Network Effects and Learning in Crowdfunding Paul Belleflamme, Thomas Lambert, and Armin Schwienbacher

RSM - a force for positive change

Represent an increasing share of the global economy

Do not control transactions but simply enable them

Critical for digital platforms to overcome:

- 1. Coordination problems ⇒ **Network effects** ('payoff externalities')
- 2. Asymmetric information problems ⇒ Learning ('informational externalities')

Little systematic empirical evidence exists on their incidence

Goal

 We study how the interplay between network effects and learning shapes the performance of crowdfunding platforms (CFPs)

Findings

- 1. We confirm the existence of positive 'within project funding dynamics'
- 2. We show the existence of positive ' cross-project funding dynamics'
- 3. Recurrent backers are the main transmission channel
 - They are better at spotting successful projects
 - They encourage future funding by other backers

Implications for CFP management

- Success of a CFP depends not only on the quality and quantity of projects but also on their mix (synergies between projects)
- Recurrent backers behave quite differently from new backers

Implications for CFP competition

Forces leading to concentration

Positive cross-project dynamics Positive within-project dynamics

Forces leading to coexistence of platforms

Negative cross-project dynamics Negative within-project dynamics

Payoffs that users derive depend on the adoption and usage decisions of other users (hence 'payoff externalities')

Individual learning

Influence occurring independently of any social influences (e.g. trial and error, insight)

Social learning

- Influence resulting from rational processing of information gained by observing others (Bikhchandani, Hirshleifer, and Welch 1998)
- A.k.a. 'informational externalities'

Interdependence is inherently dynamic

Within and across crowdfunding campaigns

H1. Within - project funding dynamics? Complement to existing studies

H2. Cross - project funding dynamics? NEW ISSUE!

H3. Individual learning by recurrent backers?

H4. Social learning by new backers?

Data

ULULE: Reward-based CFP

- Why a reward-based CFP and not an equity-based CFP?
 - Larger number of campaigns running simultaneously
- Why a (smaller) French CFP and not a (larger) U.S. CFP?
 - Deficit in size/notoriety compensated by richness of data

What we observe

- 23,971 campaigns posted on the platform from 05/07/2010 (opening day) to 29/11/2016, in 15 categories
- All 1.3 million of contributions to these campaigns + when (date/time), how much and by whom

What we can track

- Funding dynamics (within and across projects)
- · Backers' behavior

Sample statistics

Large variation of number of contributions across days and projects

- Average number of daily contributions per project: 1.6
- Significant dispersion: standard deviation of 9.5

Variation in the amounts contributed

- Average daily contribution for a specific project is €79.90
- Median of €5, standard deviation of €521
- Average daily total contribution (platform level) is almost €50,000 (from over 900 contributions)

Importance of recurrent backers

- Average proportion per project per day: 12.7%.
- Larger share for 'Games' (29.5%) and 'Comics' (25.4%)

Within- and cross-project dynamics

Baseline estimations

		# contributions _i				
_		(1)	(2)	(3)	(4)	
β_1 *	# contributions _{i,t-1}	0.185***			0.183***	
		(0.002)			(0.002)	
β_2	# contributions _{-i,t-1}		0.027***		0.013***	
			(0.002)		(0.002)	
β_3	# contributions _{-j,t-1}			0.075***	0.047***	
				(0.003)	(0.003)	
7	# projects _{i,t}	0.001	-0.030***	-0.024***	-0.029***	
		(0.007)	(0.009)	(0.008)	(0.007)	
(% goal _t	0.286***	0.369***	0.368***	0.284***	
		(0.006)	(0.007)	(0.007)	(0.006)	
]	Popular _t	1.161***	1.252***	1.253***	1.163***	
		(0.010)	(0.012)	(0.012)	(0.010)	
(% recurrent backers _t	0.662***	0.675***	0.674***	0.661***	
_		(0.002)	(0.003)	(0.003)	(0.002)	
7	# observations	814,960	814,960	814,960	814,960	
7	# projects	23,022	23,022	23,022	23,022	
]	R^2	0.548	0.529	0.529	0.548	

Fixed effects: Project, Month, Year, Day of the week, Funding cycle day

Evidence of positive within - and cross-project funding dynamics

- A 10% increase in # contributions to project *i* (-*i*, -*j*) yesterday leads to a:
 - 1.76% increase in # contributions to project *i* today
 - 0.12% increase in # contributions to project / today
 - 0.45% increase in # contributions to project *i* today

Impacts of control variables

- Enhanced competition for pledges among entrepreneurs
- Goal-gradient effect: #contributions higher close to funding goal
- Projects featured on Ulule's first page generate more contributions
- Recurrent backers seem to generate larger within group network effects

Novel results

Categories

- Some categories generate relatively more cross-project dynamics than other categories
 - E.g. 'Music' or 'Art & Photos' > Average > 'Games'

Robustness

- Similar results when considering instead:
 - Volume of contributions (€ amount)
 - Data from another platform (KissKissBankBank)

Kiss Kiss Bank Bank

Identification strategy

- Fast starters = campaigns generating a very large number of contributions during their <u>first</u> day
- Largely unexpected by backers or platform managers
 - Plausibly exogenous in our campaign sample
 - Confirmed by absence of media coverage prior to campaign launch (Factiva search)

Main result

The day a project attracts more than 200 contributions, this leads to a 3.87% increase in the number of contributions a particular project gets

	>200		>5	500
	(1)	(2)	(3)	(4)
Fast start _t	0.013***		0.021***	
	(0.004)		(0.007)	
Fast start _{j,t} [1]		0.038**		0.044**
		(0.015)		(0.022)
Fast start _{-j,t} [2]		0.011**		0.019**
		(0.004)		(0.007)
p-value [1] = [2]		[0.0937]		[0.2803]
Controls	Yes	Yes	Yes	Yes
Project Fixed Effects	Yes	Yes	Yes	Yes
Month Fixed Effects	Yes	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes	Yes
Day of week Fixed Effects	Yes	Yes	Yes	Yes
Funding cycle day Fixed Effects	Yes	Yes	Yes	Yes
# observations	813,983	813,983	814,585	814,585
# projects	22,995	22,995	23,011	23,011
R ²	0.518	0.518	0.523	0.523

New backers *vs.* recurrent backers

RSM	-
1	zafing

	>2	>200		00
	(1)	(2)	(3)	(4)
'New' Fast start _t	-0.006		-0.013	
	(0.007)		(0.013)	
'New' Fast start _{j,t} [1]		-0.006		0.025
		(0.026)		(0.043)
'New' Fast start. _{j,t} [2]		-0.007		-0.018
		(0.007)		(0.014)
p-value [1] = [2]		[0.9880]		[0.3423]
'Recurrent' Fast start _t	0.020***		0.043***	
	(0.007)		(0.012)	
'Recurrent' Fast start _{j,t} [3]		0.053*		0.058
		(0.030)		(0.041)
'Recurrent' Fast start _{-j,t} [4]		0.018**		0.042***
		(0.007)		(0.012)
p-value [3] = [4]		[0.2472]		[0.7083]
Controls	Yes	Yes	Yes	Yes
Project Fixed Effects	Yes	Yes	Yes	Yes
Month Fixed Effects	Yes	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes	Yes
Day of week Fixed Effects	Yes	Yes	Yes	Yes
Funding cycle day Fixed Effects	Yes	Yes	Yes	Yes
# observations	813,983	813,983	814,585	814,585
# projects	22,995	22,995	23,011	23,011
R^2	0.518	0.518	0.523	0.523

Similar insight applies from the baseline fixed - effects estimations

Individual learning

RSM

		Success	_i (Ulule)		Success ratio _i (Ulule)
	(1)	(2)	(3)	(4)	(5)
Recurrent backer _i	0.028***			0.029***	0.020***
	(0.002)			(0.002)	(0.004)
Recurrent backer. _i		0.004***		0.003***	0.074***
		(0.001)		(0.001)	(0.003)
Recurrent backer. _j			0.007***	0.009***	0.079***
			(0.001)	(0.001)	(0.002)
Age	-0.000***	-0.000***	-0.000***	-0.000***	-0.004***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
€-value first contribution	0.017***	0.017***	0.017***	0.017***	0.066***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)
Campaign duration	-0.053***	-0.053***	-0.053***	-0.053***	-0.185***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
Cash contribution	0.063***	0.062***	0.062***	0.063***	0.135***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)
Country of residence Fixed Effects	Yes	Yes	Yes	Yes	Yes
Category Fixed Effects	Yes	Yes	Yes	Yes	Yes
Day Fixed Effects	Yes	Yes	Yes	Yes	Yes
# observations	1,303,197	1,303,197	1,303,197	1,303,197	1,303,197
R^2	0.080	0.080	0.080	0.081	0.273

RSM

		Timing _i	(Ulule)		Timing _i (KKBB)
	(1)	(2)	(3)	(4)	(5)
Recurrent backer _i	0.180***			0.179***	0.116***
	(0.002)			(0.002)	(0.017)
Recurrent backer _{-i}		-0.025***		-0.008***	-0.013***
		(0.001)		(0.001)	(0.002)
Recurrent backer. _j			0.002**	0.008***	-0.012***
			(0.001)	(0.001)	(0.001)
Age	-0.001***	-0.000***	-0.000***	-0.001***	-0.000***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
€-value first contribution	0.005***	0.008***	0.008***	0.006***	-0.001***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Campaign duration	0.014***	0.016***	0.017***	0.014***	0.011***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Cash contribution	0.032***	0.030***	0.030***	0.032***	-
	(0.001)	(0.001)	(0.001)	(0.001)	-
Country of residence Fixed Effects	Yes	Yes	Yes	Yes	Yes
Category Fixed Effects	Yes	Yes	Yes	Yes	Yes
Day Fixed Effects	Yes	Yes	Yes	Yes	Yes
# observations	1,302,899	1,302,899	1,302,899	1,302,899	638,673
R^2	0.098	0.081	0.081	0.098	0.083

Platform growth

Evolution of number of backers (per month) on Ulule

Growth rate of recurrent contributions

- Ulule: 33.5%
- KKBB: 6.5%

Ulule – KKBB gap over time

Higher share of recurrent backers on Ulule than KKBB (its main competitor)

Evidence of various forms of network effects and learning on CFPs

- Positive within project funding dynamics (documented by prior work)
- Positive cross-project funding dynamics (novel result)

Evidence of the role of recurrent backers

- They are better at spotting successful projects ⇒ individual learning
- They back projects irrespective of the behaviors of others ⇒ social learning

Significant implications for CFP

- Management
- Competition

Rotterdam School of Management Erasmus University

Thank You

RSM - a force for positive change

Backup slides

TRADITIONAL FUNDING

Large amounts from one, or a few, sources CROWDFUNDING

Many small sums from a large group of individuals

Ataxonomy of crowdfunding

Platforms: Definition

• Entities that bring together economic agents, actively manages network effects among them and, thereby, generates economic value

Network Effects: 2 main categories

- One agent's decisions as to whether and how much to interact on the platform affect the well being of other agents ...
- ...in her own group ⇒ direct network effects
 - Economic agents derive a utility not only (and sometimes not even primarily) from a product or service, but from the interaction with other agents
 - Utilities are interdependent: agents are part of a 'network'
- ...in another group ⇒ indirect network effects
 - In many economic environments, agents can be sorted according to their role in, or their benefit from, a transaction
 - Agents belong to distinct groups
 - Network effects arise across members of different groups

Direct and indirect network effects

Panel fixed - effects estimations

	(1)	(2)	(3)	(4)
# new contributions _{i,t-1} [1]	0.172***			0.171***
	(0.002)			(0.002)
# recurrent contributions _{i,t-1} [2]	0.128***			0.127***
	(0.002)			(0.002)
# new contributions _{-i,t-1} [1]		0.023***		0.011***
		(0.002)		(0.002)
# recurrent contributions _{-i,t-1} [2]		0.006***		0.001
		(0.001)		(0.001)
# new contributions _{-j,t-1} [1]			0.066***	0.042***
			(0.003)	(0.003)
# recurrent contributions _{-j,t-1} [2]			0.012***	0.006**
			(0.003)	(0.002)
p-value [1] = [2]	[0.000]	[0.000]	[0.000]	-
Control variables	Yes	Yes	Yes	Yes
Project Fixed Effects	Yes	Yes	Yes	Yes
Month Fixed Effects	Yes	Yes	Yes	Yes
Year Fixed Effects	Yes	Yes	Yes	Yes
Day of week Fixed Effects	Yes	Yes	Yes	Yes
Funding cycle day Fixed Effects	Yes	Yes	Yes	Yes
# observations	814,960	814,960	814,960	814,960
# projects	23,022	23,022	23,022	23,022
R^2	0.550	0.529	0.529	0.551

Monthly evolution of number of new (in red) and recurrent (in blue) backers

