{t+1} = \sum_{j \in \{s, p\}} H_t^j$
- Labor market clearing: $N_t^s + N_t^p = 1$
- Final goods market clearing

$$C_t + K_{t+1} - (1 - \delta) K_t = \sum_{j \in \{s, p\}} \left(\tilde{K}_t^j \right)^{\alpha} \left(N_t^j \right)^{1 - \alpha}$$

• Bond market clearing: $B_t = 0$

Introduction

Calibration

- Fixed parameters: $\beta = 0.96$, $\delta = 0.1$, $\phi = 4\%$, $\alpha = 0.5$ (Zhu, 2012), $\delta_e = 0.06$ (Brandt, et al 2012)
- Idiosyncratic productivity $\varepsilon^{i}\colon$ log normal, with mean normalized to one and standard deviation of σ
- Calibrate other parameters by targeting 5 moments
 - 1. SOEs share of output (40%); "SOE" \approx government favored firms (such as heavy industry, see Chen, et al 2017)
 - 2. Real deposit interest rate (0.9%),
 - 3. Saving rate (0.41)
 - 4. Short-term loan to GDP (0.5)
 - 5. TFP of POE relative to SOE (1.6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Calibration

β	discounting factor	0.96	
α	capital share	0.5	
δ	capital depreciation rate	0.1	
δ_e	firm exit rate	0.06	
φ	interest rate gap	0.04	
		SOEs	POEs
θ^{j}	borrowing constraint	0.490	0.163
σ^{j}	standard deviation of $arepsilon^j$	0.217	0.217
z ^j	sector-specific TFP	0.021	0.055
τ^{j}	subsidies	2.56	1
h_0^j	endowment of new firms	0.10	0.06

Dynamic effects of liberalization

- Loan rate falls, deposit rate rises \rightarrow more savings
- Capital flows from POE to SOE
- Short-run recession, long-run boom

SQ C

э

Dynamic effects of liberalization on productivity

- Liberalization improves TFP within each sector...
- ...but worsens capital allocation across sectors
- In calibrated model, aggregate TFP falls

9 Q (?

Evidence for model's reallocation mechanism

- Central implications of model: financial liberalization improves within-sector allocation, but worsens cross-sector allocation
- Direct evidence on reallocation effects of interest-rate liberalization not available (reforms happened only recently)
- But corroborating evidence exists
 - Gao, Ru, Townsend, Yang (2017): Bank entry deregulation of 2009 → new entrant banks mostly lent to SOEs (less productive but safe); increased competition between new and incumbent banks raised loan quality and borrowing firms' efficiency
 - Chang, Liu, Spiegel, Zhang (2017): increases in required reserve ratio reduce SOE stock returns, loan shares, and investment shares → reallocating capital to productive POEs
 - Cong, Gao, Ponticelli, Yang (2018): loan-firm level data show that sharp credit expansion from fiscal stimulus reallocated capital to SOEs, despite their lower productivity

Welfare effects of liberalization

• Given policy wedge $\tau > 1$ and distorted credit access $(\theta^s > \theta^p)$, interest-rate liberalization reduces welfare

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counterfactual: reduced SOE subsidies

• Less SOE expansion \Rightarrow liberalization raises TFP

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Welfare effects of liberalization

• With less SOE subsidies, liberalization leads to smaller welfare losses and even welfare gains

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counterfactual: improved POE credit access

- Consider equal access to credit by POEs and SOEs ($\theta^p = \theta^s$)
- Liberalization raises POE output and capital; improves TFP

Welfare effects of liberalization

• With improved POE credit access, interest-rate liberalization leads to welfare gains

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Conclusion

- In a two-sector economy with multiple sources of frictions, complete interest-rate liberalization may not be desirable
 - Liberalizing interest-rate controls improves within-sector allocations and productivity
 - But it could exacerbate across-sector misallocation if SOEs care about production scale and have better access to credit
- Reform policy would be more effective if it addresses direct causes of distortions (SOE incentive, credit access)