A Unified Measure of Fed Monetary Policy Shocks

Chunya Bu (University of Rochester)
John Rogers (Federal Reserve Board)
Wenbin Wu (FISF, Fudan University)

May 2019

Presented at ABFER CEBRA session
Fed Policy Regimes: Effective Federal Funds Rate
Federal Reserve Balance Sheet

Alternative Measures of Monetary Policy Shocks

- 1990s VAR shock
 - Residual from monthly VAR
- Romer and Romer (monthly)
 - Use Greenbook data
- Kuttner (daily)
 - Unexpected changes in Federal funds futures rate
- Nakumura and Steinsson (intradaily)
 - Policy factor shock, PC from futures data up to 2 years
- Swanson and Rogers-Scotti-Wright (intradaily)
 - Short window around FOMC announcements
- How to unify measurement across regimes without Fed information effects?
This Paper (1) Unified Measure across Regimes

- Technique: Fama-Macbeth meets Rigobon-Sack

- Our new measure
 - Moderately highly correlated with NS shock and Swanson FG shock
 - but has crucially important differences

- Advantages of our method
 - Simplicity: estimation is straightforward, data requirements minimal
 - Broad applicability: use for countries with limited futures market data
 - Bridges periods of conventional and unconventional policy regime
Direct and indirect tests (NS, JK)
- Confirm presence of information effect in existing measures
- Find essentially no evidence of it in our measure

Why this difference?
- estimation technique: ours better filters out noise
- use of long term interest rates: Fed info effect dissipates at long end
This Paper (3) Transmission of Shocks to our Measure

- SVAR and Local Projections on full sample and post-ZLB, on JK info and non-info days

- IRFs significant and with conventional signs

- Different results with alternative shocks. Perversely signed IRFs from shocks to NS or Swanson measures during ZLB. And Perversely signed IRFs for FF3 (used by JK) on information days.
Identification: Fama-Macbeth meets Rigobon-Sack

- Two-step procedure to identify unobserved monetary policy shock.

 \[\Delta R_{5,t} = \alpha_0 + e_t + \eta_t \text{ (normalization)} \]

 - \(e_t \) is the true monetary policy shock (unobserved)

 - \(\Delta R_{5,t} \) is the change in 5 yr interest rate around FOMC announcement dates

 \[\Delta R_{i,t} = \alpha_i + \beta_i e_t + \epsilon_{i,t}, \text{ for } i = 1, 2, \ldots 30 \text{ (Step 1)} \]

 - \(\Delta R_{i,t} \) is the change in i-th year interest rate around FOMC announcement dates

 - \(\beta_i \) cannot be directly estimated using OLS because \(e_t \) is unobserved

 - Background noise \(\epsilon_{i,t} \) is greater for larger \(i \) (Nakamura and Steinsson)
Rewrite Step 1 equation as,

$$\Delta R_{i,t} = \theta_i + \beta_i \Delta R_{5,t} + \xi_{i,t} \quad \text{for } i = 1, 2 \ldots 30$$

where $\xi_{i,t} = -\beta_i \eta_t + \epsilon_{i,t}$

- Could use OLS but regressor correlated with error term due to $-\beta_i \eta_t$
- Use IDH to identify β_i (Rigobon 2003)
- Assumption: on FOMC announcement days, volatility of e_t higher, while volatility of background noise unchanged
- Fama-Macbeth uses OLS; IDH better minimizes background noise

$$\Delta R_{i,t} = \alpha_i + e_t^{aligned} \hat{\beta}_i + \nu_{i,t} \quad \text{(Step 2)}$$
- cross-section regression for each $t = 1 \ldots T$ to get the estimated shock series e_t, of length T
First Step: Time Series Regression

\[\Delta R_{i,t} = \alpha_i + \beta_i e_t + \xi_{i,t} \]
Second Step: Cross Section Regression

- $\Delta R_{i,t} = \alpha_i + e_t^{aligned} \hat{\beta}_i + \nu_{i,t}$
- Delivers the (unobserved) monetary policy shock e_t.
Data

- 2-, 5-, and 10-year Treasury rates from FRB
- 1- to 30-year zero-coupon yield estimated by Gurkaynak, Sack, and Swanson (2005)
- Macroeconomic variables from St. Louis FED: Industrial production, CPI
- Commodity price index from Thompson Reuters
- Excess bond premium (EBP) from Gilchrist and Zakrajek (2012)
- Estimated term premia from Adrian, Crump, and Moench (2013)
Note: navy vertical line denotes LSAP; blue vertical line denotes Forward Guidance; orange vertical line denotes Operation Twist.
Correlations with Shocks in the Literature

<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>Pre-ZLB</th>
<th>ZLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS Shock</td>
<td>0.512</td>
<td>0.653</td>
<td>0.494</td>
</tr>
<tr>
<td>SS shock</td>
<td>0.625</td>
<td>0.684</td>
<td>0.532</td>
</tr>
<tr>
<td>R&R Shock</td>
<td></td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>Kuttner Shock</td>
<td></td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>SS_FFR</td>
<td></td>
<td>0.373</td>
<td></td>
</tr>
<tr>
<td>SS_FG</td>
<td>0.492</td>
<td>0.605</td>
<td>0.575</td>
</tr>
<tr>
<td>SS_LSAP</td>
<td></td>
<td></td>
<td>0.365</td>
</tr>
<tr>
<td>FF3</td>
<td>0.395</td>
<td>0.593</td>
<td>0.336</td>
</tr>
</tbody>
</table>
Robustness: Alternative BRW Construction Exercises

- Normalization: 2yr, 10yr Treasury Rate
- Extend back to 1969
- Outcome variables: only 1, 2, 5, 10, 30-year zero coupon yields
- Omit QE1
- Include unscheduled FOMC meetings
- 1 day window to 2 day window
- Alternative IV (*one-day* before FOMC meeting)
Fed Information Effect

- **Direct test: NS expectations-based test**
 - regress next quarter private sector output forecast change on FOMC announcement day surprises
 - regress current month FOMC announcement day surprises on the Fed private information (the gap between the Greenbook output forecast and the blue chip output forecast)

- **Indirect test: Jarocinski and Karadi (2018)**
 - classify FOMC announcement days in which stock market goes in same direction as interest rate surprise as information effect days
 - estimated IRFs different on info and non-info days
NS Fed Information Effect Regression

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRW Shock</td>
<td>0.09 (0.20)</td>
<td>0.10 (0.20)</td>
<td>0.33 (0.31)</td>
<td>0.08 (0.49)</td>
</tr>
<tr>
<td>SS Shock</td>
<td>1.94** (0.79)</td>
<td>1.81* (0.99)</td>
<td>2.38*** (0.84)</td>
<td>2.63*** (0.81)</td>
</tr>
<tr>
<td>N&S Shock</td>
<td>0.81*** (0.24)</td>
<td>0.82*** (0.29)</td>
<td>0.81*** (0.27)</td>
<td>0.83** (0.33)</td>
</tr>
<tr>
<td>Observations</td>
<td>121</td>
<td>89</td>
<td>52</td>
<td>32</td>
</tr>
</tbody>
</table>
Empirically Account for Fed Private Information

- Create a central bank information proxy

- Purge raw surprises series of this proxy; re-estimate the VARs with purged series
GDP Growth Forecasts, Fed Minus Blue Chip

![Chart showing GDP growth forecasts, Fed Minus Blue Chip. The chart displays a line graph with dates from 1995m1 to 2015m1 on the x-axis and Fed Forecasts Minus Blue Chip Forecasts on the y-axis. The graph shows fluctuations over time.]
Shock Regressed on GDP Growth Forecast Difference

<table>
<thead>
<tr>
<th></th>
<th>N&S Shock</th>
<th>Updated N&S Shock</th>
<th>BRW Shock</th>
<th>Swanson’s Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fed - BC</td>
<td>2.00** (0.77)</td>
<td>1.93*** (0.70)</td>
<td>1.95 (1.53)</td>
<td>0.67** (0.31)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.22 (0.34)</td>
<td>0.24 (0.29)</td>
<td>-0.72 (0.65)</td>
<td>0.07 (0.11)</td>
</tr>
<tr>
<td>Observations</td>
<td>130</td>
<td>150</td>
<td>150</td>
<td>149</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.09</td>
<td>0.08</td>
<td>0.02</td>
<td>0.07</td>
</tr>
</tbody>
</table>
NS Fed Information Effect Regression On JK info days

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRW(JK Info days)</td>
<td>0.69</td>
<td>0.89</td>
<td>-0.39</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.81)</td>
<td>(0.92)</td>
</tr>
<tr>
<td>BRW(JK non-info days)</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.35)</td>
<td>(0.59)</td>
</tr>
<tr>
<td>FF3(JK Info days)</td>
<td>1.028***</td>
<td>0.871***</td>
<td>4.874***</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.23)</td>
<td>(0.98)</td>
</tr>
<tr>
<td>FF3(JK non-info days)</td>
<td>0.25</td>
<td>0.217</td>
<td>0.416**</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.23)</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>
Replicating JK: SVAR on JK monetary policy and information shocks
SVAR on BRW monetary policy and information shocks

- BRW
- Industrial Production
- CPI
- Excess Bond Premium
- BRW
- IP
- CPI
- EBP
- BRW (Info.)
- Industrial Production
- CPI
- Excess Bond Premium
Why Less Info Effect in BRW Shock? 1. Data Matters

<table>
<thead>
<tr>
<th></th>
<th>Kuttner</th>
<th>6-month</th>
<th>2-yr.</th>
<th>5-yr.</th>
<th>10-yr.</th>
<th>30-yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coef.</td>
<td>0.296***</td>
<td>0.389*</td>
<td>0.368**</td>
<td>0.277</td>
<td>0.308</td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.22)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td>(0.22)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Observations</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.04</td>
<td>0.024</td>
<td>0.034</td>
<td>0.017</td>
<td>0.012</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Why Less Info Effect? II. Econometric Procedure

- Use BRW data with NS PCA method, obtain “PCA shock”
 - Corr(PCA, BRW) = 0.25
 - VAR results using this PCA shock: very noisy
 - Role of IDH vs. PLS? PLS more important

- PLS vs. PCA
 - PCA maximizes the ability of factors to explain variation in all variables; likely picks up a lot of noise (Kelly and Pruitt 2013)
 - PLS instead maximizes factors’ ability to capture variation in the policy indicator. Saw that there is less of an info effect in longer rates
Why Less Info Effect? III. Encompassing

- Saw above that BRW data in NS regression does not diminish evidence of information effect
- Use NS data in Fama-Macbeth regression: “tight window” shock
 - Much less evidence of “perverse” IRFs compared to using NS shock
 - Data and the econometric procedure both matter
Transmission effects of monetary policy
Note: 5-variable structural VAR model with monthly data during 1994-2017. Variables ordered as: cumulative monetary policy shock, log industrial production, log CPI, log commodity price index, EBP. Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.
Note: 5-variable structural VAR model with monthly data during 1994-2017. Variables ordered:

- Cumulative monetary policy shock
- Log industrial production
- Log CPI
- Log commodity price index
- EBP

Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.

Note: Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.
Robustness:

- Accounting for term premium
- Use 2-, 10-y Treasury Rates as benchmark
- Use alternative IV
- Include all unscheduled FOMC meetings
- Use only 1, 2, 5, 10, 30-y Treasury Rates
- Use tight window (intraday shocks)
- Extending back to 1969
VAR estimates with alternative monetary policy shocks

- Updated NS shocks
- Swanson shocks, sum (results robust using components)
VARs with alternative monetary policy shocks (1994-2015)

BRW, NS and Swanson Shocks
VARs with alternative monetary policy shocks (2008-15)

BRW, NS and Swanson Shocks
SVARs using Purged Shock Series

SVARs using Purged Shock Series

b. NS Shock: Original (blue) versus Purged (red) Series
SVARs using Purged Shock Series

c. BRW Shock: Original (blue) versus Purged (red) Series
Conclusions

- New measure of US monetary policy shock
 - easy to implement, minimal data requirements
 - bridges periods of conventional and unconventional policymaking
 - similarities with NS and Swanson shocks, but important differences

- Fed information effect essentially non-existent in our series
 - Direct NS test and indirect JK test
 - why no Fed information effect in BRW series?
 - less information effect in long term interest rates
 - estimation technique matters

- Transmission
 - SVAR and Local Projections on full sample and post-ZLB
 - BRW shocks produce IRFs with conventional signs
 - alternative shocks: perversely signed IRFs, especially during ZLB.
IV implementation of IDH

- We prove that \(\beta_i \) can be estimated using an IV approach,

\[
[\Delta R_{i,t}] = \alpha_i + \beta_i[\Delta R_{5,t}] + \mu_{i,t} \quad i = 1, 2, \ldots, 30
\]

\[
[\Delta R_{5,t}] = (\Delta R_{5,t}, \Delta R_{5,t}^*)', \quad \Delta R_{5,t} \text{ is 1-day movement in policy indicator around the FOMC announcement, and } \Delta R_{5,t}^* \text{ is the change one week before.}
\]

- \(\beta_i \) can be estimated using an instrumental variable

\[
\Delta R_{t}^{IV} = (\Delta R_{5,t}, -\Delta R_{5,t}^*)' \text{ for the independent variable.}
\]

- Assumption: on days of FOMC meetings, variance of the true monetary policy shock increases while that of background noise is unchanged.

- Straightforward to prove that the instrument is correlated with the independent variable, but not correlated with the error term.

Note: Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.
Appendix 1: Rolling Sample

![Graph showing rolling sample analysis with different beta levels]
Appendix 4: Tight Window (NS) 1994-2017

Cumulative Shock

Industrial Production

CPI

Excess Bond Premium

Note: Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.

Chunya Bu, John Rogers, Wenbin Wu
A Unified Measure of Monetary Shocks
May 26, 2019
Appendix 4: Tight Window (NS) 2008-2017

Note: Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.
Note: Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times.
Appendix 5: Tight Window (Full) 2008-2017

Note: Deep and shallow gray shaded areas are 68% and 90% confidence intervals produced by bootstrapping 100 times, respectively.
BRW, NS, RR, and Kuttner Shocks

- BRW shock, the solid blue line.
- Nakamura and Steinsson (2018) Shock, the black dotted line.
- Kuttner Shock (the 30-minute fed funds rate changes around FOMC announcement), the solid black line.
- Romer and Romer (2004) Shock, the blue dashed line.
BRW and Alternative UMP Shocks (Swanson, 2018)

- Navy bars are BRW.
- Gray bars are: SS_FFR, SS_FG, SS_LSAP, and SS_Sum, shocks to the federal funds rate, forward guidance, large asset purchases, and the sum of the three shocks, all from Swanson (2018).