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Insurers as Asset Managers and Systemic Risk

Abstract

Asset fire sales arguably play a critical role in the propagation of systemic risk. We propose
a new mechanism whereby financial institutions’ business models engender correlated asset
portfolios, increasing vulnerability to fire-sales. We use as our laboratory the U.S. life insur-
ance industry, which has experienced a major transformation with the significant expansion
of variable annuity (VA) investment products with guarantees, against which insurers have
to post reserves and regulatory capital. We develop a theoretical model in which an insurer
hedges its guarantee exposure, and, as a result, is incentivized to invest in illiquid assets. In
the event of an asset shock or a shock to the value of the guarantee, insurers engage in fire
sales to maintain their capital ratios. Using insurer-level data, we calibrate the model and
confirm that insurers operating in the VA space invest in riskier portfolios, sharing common
allocations to illiquid bonds. In a simulation exercise, we subject the insurers to various shocks
and show that the system-wide fire-sale costs, directly attributable to VAs, can plausibly erase
up to 30% of the insurers’ total capital and surplus. Given the widespread nature of potentially
underfunded guarantees (e.g., pension funds), the implications of our findings are not restricted
to the insurance sector.
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1 Introduction

This paper explores how systemic risk may arise from the inter-connectedness of the asset side of

financial institutions’ balance sheets. While much of the existing literature on systemic risk has

concentrated on the interplay between leverage and banks’ funding, attention has slowly shifted to

another source of fragility that potentially exposes the financial system to contagion in the case of

abrupt and sustained asset price declines: the herding of financial institutions into similar assets in

search of higher returns (particularly over a decade characterized by historically low interest rates).

Within the banking literature, Acharya and Yorulmazer (2007, 2008) show that the âtoo-many-

to-fail’ guarantees lead to banks herding in their lending behavior by, for example, investing in

similar industries or exposing their balance sheet to a common risk factor. Greenwood, Landier and

Thesmar (2015) show that fire sales, induced by regulatory requirements, can create contagion that

spreads across banks holding the same assets.1 So far, the literature has been limited to investigating

generic dimensions of this broad issue: it has either examined macro-prudential regulation to address

the emergence of banks’ herding behavior or it has simply assumed an exogenously correlated

investment structure and then investigated its potential repercussions for financial stability.

The paper proposes an innovative mechanism that engenders correlated investments and that

arises from the financial institutions’ business model, rather than macro prudential regulation per

se. The endogenous ex ante herding can then generate ex post fire-sale externalities along the lines

hypothesized by Greenwood et al. (2015). To study this mechanism, we focus on the transformation

of the U.S. largest life insurers that has expanded significantly the supply of variable annuities

(VAs) with various embedded investment guarantees (Koijen and Yogo (2017a,b)).2 Importantly, the

U.S. insurance business offers a remarkable level of measurement detail with respect to portfolio

holdings, policy generation, and regulatory constraints (see Ellul, Jotikasthira, and Lundblad (2011),

1Domanski, Sushko and Shin (2015) examine portfolio adjustments by long-term investors to declining long-term
interest rates and show that they can prompt further downward pressure on interest rates.

2A variable annuity is a life insurance policy which it sold to individuals approaching retirement. The policy consists
of accumulation and decumulation phases, and combines insurance for life, longevity, and investment risks. We provide
more institutional detail in Section 2.
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for example) helping to shed light on other sectors of the financial industry besides insurance.

Given both their size and the nature of their return commitments, these VAs are attracting

attention from policymakers as a potential source of systemic risk, as evidenced by the designation

of some of the largest life insurers as systemically important (Drexler et al. (2017)). To place

this development into perspective, annuity premia and deposits earned by the U.S. life insurance

industry increased from $286 billion in 2010 to $353 billion in 2014, making them one of the fastest

growing areas of policy generation, accounting for almost 35% of U.S. life insurers’ liabilities in

2015. Figure 1 presents the history of the life insurance business over the last two decades as its

major product lines have evolved from traditional life insurance to investment products, namely

VAs.

The emerging concerns about the risks to which insurers with VA guarantees are exposing

themselves, and the potential risk that they can cause if a negative market-wide event occurs, can

be captured by the systemic risk measure proposed by Acharya et al. (2017) and Brownlees and

Engle (2016).3 There is a very striking difference between the post-crisis period evolution of the

average systemic risk measure of banks versus that of insurance companies with VAs. While the

banks’ systemic risk measure spiked during the 2008-2009 financial crisis, it then decreased over

time. However, the same measure for insurers selling VAs with guarantees increased during the

crisis, and has not decreased in the same manner. Figure 2, which shows the average systemic risk

measures for the aggregate banking and insurance sectors, makes this development very clearly.

The importance of such investment products is not restricted to the insurance sector; rather,

it extends directly to other large intermediaries, such as banks and pension funds. For example,

insurers and pensions both provide various guarantees and share a degree of under-fundedness. As

the importance of traditional defined benefit plans wanes, VA products that offer similar returns and

guarantee have gradually come to replace them.

For our purposes, the first critical feature of this evolution is the fact that most of these annuities

carry guarantees, in terms of promised minimum returns to holders that have to be honored by

3A detailed description of the calculations behind the systemic risk measure used in the analysis is provided on
NYU Stern’s Systemic Risk website, http://vlab.stern.nyu.edu/welcome/risk.
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the insurers. Given the put option-like nature of these contracts, regulations were introduced to

safeguard annuity investors by forcing reserves that insurers have to set aside. Importantly, these

reserves, now among the largest liabilities on the insurers’ balance sheets, are necessarily dynamic;

annuity balances (and minimum guarantees) are largely invested in (tied to) U.S. equity valuations,

so that the link to stock market performance is very clear. If the expected value of future payouts

increases in an equity market downturn (i.e., the guarantee is increasingly in-the-money), then

insurers are required to increase their reserves. During a market stress period, financial distress, and

potentially insolvency, can arise as the moneyness of guarantees explode.

Another significant concern is that the moneyness of the guarantees is itself correlated across

insurers. As diversification is ineffective in the case of VAs with guarantees4 because they are tightly

linked with the performance of financial markets, guarantees go in-the-money at the same time for

all insurers with VAs. It is exactly this type of shared risk that has raised significant concerns about

financial stability across both the insurance sector and more broadly other parts of the interconnected

financial system. This becomes very salient when considering the evidence in Billio et al. (2012),

who show that the four core areas in the financial sector, namely hedge funds, banks, brokers, and

insurance companies, have become highly linked over the past decade.

The recent financial crisis, with a stock market meltdown followed by a long period of low

interest rates, is an example of how insurers with VA guarantees could end up with severe financial

difficulties. As the increase in required reserves impairs the insurers’ financial health, insurers may

attempt to recover by either raising new capital or engaging in fire sales. Evidence shows that the

latter course of action is more likely, thus shifting the attention to inter-connectedness between

insurers’ balance sheets. While not necessarily implying causality at this stage between VAs and

systemic risk, it is important to highlight the role that the non-traditional life insurance sector may

play in the event of a sustained market-wide stress event. The impact that such non-diversifiable

4The risks associated with these guaranteed investment products are very different from those that insurers faced
when most of their products were traditional life insurance policies. Mortality risks, for example, are idiosyncratic and
can be easily diversified away by issuing a large number of similar policies. This is not the case with VAs linked to the
equity market, however.
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risk poses to life insurers is borne out when we consider the experiences of individual companies.5

In this paper we show, both theoretically and through a calibration using U.S. insurance data,

that guarantees induce herding on the part of insurers, thereby increasing the likelihood of fire sales

that impose externalities on others holding the same assets. We provide a real-world setting in

which the asset liquidation channel of systemic risk may become significant. A price shock to or

a downgrade of many assets held to back the guarantees can trigger fire sales and set in motion

contagion.

When the insurers hold similar assets, two potential triggers can set in motion contagion. First,

the assets held by insurers to back the VA guarantees are downgraded or suffer a negative price

shock. Second, an exogenous shock increases the value of the VA guarantees. In both scenarios,

capital requirements become elevated forcing capital-constrained insurers to engage in fire sales,

generating contagion to the wider industry and to other financial institutions. Making this issue of

more immediate concern, the effect unconventional policy has had in creating an ultra-low yield

environment has placed additional pressure on insurers to search for return among a limited set of

available securities.

The most effective method by which insurers can manage the risks arising from VA guarantees

is through appropriate offsets with equity put options. In this case, none of the concerns discussed

so far apply. In reality, though, there are formidable challenges facing insurers on the path to a

full, comprehensive hedge. First, the complexity of very different guarantee products translates

into a reserve volatility structure that is hard to fully understand. Second, insurers face a triple

challenge when engaging in hedging: first, there is the true economic vulnerability driving the

hedging decision, and second, there is a complicated set of accounting implications associated with

the reporting of reserves for VA guarantees that differ between GAAP and statutory (regulatory)

accounting rules. This places an additional burden on insurers since these varied rules may yield

rather different outcomes when reporting reserves net of some of these hedges. Third, the total

5AIG, Hartford Financial Services Group, and Lincoln National were among those that aggressively wrote
investment-oriented life policies that had minimum guarantees attached to them. Besides the well-known case of AIG,
Hartford Financial was also bailed out by the Troubled Asset Relief Program in 2009, and the reason was precisely the
significant losses they faced arising from the VA business unit. Hartford eventually sold its VA business in 2013.
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hedging amount that is deducted from the insurer’s reported reserves is not made public, meaning

that reserves for guaranteed VAs may fail to entirely reflect the exact funding needs associated

with the guarantees. Finally, the sizable hedging in which insurers do engage introduces additional

concerns, such as basis risk and counter-party.

To demonstrate how VA guarantees induce correlated investments, we present a theoretical

model that captures the underlying economics and then calibrate the model to insurer-level data.

The model considers a profit-maximizing insurer that (exogenously) sells VAs with guarantees

linked to thestock market. The insurer optimally allocates its portfolio between (a) equity, (b)

an illiquid, risky bond, and (c) a liquid, safe bond. An important input into the insurer’s ex ante

decision concerning which assets to purchase is the ex post price impact on these different assets in

the event of a negative shock. In line with the existing literature, we assume that the liquid bond

and stock can be sold at their expected values, but the riskier bond will be sold at a discount due to

its illiquid nature. That said, the illiquid bond offers enough ex-ante risk compensation, even taking

into consideration the fire sale price impact that may occur following a shock. The insurer is subject

to risk-sensitive regulatory capital requirements.

Following practice, we assume that the insurer will hedge a proportion of the guarantees to

manage the risk to which it is exposed. While part of the hedging may be facilitated by directly

employing a portfolio of put options, we focus on delta hedging.6 This involves selling short the

equity and investing the proceeds in both the safe and risky bonds. Depending on how much hedging

is employed, the insurer will have a lower risk exposure which, in turn, implies a commensurately

lower overall portfolio expected return, prompting the question as to how the insurer can still

generate sufficient returns to meet its investment objectives. As the insurer cannot scale down its

aggregate bond positions because of the delta hedging constraint, any additional unit of risk that it

wants to take will have to come from within the bond asset class, leading naturally to an over-weight

in illiquid bonds.7 Our model predicts that insurers that do not underwrite guaranteed VAs will

6From Schedule DB (derivatives), insurers hedge only about 5% of VAs by buying put options.
7A close empirical analogue is the reaching for yield behavior documented by Becker and Ivashina (2015) and Ellul,

Jotikasthira, Lundblad, and Wang (2014).
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invest a negligible amount in the illiquid bonds and, thus, are irrelevant for the propagation of

systemic risk.

It is the portfolio over-weight on the riskier bonds chosen by the insurance companies with VAs

that will become problematic during a market downturn. In such states, the guarantees become

in-the-money, regulatory reserves spike, and thus insurers need to shore up their capital positions.

While issuing equity is a possibility, it is precisely in these moments that such an avenue becomes

impracticable. This calls for an alternative action: selling of the illiquid bonds, and possibly of the

other assets on the balance sheet, in a regulatory-induced fire sale to regain financial health. This will

cause contagion to other insurance companies and, because of the inter-sector interconnectedness,

to other parts of the financial system.

To calibrate the model, we use National Association of Insurance Commissioners (NAIC) data,

obtained through SNL Financial, on guaranteed VAs’ account values, gross reserves, reinsurance

credits (General Interrogatories), portfolio holdings (Schedules A, B, BA, and D), and derivatives

positions (Schedule DB). To begin, we establish some important facts about the portfolio allocation

of insurers with and without VA guarantees. We find that only few life insurers underwrite

guaranteed VAs, and the ones that do tend to be very large and sophisticated. Further, we find

that insurers that underwrite guaranteed VAs hedge their exposures by selling common stocks and

buying bonds, tilting their portfolios towards higher yielding illiquid bonds. We find that those that

underwrite guaranteed VAs have significantly smaller allocations to liquid bonds and significantly

larger allocations to illiquid bonds than insurers with no VAs.

To examine this link more formally, we infer an insurer’s guarantee-induced stock market

exposure, or delta, which is the main driver of delta hedging in our model. We rely on the law

of motion for the guaranteed VAs’ account values and gross reserves, and operate under a set of

simplifying assumptions about the requirements imposed on insurers and their hedging decisions.8

We then calibrate the model by regressing an insurer’s portfolio allocation to each asset group

8We divide derivatives earmarked for hedging VA into two groups. The first group includes mostly put options,
which we assume are sufficiently “effective” to be used as credit to offset the gross reserve. We refer to this as
comprehensive hedging. The second group includes linear derivatives, mostly stock market futures, which we assume
are part of the delta hedging program highlighted in our model.
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(liquid and illiquid bonds, and common stocks) on the delta.

In the regression where the common stock allocation is the dependent variable, our model

dictates that the coefficient on the dollar delta is exactly the delta hedge ratio. We find this

coefficient (about 0.65) to be significantly negative, and economically plausible; insurers hedge

a large, but incomplete fraction of their guarantee exposures. In the regression where the illiquid

bond allocation is the dependent variable, the corresponding coefficient is the product of the hedge

ratio and the relative capital requirements for common stocks versus illiquid bonds. We find this

coefficient to be significantly positive, suggesting insurers with VA guarantees reach for yield. From

here, we take the implied model parameters to determine three portfolios for each insurer: (i) an

actual portfolio which reflects both delta (but incomplete) hedging and the associated reaching for

yield behavior, (ii) a hypothetical portfolio that reflects only delta (but incomplete) hedging without

reaching for yield behavior, and finally, (iii) a hypothetical portfolio which would obtain if the

insurer had no guaranteed VAs at all (or completely and comprehensively hedged their exposures).

The difference between portfolios (i) and (ii) uncovers the effect of reaching for yield behavior,

while the difference between portfolios (ii) and (iii) comes from the guarantee exposure that is

incompletely hedged. Reaching for yield and the guarantee exposure are the two main sources of

systemic risk potentially induced by the incentives associated with guaranteed VAs.

In the final step, we perform a simulation exercise to quantify the asset pricing impacts of various

market shocks that are attributable to the underwritten VAs. To do so, we follow a framework

similar in spirit to that of Greenwood et al. (2015); facing a negative shock to their statutory capital,

insurers must sell risky assets to maintain a healthy risk-based capital ratio and their collective asset

sales engender price impacts. We focus on three types of shocks, all of which have magnitudes

comparable to what we observed during the 2008-9 financial crisis: first, a categorical shock (prices

decline across the board); second, a shock to the illiquid bond (prices of illiquid bonds decline in a

similar manner to those of mortgage-backed securities during the crisis); and finally, a shock to the

value of the guarantee. In each scenario, we examine in detail the differences in price impact across

the different actual and hypothetical portfolios mentioned above to gauge the relative importance
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of the drivers of systemic risk. For example, we demonstrate that categorical asset value shocks

of between 10-40% would result in insurers selling $134-$537 billion of illiquid bonds, with the

corresponding system-wide fire-sale costs representing up to 30% of insurers’ total capital and

surplus. Further, our model facilitates a decomposition of the fire sale effect, and we find that the

largest culprit, by far, of ex post systemic risk is ex ante reaching for yield behavior.

This paper makes a contribution to the systemic risk literature along several dimensions. First,

the existing literature has identified correlated investments as a potential source of systemic risk.

Wagner (2010) and Allen et al. (2012) have theoretically shown that elevated asset similarity

across institutions is one channel through which systemic risk may arise. Greenwood et al. (2015)

show empirically how regulatory fire-sales can translate correlated investments into systemic risk.

However, with the exception of Acharya and Yorulmazer (2007) and Acharya (2009), existing

studies have not investigated how such inter-connectedness first arises in equilibrium. In this paper,

we propose theoretically and investigate empirically one mechanism, different from regulation,

that gives rise to asset inter-connectedness. While capital regulation is a part of our analysis, asset

similarity across insurers instead arises from the business decisions to provide investment products.

While there is an emerging literature investigating the similarity across portfolios of financial

institutions (e.g., Getmansky et al. (2016)), we are among the first to link this elevated portfolio

correlation to the transformation of the insurance sector and the emergence of VAs with guarantees.

To the best of our knowledge, our paper is the first to explicitly link VAs to interconnectedness and

systemic risk.

Second, another strand of the literature addresses the issue of liquidity provision in times of

market stress, proposing that some intermediaries, by virtue of their long horizons and balance sheet

structure, can take on that vital role. Indeed, the spillover effects of fire sales will be attenuated,

or perhaps even halted, if enough buying capital comes in, thus highlighting the importance of the

stability of such intermediaries. Chodorow-Reich et al. (2016) propose that insurance companies

behave like asset insulators during normal conditions, they do not during market meltdowns. Aside

from providing a micro-founded explanation for this result, our paper also shows that life insurers

8



may not only stop insulating assets in market meltdown but rather may themselves become a source

of significant selling activity. More importantly, by virtue of the asset inter-connectedness, they are

now more likely to contribute to the contagion through regulatory fire-sales. This has far reaching

implications for the stability of the entire financial system.

The rest of the paper is organized as follows. Section 2 provides the salient institutional features

of the VA market and how the associated guarantees impact insurers’ regulatory capital. Section

3 introduces the first part of the model to demonstrate how policy generation in the VA space

leads to a riskier portfolio allocation and engenders inter-connectedness. Section 4 introduces the

insurance-level data and calibrates the model’s predictions. Section 5 provides several simulations

exercises, based on the model’s fire sale mechanism, to quantify the impact of various negative

shocks. Section 6 concludes.

2 Institutional Framework

A guaranteed VA is a savings product in the U.S. sold by life insurers to individuals for retirement

purposes. The VA market has been growing rapidly in the last two decades for several reasons.

In late 1990s insurers started to offer various guarantees that protect policyholders from poor

investment returns, effectively offering insurance against a downturn in the stock market. More

broadly, during this period the U.S. retirement system has been shifting from defined benefit

to defined contribution schemes, which increased demand for pension-like investment products

elsewhere. Tax reform in mid-1980s reduced the

2.1 Basic Description of VAs with Guarantees

The VA product is a long-term contract between an insurer and a policyholder and consists

of accumulation and decumulation phases. During the accumulation phase, the policyholder

contributes funds to the annuity account, and the balance is invested in stock and bond market

instruments such as mutual funds, ETFs, etc. The policyholder has some discretion to reallocate
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investments among different asset classes offered by an insurer. She can also terminate the contract

and withdraw the cash value of the policy, subject to termination fees. Once a policyholder reaches

retirement age, she has an option to convert the account balance into an annuity or take out the

cash value of the policy (terminating the contract). If she decides to annuitize, the policyholder is

entitled to receive regular payments from the insurer either during a fixed number of years or for

life, depending upon the terms. While there are many different types of guarantees associated with

VAs, we focus on those that are linked to the equity market.

VAs expose a policyholder to market risk as the amount that she can eventually annuitize is

uncertain and depends on stock market performance. To reduce this risk, insurers offer a host of

guarantees. Guarantees come in various forms, effectively providing an assurance for a policyholder

that her savings and annuity payments are protected from adverse market conditions.9 For example,

a âGuaranteed Minimum Accumulation Benefitâ ensures that the account value does not fall below a

contractually determined minimum value. Alternatively, a âGuaranteed Minimum Income Benefitâ

guarantees that a policyholder receives a minimum income stream when the policy is annuitized,

even though the remaining account value fluctuates with stock market performance. These, and other,

guarantees are sold as separate riders. For reference, more than 80% of variable annuity contracts in

the U.S. have some form of guarantee. Similar such provisions are pervasive in insurance markets

around the world.

2.2 Impact of VAs on Insurers’ Capital

From the perspective of an insurer, a VA policy is a combination of business components related

to asset management and life insurance. An insurer allocates policyholder savings to a separate

account and acts as a delegated asset manager of policyholder’s funds. It offers a policyholder a

menu of investments and charges fees based on assets under management. Absent any guarantees,

the separate account is a pass-through account in which a policyholder bears all investment risk.
9One example of a VA with guarantees is the so-called Guaranteed Lifetime Withdrawal Benefit (GLWB) and

this product is the most common type of guaranteed living benefit. There are other types of guarantees, such as the
Guaranteed Minimum Withdrawal Benefit (GMWB), Guaranteed Minimum Income Benefit (GMIB), and Guaranteed
Minimum Accumulation Benefit (GMAB).
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The life insurance component of the VA is the option held by the policyholder to convert the funds

to an annuity at retirement. If a policyholder annuitizes, an insurer then faces easily diversifiable

longevity risk.

Most importantly for this paper, guarantees attached to the VA products create important

implications for insurers’ reserves and, as a consequence, on the insurers’ financial health as

measured by the Risk-Based Capital (RBC) ratio. In general, insurers are required to hold reserves,

now a major liability, that are used to make promised payments to policyholders. For traditional

insurance risks, insurers’ reserves are set to match (a profit margin adjusted) expected periodic

payment to policyholders. Based upon standard asset-liability matching, reserves are usually

invested in fixed-income securities. As an insurer may face insufficient reserves if it underestimates,

say, the average longevity risk of its clients. However, this risk would be largely idiosyncratic to the

insurer.

In sharp contrast to longevity risk, which is the usual type of risk associated with traditional

insurance products, the size of the reserves associated with guarantees fluctuates with stock market

performance. During a stock market decline, the moneyness of guarantees and associated required

reserves increases. To mitigate the fluctuation of reserves associated with guarantees, insurers need

to raise more capital. However, the demand for capital is now synchronized among insurers offering

guarantees, and capital can be costly during a sharp market downturn. As an alternative, insurers

partially hedge their stock market exposure with derivatives and/or invest in riskier, less liquid

assets.

The VA liabilities have a direct impact on the RBC ratio as they affect both the reserves and

also the required capital.10 In order to measure these liabilities and reserves, insurers first rely on

inputs supplied by insurance regulators and then their own simulations (Koijen and Yogo (2017a)).

The first input comes from insurance regulators who supply various scenarios for the joint path

of several asset classes, namely treasury bonds, corporate bonds, and equity prices. Within this

10Specifically, Actuarial Guideline 43 (or Actuarial Guideline 39, prior to December 2009) determines the reserve
value of variable annuities, and, since December 2005, the C-Phase II regulatory standard determines the contribution
of variable annuities to required capital (Junus and Motiwalla (2009)).
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framework, insurers gauge any possible equity deficiency by simulating the values of their VA

business under each supplied scenario (keeping the highest present value of equity deficiency in

each path). Reserves that have to be kept by the insurers are computed as the conditional mean

over the upper 30 percentile of the equity deficiencies. It should be kept in mind, though, that there

is no presumption that this value will be identical to the market value. The same methodology is

used by insurers when computing required capital, with the difference that the conditional mean is

calculated over 10 percent of equity deficiencies.

The two most important factors that influence reserves are equity prices and interest rates. From

their own nature, reserves will suffer when equity prices decline and interest rates either decline or

are kept at a low level for a long period of time. In Figure 4 we plot the evolution of reserves for the

VA guarantees as a ratio of various insurance characteristics that directly measure different aspects

of financial health: the evolution of insurers’ gross reserves to capital (Panel A), their stock returns

(Panel B), and their return on equity (Panel C) for the period from 2004 to 2013. Each year, life

insurers with guaranteed VAs are divided into two groups by the ratio of gross reserve to capital.

The ”high” (”low”) group includes life insurers with a ratio of gross reserve to capital larger than

(less than or equal to) the median. For comparison, the annual averages for life insurers without

guaranteed VAs are also plotted.

As expected, reserve additions (and, as a consequence, capital reductions) spike when two

conditions emerge: declining stock markets and interest rates, which are the conditions that feature

in most recessions. Panel A also highlights the devastating effects on the reserves associated with

the rapid deterioration of equity markets, such as the 2008-2009 financial crisis and the 2011-2012

price decline due to the Euro crisis. This is central for the understanding of how the VAs business

can create contagion during such a shock. As insurers’ RBC ratios rapidly deteriorate, they will

be under pressure to improve their financial health and this can be obtained through two ways:

issuing new equity or reducing risk from their balance sheet by engaging in fire sales, akin to a

deleveraging process. Given that issuing equity may be very difficult during stress periods, engaging

in regulatory-induced fire sales become more likely.
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VAs with embedded guarantees introduce several new features and risks to an insurer’s overall

business model. Like any delegated portfolio manager, the size of assets under management

becomes a significant driver of profitability. To attract funds in a highly competitive market, insurers

are incentivized to offer generous guarantees that may prove costly in certain states of the world.

Guarantees also prompt more complex hedging strategies, and induce more aggressive investments.

In the following sections, we provide a model and associated empirical evidence to support these

observations.

3 A Model of Guarantees, Hedging, and Portfolio Choice

In this section, we develop a simple model that facilitates an understanding of the links between,

on the one hand, an insurer’s guarantee activities and its respective hedging and, on the other,

its portfolio choice. An central focus of the analysis will be an examination of the sensitivity of

portfolio allocations to (effective) guarantee-exposures, which will then be estimated using U.S. life

insurance data in Section 4.

In our model, we consider an insurer whose risk-taking is constrained by its (regulatory) capital

position. The consequence is that whenever the insurer’s risk in one part of the portfolio is, say,

reduced (for example because of hedging), it has the capacity (and the will) to increase risk in

other parts of its portfolio. This is what will drive portfolio adjustments following the writing of

guarantees (and any associated hedging activity). Whether these adjustments increase or decrease

risk for the entire financial system will crucially depend on the regulatory risk-weights of the various

assets in which the insurer can invest. We will assume that these risk-weights are fair, insofar as

they fully reflect the fundamental risk posed by an activity. However, we do critically assume that

regulation under-prices illiquidity risk (which is endogenous in our model, arising from fire-sales in

the bond market). This under-pricing can result in risk-shifting by the insurer, and ultimately create

systemic risk. The systemic consequences will be analyzed in more detail in Section 5.

In the subsequent analysis, we will take both the guarantees as well as any associated hedging as

13



given. We can think of these characteristics as being determined exogenously by the business model

of the insurer. As discussed in Section 2, insurance companies employ several forms of hedging,

the most prominent of which being delta-hedging, where insurers take (short) positions in the stock

market to offset the market exposure arising from the guarantee. We will focus the theoretical

analysis on this type of hedging – but will incorporate direct hedging (e.g., buying put-options) in

our estimations.

3.1 Setup

Consider one insurer and three dates (0, 1, 2). The insurer has total funds A, of which E is capital

and A− E are liabilities. The insurer can use the funds to invest in three assets: stocks, an illiquid,

risky bond, and a liquid, safe bond. The expected date-2 returns on stocks and the illiquid bond are

rS and rI (rS > rI), respectively; the return on the liquid bond is normalized to zero: rL = 0.

At date 0 the insurer decides upon the fraction of funds to invest in stocks, the illiquid, and

the liquid bond. We denote the respective portfolio weights as αS , αI , and αL (αi ∈ [0, 1]). The

portfolio choice has to obey two constraints.

First, there is a constraint arising from the guarantee and any associated hedging. We consider

an insurer who has sold (guaranteed) variable annuities using the stock market as an underlying.

Specifically, the insurer has written guarantees of size g > 0 expressed as a fraction of its balance

sheet (so the total guarantee is gA). We denote the (absolute value) of the option delta of a unit

of the guarantee with |δ|. Thus, when the stock market falls by one unit, the total value of the

guarantee written increases by |δ| g. We refer to |δ| g as the effective guarantee exposure. The option

delta will reflect the characteristics of the guarantee written, for example, the degree to which it is

out-of-the-money. We assume that the insurer hedges a proportion h (h ∈ [0, 1]) of the guarantee

using delta hedging.11 For this, the insurer sells short h · |δ| g units of the stock market at date 0

and invests the proceeds into the remaining part of its portfolio. The guarantee thus amounts to the
11As discussed previously, an alternative (although expensive) means of hedging is to buy outright puts. Such

hedging has the effect of simply neutralizing (a part of) the guarantee. That is, the effective guarantee exposure when
a proportion hD is directly hedged becomes (1− hD) |δ| g. By replacing the effective guarantee exposure with this
expression in our estimations, we will hence take into account direct hedging.
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restriction that at least h · |δ| g has be invested in the two bonds:

αL + αI ≥ h · |δ| g. (1)

Note that the guarantee does not impose a similar constraint on the stock market position, as we

allow for short-selling of stocks.

Second, the insurer is subject to risk-sensitive capital requirements. We assume that the

regulatory risk-weights on the three assets, denoted γi (i ∈ {S, I, L}), are proportional to their

date-2 returns (reflecting that assets that are priced to have higher returns posses commensurately

higher risk levels):
γS
rS

=
γI
rI

and γL = 0. (2)

The insurer’s total risk-weighted assets are then (αSγS+αIγI)A. Given a required capital-adequacy-

ratio of ρ, the insurer’s portfolio thus has to fulfill the following risk-weighted capital constraint:

E

(αSγS + αIγI)A
≥ ρ. (3)

This equation presumes that the guarantee itself do not affect regulatory constraints.12 However,

hedging – even though not directly apparent in equation (3) – does affect the regulatory constraint.

For example, an insurer who invests the proceeds from hedging exclusively into liquid bonds will

see its risk-weighted assets decline by4αSγS = h · |δ| gγS . Note that an alternative interpretation

of equation (3), aside from a regulatory constraint, is that of the insurer’s target ratio of risk.

At date 1 with probability π (∈ (0, 1)), we assume that a shock arrives which forces the insurer

to sell a part of its portfolio. In Section 5, we model this explicitly as being the result of a capital

shortfall. For now, we assume that the shock forces the insurer to sell a proportion s (∈ (0, 1)) of its

portfolio. While we assume that the liquid bond and stocks can be sold at their expected value, we

12The regulatory treatment of guarantees is complex. As a first approximation it is plausible to assume that the fee
the insurer receives for offering the guarantee (which adds to capital and hence relaxes the regulatory constraint) offsets
the capital required for the guarantee (this would be the case for a fairly-priced guarantee).
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also assume that this is not the case for the illiquid bond (see Ellul, Jotikasthira and Lundblad (2011)

for an analysis of why bonds held by insurance companies are subject to illiquidity). Specifically,

the illiquid bond can only be sold at a discount c > 0 to its date-0 value. We can think of c as the

bond’s fire-sale discount, which is determined by the total amount of selling in the economy and

hence will be taken as given by an individual insurer. Note further that the regulatory risk-weights

do not reflect the potential fire-sale discount; that is, we assume that regulation does not (fully) price

illiquidity risk. This is the imperfection that will allow for the creation of systemic risk.

Finally, we assume that all assets pay out their respective returns at date 2.

3.2 Portfolio Choice

At date 0, the insurer chooses portfolio weights to maximize its expected profits. When the shock

does not arrive at date 1, the insurer will earn the respective return ri (in expectation) on each

asset. However, when the shock does arrive, the insurer’s overall portfolio return will be reduced by

αI(rI + sc). The insurer’s expected date-2 return is hence given by αSrS + αI(rI − π(rI + sc)).13

We make the following three assumptions:

Assumptions: (i) rI > π
1−πsc, (ii) γI > E

Aρ
, and (iii) h · |δ| g > 1− γS E

Aρ
.

The first assumption ensures that the illiquid bond, taking into account the probability that it has

to be liquidated at date 1, has a positive expected return to the insurer.14 The second assumption

states that the capital constraint is sufficiently tight so that the insurer cannot invest everything into

the illiquid bond (and hence also not stocks). The third assumption says that effective guarantee

exposure (after hedging) has to be sufficiently large. If guarantees are very small, the bond holdings

required to hedge the guarantee will be small as well, and will not affect the optimization problem

(that is, the constraint (1) will not bind).
13We can ignore the pay-outs to guarantee holders and holders of other liabilities here since, as long as the insurer

remains solvent, they are a given cost to the insurer.
14This has the consequence that expectations of fire-sales at date 1 do not (directly) affect portfolio allocations at

date 0. See Wagner (2011) for an analysis of optimal portfolio strategies in the presence of fire-sale risk.
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The insurer’s maximization problem can be written as

max
αS ,αL,αI

αSrS + αI(rI − π(rI + sc)), subject to (4)

αL + αI ≥ h · |δ| g, αSγS + αIγI ≤
E

Aρ
, αS + αL + αI = 1, αL, αI ≥ 0.

The insurer’s resulting optimal portfolio is given by

α∗
S = 1− h · |δ| g, (5)

α∗
I = (

E

Aρ
− (1− h · |δ| g)γS)

1

γI
, (6)

α∗
L = h · |δ| g − (

E

Aρ
− (1− h · |δ| g)γS)

1

γI
. (7)

Proof. To build intuition, let us first consider the insurer’s problem when there is no guarantee

constraint (that is, we drop condition (1)). The insurer’s objective is to maximize expected returns,

subject to the condition that it has sufficient regulatory capital. The question thus becomes one of

which asset gives the highest return per unit of risk-weight. Since risk-weights are proportional to

date-2 returns, in the absence of fire-sales, the insurer is indifferent between investing in stocks and

the illiquid bonds. However, due to the fire-sale cost, it strictly prefers stocks. The insurer will thus

not hold any illiquid bonds (αI = 0), and invest up to the regulatory constraint (3) in stocks. From

solving equation (3) for αI = 0, we obtain αS = 1
γS

E
Aρ

. The remaining funds will be invested into

the liquid bond. The holdings of the liquid bond can hence be obtained from the budget constraint

(αS + αL = 1): αL = 1− 1
γS

E
Aρ

. Note that αI + αL = 1− 1
γS

E
Aρ

fulfills the guarantee constraint

(1) only when h · |δ| g ≤ 1− 1
γS

E
Aρ

, that is, precisely when assumption (iii) is not fulfilled. It follows

that insurers are constrained by the guarantee whenever assumption (iii) holds.

Let us now solve for the optimal portfolio when the guarantee constraint binds (assumption

(iii) holds). Since the insurer strictly prefers stocks to bonds, it will only invest into bonds up

to the guarantee constraint (αL + αI = h · |δ| g) and invest the remaining funds into stocks:

α∗
S = 1−h·|δ| g. The division between illiquid and liquid bonds in the bond portfolio (of size h·|δ| g)
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will be determined by the regulatory constraint: the insurer will invest into illiquid bonds until its

capital adequacy ratio becomes binding: (1− h · |δ| g)γS + αIγI =
E
Aρ

. Rearranging gives α∗
I =

( E
Aρ
− (1−h · |δ| g)γS) 1

γI
. The rest is held in liquid bonds: α∗

L = h · |δ| g− ( E
Aρ
− (1−h · |δ| g)γS) 1

γI
.

From (6) we can derive the following result:

Result 1 Larger guarantee amounts will increase holdings of the illiquid bond (∂α
∗
I

∂g
> 0).

The intuition is the following. A higher amount of guarantees means that, because of delta

hedging, an insurer will necessarily have lower stock market exposure (αS is lower) and will hold

more bonds (αI + αL is higher). The insurer’s regulatory risk thus declines, and it has room to

pursue returns. As it cannot scale down on its overall bond holdings (because of the hedging

constraint), it has to take the risk within the bond portfolio, that is, invest more in higher yielding

illiquid bonds.

In the next section, we will calculate effective guarantee exposures |δ| g using U.S. life insurers’

balance sheet data. We then use two of the model’s implications on equilibrium portfolio holdings,

(5) and (6), to estimate the hedging ratio, h, and the relative risk-weight of stocks, γS
γI

, from insurers’

actual holdings of stocks and illiquid bonds. The next result highlights the relationship between

portfolio holdings and effective guarantees:

Result 2 The sensitivities of stock and illiquid bond holdings to effective guarantees are given by

∂α∗
S

∂ |δ| g
= −h and

∂α∗
I

∂ |δ| g
= h

γS
γI

. (8)

The sensitivity of an insurer’s stock market position to guarantee activity is simply the (negative

of the) hedging ratio −h because the associated hedging requires one-to-one short-selling in the

stock market. The sensitivity of an insurer’s holdings of illiquid bonds to guarantee activity is given

by hγS
γI

. This is because each unit of stocks sold relaxes the capital constraint by γS
γI

(since γS >

γI , the effect is always larger than one). Since the insurer sells h units in total, it can increase its

holdings of illiquid bonds by hγS
γI

.15

15Our model implies that the insurer offsets reduced risk-taking in the equity market with higher risk in the bond
universe. However, it should be noted that hedging still provides diversification benefits as it reduces overall exposure
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4 Data and Model Calibration

To calibrate the model, we use the National Association of Insurance Commissioners (NAIC)

data, obtained through SNL Financial, on guaranteed VAs’ account values, gross reserves, and

reinsurance credits (from the General Interrogatories), portfolio holdings (from Schedules A, B, BA,

and D), and derivatives positions (from Schedule DB). The data frequency is annual and the unit of

observation is firm-year, where each firm refers to an independent life insurer or all life insurers in

the same group (e.g., AIG). The sample period is from 2004 to 2013, although we have the data on

guaranteed VAs spanning 2003-2015.

Figure 3 plots the aggregated VAs’ account value, summed across all insurers, and its associated

gross reserve over time. The account value significantly increased from about $840 billion in 2003

to almost $1.5 trillion in 2007, due in part to the rise in the stock market. Over the same period, the

associated gross reserve (part of insurers’ liabilities) remained relatively low, potentially because

the guarantees were deep out-of-the-money. In 2008, as the stock market collapsed, the account

value dipped and the gross reserve spiked from about $10 billion to almost $60 billion. Since then,

account values recovered and eventually surpassed the previous peak in 2007. Despite the recovery,

the gross reserves remained relatively high and volatile, reaching a new high at over $70 billion

during the 2011-12 European financial crisis.

Only a handful of life insurers underwrite guaranteed VAs, and even a smaller number do so

in a significant amount. These insurers tend to be very large and sophisticated, compared to an

average life insurer. To create a relevant sample, we therefore start with the sample of insurers that

underwrite guaranteed VAs and add to it other insurers with average assets greater than or equal to

the fifth percentile of the average assets of VA insurers. Our sample includes a total of 176 unique

insurers, of which 82 underwrite guaranteed VAs at some point. To observe firm characteristics and

asset allocations that are associated with VAs, we divide the insurers each year into three groups:

[1] those with a greater than median VA exposure, as measured by the ratio of gross reserve to

to the stock market (coming through both direct holdings of stocks and the guarantee).
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capital, [2] those with a lower than median VA exposure, and [3] those with no VA exposure. It is

important to note that the VA exposures of insurers in groups [1] and [2] are vastly different; the

average ratio of gross reserve to capital is 0.241 for the former and just 0.003 for the latter.

Table 1 presents summary statistics on several relevant firm characteristics as well as investment

portfolio asset allocations across the three groups of insurers. The statistics are pooled across

firm-year observations in each group. Panel A shows that insurers with high VA exposures are

generally larger than others both in terms of assets (in the general account or on balance sheet)

as well as capital and surplus. Their average assets and capital are $54,452 million and $4,959

million, respectively, larger than the corresponding averages for insurers with low VA exposures

by $22,353 million (significant at 10%) and $1,363 million (not significant). Insurers with no VAs

are the smallest. Insurers with high VA exposures also have slightly lower RBC ratios, returns on

equity, and stock returns than the other two groups; the differences, however, are not statistically or

economically significant.

In Panel B of Table 1, we present the portfolio asset allocations across the three groups of

insurers. To simplify our analysis and map the data to the model, we divide assets into four broad

groups: (i) liquid bonds (L in the model), (ii) illiquid bonds (I in the model), (iii) common stock

exposures (S in the model), and (iv) other assets (not in the model). The composition of each group

is listed underneath the group’s heading; for example, the liquid bonds comprise cash, synthetic cash

(from selling futures), bonds in NAIC classes 1 and 2, and agency asset/mortgage backed securities

(ABS) in NAIC classes 1 and 2. Note that NAIC classes 1 and 2 include assets rated A- and above,

and BBB- to BBB+, respectively (see Ellul, Jotikasthira, Lundblad, and Wang (2015)). Both groups

of insurers that underwrite guaranteed VAs have significantly lower liquid bond allocations (about

8%) than insurers with no VAs. The differences are driven by cash and agency ABS in NAIC class

1 but are partially offset by synthetic cash from selling stock futures.

Insurers with high VA exposures have a significantly higher allocation to illiquid bonds than do

both insurers with low or no VA exposures. The differences are in the same direction for all types of

assets that we classify as illiquid bonds, although the magnitudes are most economically significant
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among private-label ABS, mortgages, and loans. For common stock exposures, we consider both

cash stocks and stock futures, and find that insurers with high VA exposures, relative to the other two

groups, both have smaller allocations to cash stocks and sell disproportionately more stock futures.

Together, the summary statistics for the asset allocations are generally consistent with our model’s

predictions. Insurers that underwrite guaranteed VAs hedge their exposures by selling common

stocks and buying bonds, and tilt their portfolio towards illiquid bonds to utilize the reduction in

risk-based capital and maximize their portfolio expected return. Insurers’ allocations to other assets

are relatively small and uninteresting.

To formally isolate the effects of VAs on insurers’ asset allocations and evaluate their contribution

to systemic risk, we calibrate the parameters of our model. We focus on two parameters, the delta

hedge ratio (h) and the ratio of RBC requirements for common stocks and illiquid bonds (γS/γI),

which together determine the tilt towards illiquid bonds. As shown in equations (5) and (8), h is the

negative of the sensitivity of the common stock allocation to an insurer’s guarantee-induced stock

market exposure, or equivalently the delta normalized by total assets (|δ| g). Equations (6) and (8)

indicate that h · (γS/γI) is the sensitivity of the illiquid bond allocation to the normalized delta. We

therefore calibrate our model by simply regressing asset allocations on the normalized delta.

To start, we need to uncover the normalized delta for each insurer. The insurer-level data on

guaranteed VAs only tell us the account value and the gross reserve. Considering the gross reserve

as a proxy for the value of the guarantee (which is admittedly imprecise), we can calculate the delta

as the change in gross reserve per a one unit change in the account value, given the existing VAs.

Since we cannot separate the account value and gross reserve into the components associated with

the existing VAs and new business, we rely on the law of motion for the account value and gross

reserve under a set of simplifying assumptions. Ignoring non-linearities, the law of motion states

that
reservet
valuet

=
reservet−1 + δt−1 · valuet−1 · retstock,t−1,t + newreservet

valuet−1 ∗ (1 + rett−1,t) + newvaluet

We infer newvaluet as the valuet − valuet−1 ∗ (1 + rett−1,t), using a combination of stock returns

(CRSP value-weighted index including dividends) and three-month interest rates as an estimate
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of rett−1,t. Based on the aggregate statistic from SNL Financial, we assume that 77% of account

value is associated with VAs with common stocks as underlying assets are common stocks and the

remaining is associated with money-market VAs.

We then calculate newreservet by assuming that the guarantee remains at the same level

as before, and therefore newreservet = newvaluet · ( reservetvaluet
). Finally, we assume that the

reserve on the money-market VAs remains constant, such that the change in reserve on existing

VAs is driven primarily by the stock market return, retstock,t−1,t, implying δt−1 · valuet−1 =

[reservet−reservet−1−newreservet]/retstock,t−1,t. Finally, the normalized delta, δt−1 ·( valuet−1

assetst−1
),

corresponds to |δ|g in the model.

In practice, hedging complicates our calculation of the normalized delta since some hedge

coverage can be used as a credit, under the regulation, to offset the gross reserve. We divide

derivatives earmarked for hedging VAs into two groups. The first group includes mostly (long) put

options, which we assume are sufficiently ‘effective’ to be used as credit to offset the gross reserve.

We refer to the use of these derivatives as direct, comprehensive hedging, which insurers report as

either effective or other hedging. We assume that 70% (50%) of effective (other) hedging offsets the

calculation of gross reserve so that the change in gross reserve for existing VAs is induced by the

unhedged assets plus 30% of assets covered by effective comprehensive hedging plus 50% of assets

covered by other comprehensive hedging. Because comprehensive hedging is sufficiently effective

regardless of the regulatory treatment, our calculated delta is biased upward as a measure of the

sensitivity of the guarantees to the stock market. We therefore further adjust the normalized delta

above by a factor equal to the ratio of unhedged assets to the sum of unhedged assets and uncredited

comprehensive hedges.

The second group of derivatives includes linear derivatives, mostly stock market futures, which

we assume are part of the delta hedge program highlighted in our model. We do not allow these

derivatives to offset the gross reserve and layer them directly as synthetic cash and common stocks

on top of insurers’ asset allocations. To hedge the guarantee, insurers sell stock market futures,

resulting in positive synthetic cash and negative synthetic common stocks, as observed in Table 1.
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Having obtained the inputs, we then perform our main calibration by regressing each insurer’s

allocation to each asset group, liquid bonds, illiquid bonds, common stocks, and others, on the

normalized delta (normalized by total assets). Table 2 reports the results. We include year fixed

effects and control for insurers’ capitalizations by also including RBC ratio. In Panel A, we obtain

the coefficient estimates by OLS with robust standard errors clustered by insurer. In Panel B, we use

seemingly unrelated regressions (SUR) and impose a natural cross-equation constraint that the sum

of coefficients on the normalized delta and the sum of coefficients on the RBC ratio equal zero (i.e.,

the sum of asset allocations is fixed at one). We calculate standard errors by boot strapping, using

500 repetitions. The results in both panels are almost the same, and the cross-equation constraints

in Panel B are not rejected. Nevertheless, we will use the SUR estimates in our subsequent analysis.

Many insurers in our sample have no or very low exposures to guaranteed VAs and therefore zero

or very low normalized deltas. For this reason, the sample standard deviation of normalized delta is

just 0.050. The coefficient estimates show that a one standard deviation increase in normalized delta

is associated with an increase in illiquid bond allocation of about 0.090 (or 9 percentage points),

where 0.056 comes from liquid bonds (i.e., decrease in liquid bond allocation of 0.056) and 0.033

comes from common stock exposures. These re-allocations are both statistically and economically

significant. The decrease in other assets is insignificant and negligible in magnitude.

The coefficients on the RBC ratio show insurers that have high RBC ratio tend to allocate more

of their assets to liquid bonds and less to the three other asset groups. This implies that the RBC

ratio may reflect insurer-specific risk aversion and/or risk bearing capacity, and each insurer may

strive to maintain its RBC ratio target over time.

Table 3 reports statistics on hedge coverage and the capital requirement for illiquid bonds,

calculated from the data and from the estimates in Table 2 Panel B. We focus only insurers with high

exposures to guaranteed VAs, as these insurers together account for over 90% of all underwritten

VAs in our sample. Moreover, our model predicts that the portfolio tilt towards illiquid bonds only

occurs among insurers with exposures to guaranteed VAs above a certain level. The first two rows

of Panel A report the statistics for effective and other comprehensive hedge coverage. Through the

23



lens of regulation, insurers’ use of options for hedging the guarantee is not considered effective,

and thus the effective comprehensive hedge coverage is zero for all firms. However, insurers do

use options extensively, covering on average about 0.052 (or 5.2%) of the guarantee. The median

insurer does not use options, possibly to avoid paying the option premia.

Insurers delta-hedge much of the remaining guarantee exposure. As discussed, our model

interprets the negative of the coefficient on the normalized delta in the regression of common

stock allocation as the delta hedge coverage, i.e., h = 0.655. We multiply h by the proportion of

guaranteed exposure that remains after comprehensive hedging to obtain the delta hedge coverage

for each insurer. The average delta hedge coverage is 0.690, with the 90% confidence interval

(calculated by bootstrapping) between 0.658 and 0.721. Thus, all together, insurers that underwrite

most of guaranteed VAs hedge about three quarters of their guarantee exposure.

Our model also interprets the corresponding coefficient in the regression on the allocation

to illiquid bond as the product of the delta hedge ratio and the relative capital requirements for

common stocks vs. illiquid bonds (in excess of the capital requirement of liquid bonds). From

this interpretation, and the fact that the capital requirement for common stocks is 0.30 (assuming

beta of one), our coefficient of 1.809 implies that the capital requirement for illiquid bonds equal

to 0.113, with the 90% confidence interval (calculated by bootstrapping) between 0.049 and

0.177. Our back-of-the-envelope calculation from each asset type that make up the illiquid bond

grouping suggests the capital requirement of about 0.060, which is slightly lower than our regression

estimate but lies within the 90% confidence interval. Both the delta hedge coverage and the capital

requirement for illiquid bonds implied by our estimation are reasonable and consistent with the

data and anecdotes from conversations with practitioners. Below, we use our estimates to infer

counter-factual portfolios.

Our model indicates that the portfolio we observe reflects the insurer’s desire to both hedge a

certain portion of its guarantee exposures as well as to maximize the expected return. The former

leads to over-weighting bonds and under-weighting common stocks in general, while the latter

tilts the bond allocation towards illiquid (and riskier) ones. The literature often refers to such
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tilt as “reaching for yield.” To examine the contribution of guaranteed VAs to systemic risk and

to isolate the effect of reaching for yield, we create the following two counter-factual portfolios.

Portfolio 1 captures the desired delta hedge coverage (same as reported above) but eliminates the

reaching-for-yield tilt. We construct Portfolio 1 by keeping the sum of allocations to liquid and

illiquid bonds the same as the actual portfolio, but re-allocate between them such that the ratio of

liquid and illiquid bond allocations is the same as what we would observe should the insurer have

no guaranteed VAs. Reaching for yield thus explains the difference between the actual portfolio and

Portfolio 1, as well as their associated systemic risk.

In contrast, Portfolio 2 explores the implication of completely eliminating the guarantee exposure.

We construct it by unwinding the products of coefficients from Panel B of Table 2 and the normalized

delta for each insurer, i.e., setting the normalized delta to zero. The guarantee exposure and its

incomplete hedging account for the difference between Portfolios 1 and 2. Together, the guarantee

exposure and the reaching for yield incentives that stem from delta hedging the exposure comprise

the two main sources of systemic risk coming from guaranteed VAs.

Panel B of Table 3 reports allocations of Portfolios 1 and 2, and their bootstrapped standard

errors. Compared to the actual portfolio, Portfolio 1, on average, allocates 0.109 less to illiquid

bonds and 0.109 more to liquid bonds. These are the effects of reaching for yield. Compared to

the actual portfolio of insurers with no guaranteed VAs, Portfolio 1 allocates 0.045 less to common

stocks, reshuffling that amount to liquid and illiquid bonds. Portfolio 1’s allocations make sense

given that it maintains the same levels of guarantee exposure and hedge coverage as the actual

portfolio of insurers with high exposures to guaranteed VAs.

By construction, Portfolio 2 has significantly less illiquid bonds and significantly more liquid

bonds and common stocks than the actual portfolio. Portfolio 2 looks quite similar to the actual

portfolio of insurers that do not underwrite VAs, though we do not directly use these insurers’

portfolios in our construction. This provides comfort that our calibration is realistic and internally

consistent.
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5 Fire Sales and Systemic Risk

Having calibrated our model to U.S. insurance data, we now analyze how a shock at date 1 can lead

to fire sales. We expand the model introduced in Section 3 by assuming that there is a continuum of

insurers, each of size A, with effective guarantee exposures of |δ| g and hedging ratios h. We first

consider a shock that reduces the value of all assets proportional to their risk weights (so in this case

there are no diversification benefits between stocks and bonds). The shock is expressed in terms of a

ε (percentage) decline in the value of stocks. The value of illiquid bonds will thus decline by a γI
γS
ε

percentage (the value of the liquid bond remains unchanged, as its risk-weight is zero). The increase

in the value of the guarantee will be |δ| ε, given that its stock market dependence is given by |δ|.

The shock will negatively affect capital by, first, lowering asset values (the value of stocks

and illiquid bonds) and, second, by increasing the guarantee liability. Insurers will thus be in

violation of their required capital adequacy ratios. We assume that insurers restore their capital

by deleveraging.16 As in Greenwood et. al (2015), we assume that insurers do this by selling

assets proportionally to pay down debt. Illiquid bonds potentially suffer from fire-sale discounts,

as outlined in Section 3. Specifically, we assume that when an amount, S, of illiquid bonds in

the economy is sold, the bonds are traded at a discount of c0S (c0 > 0) to their date-0 value. The

asset discount will lead to an additional deterioration in insurers’ capital positions, which in turn

will require even more liquidations (and so on...). Note that the asset discount leads to a fire-sale

externality (e.g., Stein 2012): selling by some insurers will depress prices and hence worsen the

capital positions of all insurers in the economy, thus forcing additional liquidations throughout the

system.

We first derive the change in the capital position of an insurer between date 0 and 1. The latter

is given by:

4 E = −(αS +
γI
γS
αI)εA− |δ| gεA− αIA · c0S, (9)

16Equivalently, one can also assume that insurers hold the size of their balance sheet constant and sell risk assets
(stocks and illiquid bonds) in return for liquid bonds (“flight to quality”).
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where the portfolio allocations αS and αI are given by equation (5) and (6).17 The first term,

−(αS + γI
γS
αI)εA, is the direct effect on the portfolio associated with the negative shock. The

second effect, − |δ| gεA, is the effect associated with the moneyness of the guarantee. The third

effect, −αIA · c0S, reflects the losses due to fire-sales (these losses are permanent for the illiquid

bonds that are sold but temporary for the ones remaining on balance sheet).18 Dividing by E, we

obtain the relative change in capital

%E = (−(αS +
γI
γS
αI)ε− |δ| gε− αI · c0S)

A

E
, (10)

showing the amplification emanating from the equity multiplier, A
E

.

The evolution of assets is identical to the evolution of capital, except that assets are also reduced

by asset sales s, expressed as a proportion of the balance sheet:

4 A = −(αS +
γI
γS
αI)εA− |δ| gεA− αIA · c0S − sA. (11)

In relative terms, this becomes

%A = −(αS +
γI
γS
αI)ε− |δ| gε− αI · c0S − s. (12)

As a final condition, we have that, after asset sales, the insurer is again in fulfillment of its

capital requirements:
E +4E

(αSγS + αIγI)(A+4A)
= ρ (13)

From equation (13) follows that the equity multiplier,A/E, does not change between date 0 and date

1 (effectively, because the proportion of assets does not change, the capital requirement becomes a

17Note that hedging enters equation (9) indirectly by lowering the stocky market exposure αS .
18We assume that assets on the balance-sheet are marked-to-market, that is, the asset discount on illiquid bond also

reduces date-1 capital through the illiquid bonds that are not sold. The regulatory accounting treatment of assets during
crisis is nuanced in practice (see Ellul, Jotikasthira, Lundblad, and Wang (2014)); if assets on balance sheet are not
marked-to-market, fire-sale spirals will be less pronounced.
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leverage constraint). It follows that capital and asset growth mirror each other:

%E = %A. (14)

Using this to combine the equations that determine %E and %A (equations (10) and (12)), we

can solve for an insurer’s asset sales:

s = ((αS +
γI
γS
αI)ε+ |δ| gε+ αI · c0S)

A− E
E

. (15)

This expression illustrates the three channels through which capital, and hence asset sales, are

affected. The first term, (αS + γI
γS
αI)ε

A−E
E

, is the direct effect of asset values, depending on the size

of the shock and leverage. The second term, |δ| gεA−E
E

, is the effect coming through the guarantee.

Besides the size of the shock and leverage, its magnitude depends also on the effective guarantee

exposure, |δ| g. The effect of fire-sales on deleveraging is represented by the last term. Aggregate

liquidations of the illiquid bond reduce capital by αIc0SA−E
E

, thus causing more asset sales at a

specific insurer than in the absence of fire-sales. The equation also clearly highlights the fire-sale

externality: liquidations by some institutions (S ↑) will increase that at others (s ↑).

We now solve for the general equilibrium level of asset fire sales. We have that in equilibrium

total sales are given by S = sαIA. Inserting into equation (15) and solving for S gives:

S =
((αS +

γI
γS
αI)ε+ |δ| gε)A−EE

1
αIA
− αI · c0A−EE

, (16)

Result 3 Fire sales in the illiquid bond are increasing in the effective guarantee exposure |δ| g.

Note that guarantees affect fire-sales in two ways. First, higher guarantee exposure means that

shocks to stocks have a larger impact on capital, and hence following a negative shock, a greater

quantity of assets need to be sold to restore the capital position. Second, more guarantees mean

that insurers hold a larger proportion of their portfolio in illiquid bonds (because of hedging, αI is

higher, as shown in Section 3). Thus, a given amount of liquidations leads to more illiquid bonds
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being sold, further increasing system-wide fire-sales.

From equation (16), we can derive an expression for the total fire-sale cost. This is a measure of

systemic risk in our economy. Using that total costs are given by C = S · c0S, we obtain:

C = c0(
((αS +

γI
γS
αI)ε+ |δ| gε)A−EE

1
αIA
− αI · c0A−EE

)2. (17)

It can be seen that higher guarantee exposures lead to larger systemic risk.19

Shock to illiquid bonds Instead of the categorical asset shock, we can alternatively consider

a shock that reduces the value of illiquid bonds by εI percent, but leaves all other assets in the

economy unchanged (including the value of the guarantee). The evolution of capital and assets is

now given by

4E = −αIεIA− αIA · c0S, (18)

4A = −αIεIA− αIA · c0S − sA. (19)

Similar to the case of the categorical shock, individual selling s and total fire-sales S can be derived

as follows:

s = (αIεI + αIc0S)
A− E
E

, (20)

S =
αIεI

A−E
E

1
αIA
− αI · c0A−EE

. (21)

Shock to the guarantee Next, imagine an alternative scenario where the shock directly increases

the value of the guarantee by εG percent. This may for example be the result of an increase in the

19Systemic risk may lead to welfare losses as it can cause instability in the financial system, for example, due to a
failure of insurers (potentially spreading to other financial institutions). In the absence of any instability issues, fire-sales
are a pure zero-sum event, benefitting the buyers of illiquid bonds (e..g, focused distressed hedge funds) at the cost of
the sellers.
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volatility in the stock market. The resulting equations for changes in capital and asset are

4E = −gεGA− αIA · c0S, (22)

4A = −gεGA− αIA · c0S − sA. (23)

Note that there is no longer the δ, as we consider a shock to the value of the guarantee directly (and

not to the underlying stock market, as in the case of the categorical shock). The expressions for s

and S become

s = (gεI + αIc0S)
A− E
E

, (24)

S =
gεI

A−E
E

1
αIA
− αI · c0A−EE

. (25)

Shock to stock market Finally, we consider a shock that hits the equity market (and thus also

the guarantee) but not the illiquid bond. This shock is similar to the categorical shock considered

first, but shuts down the impact through the illiquid bond. For a shock to stocks εS the equations for

equity and assets are

4E = −αSεSA− |δ| gεSA− αIA · c0S, (26)

4A = −αSεSA− |δ| gεSA− αIA · c0S − sA. (27)

We can derive the two types of selling to be

s = (αSεS + |δ| gεS + αIc0S)
A− E
E

, (28)

S =
(αSεS + |δ| gεS)A−EE

1
αIA
− αI · c0A−EE

. (29)

The latter equations directly show the benefit from hedging in our model: hedging reduces the

equity market exposure (αS declines) and hence leads to less fire-sales.

In the final step, we perform a simulation exercise to quantify the amount and costs of asset
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fire sales when insurers are hit by a market shock. We focus on insurers with high exposures

to guaranteed VAs, and parametrize equations (16), (17), (21), and (25) as follows. We use the

price impact (c0) of 18.6 basis points per $10 billion of sale, which is the Net Stable Funding

Ratio (NSFR) estimate for non-agency MBS by Duarte and Eisenbach (2015). Under the NSFR

framework, assets are assumed to be slowly liquidated over one year. Therefore, our estimates of

fire-sale amounts and costs may be on the conservative side, as insurers are more likely to take

less than a year to adjust their portfolios and maintain their target RBC ratios.20 We set the capital

requirement for common stocks (αS) at 0.3 and the total invested assets, capital and surplus, RBC

ratio, and normalized delta of the guarantee at their averages during the period from 2010 to 2013

(after the crisis).

Clearly, sufficiently large shocks can induce fire sales by insurers, even if the insurers have

no exposures to guaranteed VAs. To distinguish between the fire sales that would have occurred

anyway and those that are induced by guaranteed VAs, we use the counter-factual portfolios in Panel

B of Table 3 along with the actual portfolios from Table 1. As discussed, Portfolio 2 is the portfolio

that would have prevailed had the insurers not underwritten VAs, and thus the differences in fire-sale

amount and costs between the actual portfolio and Portfolio 2 are attributable to VAs. Portfolio 1

lies between the actual portfolio and Portfolio 2, allowing us to decompose the total fire-sale effects

into those that are induced by the mere exposure to guarantees (Portfolio 1 - Portfolio 2) and those

that are induced by reaching for yield behavior (actual portfolio - Portfolio 1). We consider three

types of shocks following our theoretical discussion above: a categorical shock to all assets, a shock

only to the illiquid bonds, and a shock to the guarantee. In each analysis, we assume that the price

impacts are negligible for liquid bonds and common stocks, and focus on the fire sales of illiquid

bonds.

Table 4 reports the results for negative categorical shocks, ranging in magnitude from 10% to

40%. Hit by a categorical shock, asset prices drop across the board, and the drops are proportional

to their expected returns. For example, a shock of -10% would decrease the common stock price

20Greenwood et al. (2015) use the price impact of 10 basis points per $10 billion of sale for all assets.
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by 10% and the illiquid bond price by 3.8% (0.113/0.100*10%). Panel A considers the fire-sale

externality, in which the amount of selling fully anticipates the aggregate price impact due to selling

by other insurers. The results show that the categorical shocks of 10-40% would result in actual

insurers selling $134-$537 billion of illiquid bonds, of which the majority ($120-$482 billion) is an

amount attributable to the VAs (through the lens of our model). The corresponding fire-sale costs

(value losses) are $3-$54 billion, representing 2-30% of insurers’ total capital and surplus. Almost

all of the fire sale costs are due to the VAs.

Further, our decomposition shows that the fire sales are largely associated with ex ante reaching

for yield. Without the tilt towards illiquid assets in the first place, the fire-sale amount would

be 84% smaller, and the fire-sale costs would have been 95% smaller. These results imply that

the exposure to VAs alone, sufficiently hedged, is not the main culprit behind the generation of

systemic risk; in contrast, the associated reaching for yield behavior is. Insurers, delta hedging their

guarantee exposures, tilt towards illiquid bonds to take advantage of the reduction in RBC from

under-weighting common stocks, and in the process, make themselves vulnerable to fire sales and

illiquidity costs.

Panel B of Table 4 does not consider the fire-sale externality, shutting down the c0 term in

equation (15). The results show that for a given magnitude of shock, the amount of fire sales

decreases by almost half, compared to the counterpart in Panel A. Further, the costs fall by over

70%, suggesting that it is not the fire sales, per se, but rather the fire-sale externality that is the most

important driver behind the systemic risk among financial institutions.

In Table 5, we examine the separate effects of negative shocks to illiquid bonds (Panel A) and

positive shocks to the value of the guarantee (Panel B). The results show that the shocks to illiquid

bonds of 10-40% would result in actual insurers selling $81-$323 billion of illiquid bonds, of which

$55-$220 billion are attributable to the VAs. Since the shock to illiquid bonds does not affect value

of the guarantee, the fraction of effects attributed to the VAs is smaller than in the case of categorical

shocks. The fire-sale costs are $1-$19 billion, representing 1-10% of insurers’ total capital and

surplus. About 90% of the fire-sale costs are due to the VAs, and virtually all of the effects are again
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a result of reaching for yield.

Finally, the positive shocks to the value of guarantee of 10-40% would induce actual insurers to

sell $64-$254 billion of illiquid assets. These effects are exclusively due to the VAs, by construction.

The costs associated with these fire sales are $1-$12 billion, of which about 90% are attributed to

reaching for yield. It is important to note that we hold the magnitudes of the shocks constant across

the scenarios in Tables 4 and 5. However, for categorical shocks, these magnitudes are stressful and

comparable to what we observe during the financial crisis while for shocks to value of the guarantee,

these magnitudes are in the normal range. For example, the gross reserve jumped four-fold from

2007 to 2008. Therefore, our results pertaining to the shocks to value of the guarantee should be

thought of as being on the small side from the perspective of systemic risk.

6 Conclusion

We explore how systemic risk may arise from the inter-connectedness of the asset side of financial

institutions’ balance sheets. Specifically, we propose an innovative mechanism, namely, an incentive

that arises from the financial institutions’ business model rather than regulation per se, that can

induce correlated investments across financial institutions. While capital regulation is an essential

part of our analysis, asset similarity across insurers instead arises from insurers’ business decisions

to provide (and hedge) investment products. This endogenous ex ante herding can then generate ex

post fire sale externalities that will propagate systemic risk. To study this, we employ the U.S. life

insurance sector as a laboratory and focus on the recent transformation of the largest life insurers

from institutions offering traditional insurance products to ones that offer investments products in

the form of variable annuities.

To investigate how variable annuity guarantees induce correlated investments by insurance

companies operating in this space, we present a theoretical model that captures the underlying

economics and then calibrate the model by using insurer-level data. We propose a theoretical model

that shows that, as a result of the fact that hedging the risks associated with these variable annuities
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lowers expected profitability, individual insurers have an incentive to aggressively reach for yield

in the limited riskier asset space. We calibrate the model using insurance-level data and confirm

that insurers operating in the VA space allocate their portfolios to riskier, illiquid bonds. Herding in

illiquid assets emerges in equilibrium, increasing the likelihood of fire sales in the event of common

shocks and in turn imposing externalities among insurers.

Our paper shows that the transformation of the life insurance industry has made these institutions

less likely to behave as asset insulators, able to absorb temporary market dislocations. More

importantly, by virtue of the asset inter-connectedness, they are now more likely to contribute to

systemic risk through correlated regulatory-induced fire-sales. This has far reaching implications

for the stability of the financial system.

Finally, it is worth reminding that the importance of the particular guarantees embedded in the

VA market are not necessarily unique. The correlated risk-taking that these types of guarantees

incentivized may not be restricted to the insurance sector. Dangerously underfunded private and

U.S. state pension funds may too be induced to reach for yield. As various forms of guarantees

pervade the global finance system, made perhaps only more problematic in the ultra-low interest

rate environment after the finance crisis, regulators should perhaps be wary of the implications

of asset side vulnerability to the broader financial sector associated with the mechanism that we

identify.
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Figure 1: Life insurance product shares over the period 1955-2014 

Source: American Council of Life Insurers, 2015 Life Insurers Fact Book, and Alejandro H. Drexler , Zain Mohey-Deen, 
Richard J. Rosen. 
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Figure 2: SRISK of Largest Banks and Insurers over Time.   This figure plots the time series of (sum 
of) SRISK ($ million) for (i) ten largest publicly traded banks in the U.S. (dotted line), (ii) ten publicly 
traded insurers with the largest outstanding guaranteed variable annuities in the U.S. (solid line), and (iii) a 
subset of insurers in (ii) whose stocks are publicly traded in the U.S. (dashed line).  The SRISK data are 
from NYU Stern Volatility Lab (vlab.stern.nyu.edu/welcome/risk) from January 1, 2003 until end of 
December 2015. 
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Figure 3: Guaranteed Variable Annuities (VA) Account Value and Gross Reserve over Time.  This 
figure plots the time series of account value (line) and gross reserve (bar) ($ million) for guaranteed VA, as 
reported annually by life insurers to the NAIC in the general interrogatories form.  The sample period is 
from 2003 to 2015.  The account value and gross reserve are summed over individual life insurers with 
outstanding guaranteed VA. 
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Panel A: Ratio of Gross Reserve to Capital 

 
 

Figure 4: Exposure to Guaranteed Variable Annuities (VA) and Firm Performance.  This figure plots 
the time series of ratio of gross reserve to capital (Panel A), stock return (Panel B), and return on equity 
(Panel C) for the period from 2004 to 2013. Each year, life insurers with guaranteed VA are divided into 
two groups by the ratio of gross reserve to capital. The "high" ("low") group includes life insurers with ratio 
of gross reserve to capital higher than (less than or equal to) the median. For each variable, the annual 
averages across life insurers in each group are plotted— the solid line representing the high group and the 
dashed line representing the low group. For comparison, the annual averages for life insurers without 
guaranteed VA are also plotted (solid line with square markers).  Only life insurers that have averaged total 
assets greater than the fifth percentile of the sample of life insurers with guaranteed VA are included. 
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Panel B: Stock Return 

 
 

Panel C: Return on Equity 

 
 

Figure 4, cont’d: Exposure to Guaranteed Variable Annuities (VA) and Firm Performance. 
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Table 1: Summary Statistics of Life Insurers’ Characteristics and Asset Allocations 

This table presents summary statistics of general firm characteristics (Panel A) and asset allocations (Panel B).  The data are from the NAIC, obtained 
through SNL Financial. The sample period is from 2004 to 2013, and the observation frequencies are firm-year.  The sample includes only (group-
level) insurers whose average assets in the general account are greater than or equal to the fifth percentile of average assets of insurers that underwrite 
guaranteed variable annuities (VA).  A total of 176 unique insurers are included, of which 82 have guaranteed VA at some point during the sample 
period.  Each year, insurers are divided into three groups by the ratio of guaranteed VA gross reserve to capital.  Insurers in groups 1 (2) have the ratios 
of guaranteed VA gross reserve to capital that are at or higher (lower) than the median.  Insurers in group 3 have no guaranteed VA, and are used as a 
benchmark.  For each insurer, assets include all invested assets reported at statutory accounting values, and capital and surplus are assets minus 
liabilities.  Risk-based capital ratio (RBC ratio) is the (adjusted) statutory capital divided by the required risk-based capital.  Return on equity is net 
income divided by common equity, as reported under GAAP.  Stock return includes both percentage price change and dividend, and is available only 
for public insurer groups.  Assets are divided into NAIC-defined categories, which are then grouped into liquid bonds, illiquid bonds, common stocks, 
and others. Asset allocation is the value of assets in each category or broad group divided the value of all invested assets. Tests of difference in mean 
are conducted using pooled panel regressions with standard errors clustered by calendar year-month.  ∗, ∗∗, and ∗∗∗ refer to statistical significance at 
10%, 5%, and 1% levels. 

  [1] High   [2] Low   [3] No Guarantee   [1] - [2] [1] - [3] 

  Mean 
Std. 
Dev. Median   Mean 

Std. 
Dev. Median   Mean 

Std. 
Dev. Median   Mean Mean 

Panel A: Firm Characteristics               
Assets ($ Million) 54,452 66,070 32,894  32,099 50,509 11,027  5,404 11,198 1,702  22,353* 49,047*** 
Capital and surplus ($ Million) 4,959 5,827 3,048  3,596 5,721 1,225  712 1,208 244  1,363 4,247*** 
RBC ratio 9.395 4.945 8.760  10.335 4.605 9.142  10.944 11.248 8.691  -0.940 -1.549 
Return on equity 0.065 0.167 0.087  0.074 0.082 0.078  0.069 0.171 0.070  -0.008 -0.003 
Stock return 0.116 0.372 0.125  0.127 0.283 0.109  0.120 0.304 0.114  -0.011 -0.003 

               
 

Continued next page 
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Continued from previous page 

  [1] High   [2] Low   [3] No Guarantee   [1] - [2] [1] - [3] 

  Mean 
Std. 
Dev. Median   Mean 

Std. 
Dev. Median   Mean 

Std. 
Dev. Median   Mean Mean 

Panel B: Asset Allocation               
Liquid bonds 0.653 0.115 0.634   0.657 0.135 0.655   0.737 0.138 0.753   -0.004 -0.084*** 
   Cash 0.035 0.036 0.025  0.024 0.025 0.018  0.050 0.081 0.028  0.010*** -0.015** 
   Synthetic cash 0.032 0.048 0.003  0.006 0.027 0.000  0.000 0.000 0.000  0.025*** 0.032*** 
   Bonds in NAIC 1 0.297 0.127 0.274  0.282 0.204 0.279  0.350 0.261 0.378  0.015 -0.053* 
   Bonds in NAIC 2 0.208 0.064 0.212  0.228 0.111 0.207  0.205 0.139 0.193  -0.020 0.003 
   Agency ABS in NAIC 1 0.081 0.066 0.066  0.116 0.086 0.106  0.131 0.129 0.104  -0.035** -0.050*** 
   Agency ABS in NAIC 2 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 
Illiquid bonds 0.326 0.113 0.347   0.288 0.120 0.289   0.195 0.126 0.178   0.038* 0.131*** 
   Long-term assets 0.024 0.021 0.020  0.021 0.022 0.012  0.012 0.018 0.004  0.003 0.013*** 
   Bonds in NAIC 3-6 0.034 0.018 0.032  0.032 0.020 0.032  0.028 0.032 0.019  0.002 0.006 
   Agency ABS in NAIC 3-6 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 
   Private ABS in NAIC 1 0.108 0.060 0.106  0.104 0.083 0.096  0.078 0.090 0.045  0.004 0.031*** 
   Private ABS in NAIC 2 0.011 0.011 0.009  0.008 0.012 0.004  0.007 0.012 0.002  0.002 0.004*** 
   Private ABS in NAIC 3-6 0.008 0.008 0.006  0.005 0.006 0.003  0.004 0.008 0.001  0.003*** 0.004*** 
   Mortgages 0.087 0.062 0.097  0.077 0.059 0.087  0.041 0.065 0.005  0.010 0.046*** 
   Loans 0.045 0.047 0.030  0.036 0.031 0.024  0.025 0.031 0.014  0.009 0.021** 
   Derivatives for income gen. 0.008 0.013 0.003  0.005 0.010 0.000  0.001 0.003 0.000  0.004* 0.008*** 
Common stock exposures 0.000 0.051 0.010   0.041 0.058 0.026   0.046 0.063 0.021   -0.040*** -0.045*** 
   Common stocks 0.032 0.033 0.022  0.047 0.051 0.027  0.046 0.063 0.021  -0.015* -0.013* 
   Synthetic common stocks -0.032 0.048 -0.003  -0.006 0.027 0.000  0.000 0.000 0.000  -0.025*** -0.032*** 
Other assets 0.017 0.019 0.010   0.013 0.016 0.010   0.021 0.027 0.012   0.003 -0.004 
   Preferred stocks 0.008 0.014 0.003  0.008 0.015 0.003  0.013 0.024 0.003  0.000 -0.005** 
   Real estates 0.006 0.013 0.002  0.004 0.006 0.002  0.006 0.011 0.002  0.002 0.000 
   Securities lending/borrowing 0.003 0.006 0.001   0.002 0.004 0.000   0.002 0.006 0.000   0.001* 0.001 
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Table 2: Guaranteed Variable Annuities (VA) and Asset Allocations 

This table reports estimates of equation-by-equation OLS regressions (Panel A) and seemingly unrelated 
regressions (SUR, Panel B) of asset allocations on guaranteed variable annuities’ delta with respect to the 
stock market.  The sample period is 2004-2013, excluding 2008-2009.  Both the asset allocations and the 
delta are normalized by total invested assets.  All models include risk-based capital ratio (RBC ratio) and 
year fixed effects.  Columns (1) - (4) are for liquid bonds, illiquid bonds, common stock exposures, and 
other assets, as defined in Table 1.  In Panel A, standard errors in parentheses are clustered by insurer.  In 
Panels B, the coefficients of both Delta/Assets and RBC ratio are constrained to sum to zero to keep the 
sum of asset allocations to 100%, and standard errors in parentheses are calculated by bootstrapping, using 
500 repetitions.  *, **, and *** refer to statistical significance at 10%, 5%, and 1% levels. 

Panel A: Equation by Equation OLS 

  Asset Allocations 
 Liquid Illiquid Common  
 Bonds Bonds Stocks Others 

  (1) (2) (3) (4) 

Delta/Assets -1.194*** 1.857*** -0.667*** -0.034 
 (0.349) (0.340) (0.221) (0.045) 

RBC ratio 0.003*** -0.002*** -0.000 -0.000** 
 (0.001) (0.001) (0.000) (0.000) 
     

Year fixed effects YES YES YES YES 
     

Observations 1,071 1,071 1,071 1,071 
R-squared 0.038 0.043 0.018 0.057 

 

Panel A: Seemingly Unrelated Regressions 

  Asset Allocation 
 Liquid Illiquid Common  
 Bonds Bonds Stocks Others 

  (1) (2) (3) (4) 

Delta/Assets -1.119*** 1.809*** -0.655*** -0.035 
 (0.357) (0.311) (0.216) (0.042) 

RBC ratio 0.003*** -0.002*** -0.000 -0.000** 
 (0.001) (0.001) (0.000) (0.000) 
     

Year fixed effects YES YES YES YES 
Cross-equation restrictions Sums of coefficients of Delta/Assets and RBC ratio across 

equations (1) - (4) are zero.  
     

Observations 1,071 1,071 1,071 1,071 
R-squared 0.038 0.043 0.018 0.057 
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Table 3: Calibration Results and Counterfactual Portfolios 

This table reports summary statistics on actual and calibrated hedge coverage and risk-based capital (RBC) 
requirement for illiquid bonds (Panel A) and counterfactual asset allocations (Panel B) for the sample of 
insurers with guaranteed variable annuities (VA) greater than the median.  In Panel A, total hedge coverage 
is divided into comprehensive (effective plus others) and delta hedge coverages.  Comprehensive hedging 
includes hedging using options with negative delta, e.g. buying put options. Effective and other hedging 
are categorized based on hedging effectiveness and separately reported by insurers.  Only derivatives that 
have common stocks underlying, and are earmarked for hedging guarantees associated with variable 
annuities are included.  Delta hedging is estimated using the coefficient of Delta/Assets in column (3) of 
Table 2 Panel B, scaled by the fraction of exposure that remains after taking into account comprehensive 
hedging.  RBC requirements for illiquid bonds are calculated in two ways-- (a) from the data as the weighted 
average of RBC requirement for each asset category that comprises illiquid bonds, and (b) from the model 
estimates in Table 2 Panel B as the coefficient of Delta/Assets in column (3) divided by the coefficient of 
Delta/Assets in column (2) and then multiplied by the RBC requirement of 0.30 for common stocks. In 
Panel B, the allocations for Portfolio 1 are calculated by keeping the estimated delta hedge coverage the 
same as actual but without tilting the allocation towards illiquid bonds, i.e. keeping the mix between liquid 
and illiquid bonds as if the insurers had not underwritten the guaranteed VA.  The allocations for Portfolio 
2 are calculated by adjusting the actual allocations by negative of the products of the coefficients in Table 
2 Panel B and Delta/Assets. The pooled averages of Portfolios 1’s and 2’s allocations and their differences 
from the averages of actual allocations as well as the average allocations of insurers without guaranteed 
VA are reported.  Bootstrapped standard errors, calculated using 500 repetitions, are in parentheses. *, **, 
and *** refer to statistical significance at 10%, 5%, and 1% levels. 

Panel A: Hedge Coverages and Implied Capital Constraint 

  Data   Estimation 

  Mean 
Std. 
Dev. Median   Mean PCT5 PCT95 

Comprehensive hedging - effective 0.000 0.000 0.000  - - - 
Comprehensive hedging - others 0.052 0.121 0.000  - - - 
Delta hedging - - -  0.690 0.658 0.721 
RBC requirement for illiquid bonds 0.060 0.020 0.058   0.113 0.049 0.177 
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Table 3, cont’d: Calibration Results and Counterfactual Portfolios 

 

Panel B: Counterfactual Portfolios 

  

Portfolio 1: Same Level of 
Guaranteed VA and Hedge Ratio;    

No Reaching for Yields   Portfolio 2: No Guaranteed VA 

  Mean 
Mean - 
Actual 

Mean - 
Actual of 
No VA 
Insurers   Mean 

Mean - 
Actual 

Mean - 
Actual of 
No VA 
Insurers 

Liquid bonds 0.762*** 0.109*** 0.025*  0.718*** 0.065*** -0.019 
 (0.014) (0.015) (0.015)  (0.021) (0.022) (0.021) 

Illiquid bonds 0.217*** -0.109*** 0.021  0.221*** -0.105*** 0.025 
 (0.036) (0.037) (0.037)  (0.018) (0.019) (0.019) 

Common stock exposures 0.000 0.000 -0.045***  0.039*** 0.038*** -0.007*** 
 (0.001) (0.003) (0.002)  (0.001) (0.003) (0.002) 

Other assets 0.017*** 0.000 -0.004  0.019*** 0.002 -0.002 
  (0.002) (0.003) (0.003)   (0.002) (0.003) (0.003) 
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Table 4: Fire-Sale Amount and Costs under Categorical Shock 

This table presents estimates of fire-sale amount and fire-sale costs incurred by insurers with guaranteed 
variable annuities (VA) greater than the median, given a negative categorical shock.  Panel A considers the 
fire-sale externality in which the amount of selling fully anticipates the aggregate price impact due to selling 
by other insurers. Panel B does not consider the fire-sale externality. The price impact (c0) of 18.6 basis 
points per $10 billion of sale is assumed, following the NSFR estimate for non-agency MBS by Duarte and 
Eisenbach (2015). The allocations of actual portfolio, Portfolio 1, and Portfolio 2 are as reported in Tables 
1 and 3. The risk-based capital (RBC) requirement for common stocks is 0.3. The total invested assets, 
capital and surplus, RBC ratio, and (percentage) delta exposure of the guarantee are the averages from 2010 
to 2013 (after the crisis). The decomposition attributes the difference between the effects on actual portfolio 
and Portfolio 1 to “reaching for yield” and the difference between the effects on Portfolios 1 and 2 to the 
guarantee exposure net of comprehensive and delta hedging. 

Panel A: Fire Sales with Full Externality 

Magnitude of Shock 

Fire-Sale Amount ($ Million)   
Decomposition of Fire-Sale 

Amount ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 134,360 33,555 13,821  100,805 19,734 
20% 268,720 67,110 27,642  201,610 39,468 
30% 403,080 100,665 41,462  302,415 59,203 
40% 537,440 134,220 55,283  403,220 78,937 

Magnitude of Shock 

Fire-Sale Costs ($ Million)   
Decomposition of Fire-Sale 

Costs ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 3,358 209 36  3,148 174 
20% 13,431 838 142  12,593 696 
30% 30,220 1,885 320  28,335 1,565 
40% 53,725 3,351 568  50,374 2,782 
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Table 4, cont’d: Fire-Sale Amount and Costs under Categorical Shock 

 

Panel B: Fire Sales without Full Externality 

Magnitude of Shock 

Fire-Sale Amount ($ Million)   
Decomposition of Fire-Sale 

Amount ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 71,809 29,820 12,061  41,989 17,758 
20% 143,618 59,639 24,123  83,979 35,517 
30% 215,427 89,459 36,184  125,968 53,275 
40% 287,237 119,279 48,245  167,958 71,033 

Magnitude of Shock 

Fire-Sale Costs ($ Million)   
Decomposition of Fire-Sale 

Costs ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 959 165 27  794 138 
20% 3,836 662 108  3,175 553 
30% 8,632 1,489 244  7,144 1,245 
40% 15,346 2,646 433  12,700 2,213 
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Table 5: Fire-Sale Amount and Costs under Other Shocks 

This table presents estimates of fire-sale amount and fire-sale costs incurred by insurers with guaranteed 
variable annuities (VA) greater than the median, given a negative shock to illiquid bonds (Panel A) or a 
positive shock to value of the guarantee (Panel B). Both panels fully consider the fire-sale externality. The 
price impact (c0) of 18.6 basis points per $10 billion of sale is assumed, following the NSFR estimate for 
non-agency MBS by Duarte and Eisenbach (2015).  The allocations of actual portfolio, Portfolio 1, and 
Portfolio 2 are as reported in Tables 1 and 3. The total invested assets and capital and surplus are the 
averages from 2010 to 2013 (after the crisis). In Panel B, the value of guarantee is assumed to equal the 
gross reserve.  The decomposition attributes the difference between the effects on actual portfolio and 
Portfolio 1 to “reaching for yield” and the difference between the effects on Portfolios 1 and 2 to the 
guarantee exposure net of comprehensive and delta hedging. 

Panel A: Shock to Illiquid Bonds 

Magnitude of Shock 

Fire-Sale Amount ($ Million)   
Decomposition of Fire-Sale 

Amount ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 80,835 23,772 25,887  57,063 -2,115 
20% 161,671 47,545 51,775  114,126 -4,230 
30% 242,506 71,317 77,662  171,189 -6,345 
40% 323,342 95,089 103,549  228,252 -8,460 

Magnitude of Shock 

Fire-Sale Costs ($ Million)   
Decomposition of Fire-Sale 

Costs ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 1,215 105 125  1,110 -20 
20% 4,862 420 499  4,441 -78 
30% 10,939 946 1,122  9,993 -176 
40% 19,446 1,682 1,994  17,764 -313 
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Table 5, cont’d: Fire-Sale Amount and Costs under Other Shocks 

 

Panel B: Shock to Value of Guarantee 

Magnitude of Shock 

Fire-Sale Amount ($ Million)   
Decomposition of Fire-Sale 

Amount ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 63,543 18,687 0  44,856 18,687 
20% 127,085 37,374 0  89,711 37,374 
30% 190,628 56,060 0  134,567 56,060 
40% 254,170 74,747 0  179,423 74,747 

Magnitude of Shock 

Fire-Sale Costs ($ Million)   
Decomposition of Fire-Sale 

Costs ($ Million) 

Actual Portfolio 1 Portfolio 2   
Reaching 
for Yield 

Net 
Guarantee 
Exposure 

10% 751 65 0  686 65 
20% 3,004 260 0  2,744 260 
30% 6,759 585 0  6,174 585 
40% 12,016 1,039 0  10,977 1,039 
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