Social Norms and Fertility

Sunha Myong JungJae Park Junjian Yi

Introduction •••••• iel Est: 00000000000 000 1110n Counte 2000 0000 ctual Explan: O

lanation Hist

orical Policy OO Contribution

Fertility Changes over the Past 50 Years

Three Stylized Facts

Fact 1: Whereas the marriage rates of East Asian Societies are among the highest in the world, their total fertility rates are among the lowest.

Fact 2: Whereas their total fertility rates are among the lowest, almost all married women have at least one child.

Fact 3: By contrast, almost no single women have any children in East Asian societies.

Introduction

ion Counteri 00 0000 ual Explana O

anation Hi OC orical P

Contributio

Marriage and Fertility Rates across Countries/Regions

Countries/regions	TFR	Rank	Marria	ge Rate	Childless	ness Rate	GDP per capita
		/#224	Men	Women	Married	Single	(USD)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
East Asian	-						
China	1.60	182	0.900	0.922	0.007	0.983	8,123
Japan	1.41	209	0.840	0.853	0.034	0.984	38,972
South Korea	1.26	220	0.920	0.861	0.016	0.989	27,539
Hong Kong	1.19	221	0.908	0.898	0.026	0.951	43,741
Taiwan	1.13	222	0.873	0.839	0.019	0.979	24,577
Macau	0.95	223	0.925	0.845	N.A.	N.A.	74,017
Singapore	0.83	224	0.859	0.789	0.042	0.985	52,963
Average	1.20		0.890	0.858	0.024	0.979	38,562
Western							
Canada	1.60	183	0.662	0.650	0.093	0.262	42,348
US	1.87	143	0.694	0.654	0.118	0.389	57,638
UK	1.88	142	0.684	0.681	0.108	0.433	40,412
Average	1.78		0.680	0.662	0.105	0.361	46,799
Developing							
Uruguay	1.80	150	0.686	0.649	0.060	0.670	15,221
Argentina	2.26	93	0.705	0.662	0.070	0.740	12,440
Cameroon	4.64	21	0.887	0.727	0.170	0.220	1,375
Tanzania	4.77	18	0.814	0.686	0.040	0.200	878
Average	3.37		0.773	0.681	0.085	0.458	7,479

Puzzling

Decomposing the total fertility ${\cal F}$

$$F = m(1 - c^M)n^M + (1 - m)(1 - c^S)n^S$$
(1)

- *m*: marriage rate;
- c^M (c^S): childlessness rates of married (single) women
- n^M (n^S) : average fertility of married (single) women

 $\partial F/\partial m > 0$ and $\partial F/\partial c^M < 0$: not in line with Facts 1 and 2. Fact 3 also appears puzzling, as fertility decisions of married women contrast sharply with those of single women.

We should endogenize simultaneously the marriage decision (m) and fertility decisions at both the extensive margins $(c^M \text{ and } c^S)$ and intensive margins $(n^M \text{ and } n^S)$ to explain the three facts.

IntroductionModelEstimationCounterfactualExplanationHistoricalPolicyContribution0000000000000000000000000000

Confucianism and Two Social Norms

Norm 1: unequal gender division of childcare

Norm 2: stigma attached to out-of-wedlock births

Time Spent on Housework (Husband vs. Wife)

East Asian	Ch	ina	Jap	ban	South	Korea	Hong	Kong	Taiv	van
Year	1991	2012	2001	2011	2004	2014	2002	2013	1995	2004
Wife (hours/week) (a)	26.2	25.4	21.4	21.5	20.71	20.79	19.80	15.60	21.28	16.68
Husband (hours/week) (b)	5.3	5.0	4.51	4.20	3.90	4.69	6.60	4.80	5.38	3.73
(a)/(a+b)	0.83	0.84	0.83	0.84	0.84	0.82	0.75	0.76	0.80	0.82
Western and Developing	U	S	U	K	Can	ada	Arge	ntina	Tanz	ania
Western and Developing Year	2003	2015	2001	K 2005	Can 2005	ada 2010	Arge 2005	ntina 2013	Tanz 2006	ania 2014
Year	2003	2015	2001	2005	2005	2010	2005	2013	2006	2014

Fraction of Childcare Provided by a Wife by Education Levels

	Husband						
Wife	0	6	9	12	14	16+	
0 (no schooling)	0.871	0.730	0.899	N.A.	N.A.	N.A.	
6 (primary school)	0.824	0.832	0.884	0.884	N.A.	N.A.	
9 (middle school)	N.A.	0.850	0.903	0.935	0.837	0.926	
12 (high school)	N.A.	0.778	0.890	0.905	0.917	0.895	
14 (some college)	N.A.	N.A.	N.A.	0.891	0.881	0.877	
16 (four-year college and more)	N.A.	N.A.	N.A.	0.852	0.937	0.872	

Model

Objectives

- Endogenize marriage and fertility simultaneously
- Distinguish between fertility and childlessness
- Incorporate the two social norms

Introduction Model Estimation Counterfactual Explanation Historical Policy Contribution 0000000 00000000 0000 0 0 0 0

Model setup

Heterogenous adults whose state characterized by

- 1. Gender i = (m [male], f [female])
- 2. Wage w_i
- 3. Non-labor income a_i

Two-stage decision

- **Stage 1**: Each agent randomly matched with a possible partner, decides whether or not to marry
- **Stage 2**: Each household decides how much to consume, how many children to have, regardless of marital status

Household decisions

- Preference: $u(c_i^J, n) = ln(c_i^J) + ln(\nu + \epsilon^J n)$
 - c_i^J : consumption of individual of gender *i* and marital status J = (M [married], S [single])
 - *n*: number of children
 - v > 0: preference parameter
- $\epsilon^{J} > 0$ is a preference parameter that determines marginal utility of having children
 - ϵ^M (ϵ^S): marginal utility for married (single) women

Introduction Model Estimation Counterfactual Explanation Historical Policy Contribution 0000000 000000000000 0000000 0000 0 00 00 00 000

Household decisions

• Labor endowment

- Married: 1 unit
- Single: $1 \delta_i$ unit

• Childless

- Natural sterility: χ and ζ denote fraction of naturally sterile men and women
- Social sterility: $c_f < \hat{c} \Rightarrow n = 0$
- Household fixed cost: $\mu^S \neq \mu^M$

Home production of childcaring service

• Production function for married households

$$L^{M}(l_{m}, l_{f}) = A^{M} \left(l_{m}^{\psi} + l_{f}^{\psi} \right)^{\frac{1}{\psi}}$$

 $\psi < 1$ implies l_m and l_f are imperfect substitutes

- Production function for single mothers: $L^S = A^S l_f$
- Amount of childcaring service for raising n children

$$F(n) = \phi n$$

 ϕ is a variable cost of each child

Introduction Model Estimation Counterfactual Explanation Historical Policy Contribution 0000000 00000000 0000 0 0 00 000

Cost minimization for married couples with n children

$$\min_{l_m,l_f} w_m l_m + w_f l_f \tag{2}$$

s.t.

$$A^{M}(l_{m}^{\ \psi} + l_{f}^{\ \psi})^{\frac{1}{\psi}} = \phi n \tag{3}$$

$$0 \le l_m \le 1, \quad 0 \le l_f \le 1 \tag{4}$$

First order conditions lead to

$$\left(\frac{l_m}{l_f}\right) = \left(\frac{w_m}{w_f}\right)^{\frac{1}{\psi-1}} \tag{5}$$

Let $\alpha = \frac{l_f}{l_f + l_m}$ be the fraction of wife's labor in total labor

• Optimal fraction: $\alpha^* = \frac{l_f^*}{l_f^* + l_m^*}$

•
$$\frac{\partial \alpha^*}{\partial (\frac{w_f}{w_m})} < 0.$$
 When $w_m = w_f, \, \alpha^* = 0.5.$

Social norm on intrahousehold division of childcare

Husband and wife's labor inputs dictated by the social norm α'

$$l_m(\alpha') = \zeta_1 \frac{1}{A^M} \phi n \tag{6}$$

$$l_f(\alpha') = \zeta_2 \frac{1}{A^M} \phi n \tag{7}$$

where ζ_1 and ζ_2 are constants.

The Cost of Social Norm on Unequal Gender Division of Childcare

Let $C(\alpha') = w_m l_m(\alpha') + w_f l_f(\alpha'), C(\alpha^*) = w_m l_m(\alpha^*) + w_f l_f(\alpha^*)$

The cost: $C(\alpha') - C(\alpha^*)$

- 1. $\frac{\partial [C(\alpha') C(\alpha^*)]}{\partial \psi}|_{\alpha',\alpha^*} < 0$. The cost increases when ψ , the degree of substitutability between l_f and l_m , decreases for a given pair of (α', α^*) .
- 2. $\frac{\partial [C(\alpha') C(\alpha^*)]}{\partial \alpha^*}|_{\psi < 1, \alpha' > \alpha^*} < 0$. The cost decreases with α^* when l_m and l_f are imperfect substitutes in producing childcare and $\alpha' > \alpha^*$. As women's education increases relative to men's in modern societies, their optimal fraction of time spent on childcare decreases (α^*) , and thus the cost increases.

Household decisions

Budget constraints

$$\begin{split} b_m \left(c_m^S \right) &= c_m^S - (1 - \delta_m) \, w_m - a_m + \mu^S \le 0, \\ b_f \left(c_f^S, n \right) &= c_f^S + \frac{\phi}{A^S} w_f n - (1 - \delta_f) \, w_f - a_f + \mu^S \le 0, \\ b \left(c_f^M, c_m^M, n \right) &= c_f^M + c_m^M + \phi \left(\zeta_1 w_m + \zeta_2 w_f \right) n - w_m - w_f - a_f - a_m + \mu^M \le 0. \end{split}$$

Maximize

$$U\left(c_f^M, c_m^M, n\right) = \theta(w_f, w_m) u\left(c_f^M, n\right) + \left[1 - \theta(w_f, w_m)\right] u\left(c_m^M, n\right) \quad (8)$$

where

$$\theta\left(w_{f}, w_{m}\right) \equiv \frac{1}{2}\underline{\theta} + (1 - \underline{\theta})\frac{w_{f}}{w_{f} + w_{m}} \tag{9}$$

 $\underline{\theta}/2$: the lower bound of the negotiation power of spouses

Marriage decision: single males

Value functions

$$V_m^S \equiv \{ \max \ ln(c_m^S) + ln(\nu) \quad s.t \quad b_m(c_m^S) \le 0 \}$$

$$V_m^{M,N} \equiv \{ \max \ ln(c_m^M) + ln(\nu) \quad s.t \quad b(c_f^M, c_m^M, 0) \le 0 \}$$

$$V_m^{M,Y} \equiv \{ \max \ ln(c_m^M) + ln(\nu + \epsilon^M n) \quad s.t \quad b(c_f^M, c_m^M, n) \le 0 \}$$

Marriage if and only if

$$[\chi_m + (1 - \chi_m)\chi_f] V_m^{M,N} + (1 - \chi_m)(1 - \chi_f) V_m^{M,Y} \ge V_m^S$$

IntroductionModelEstimationCounterfactualExplanationHistoricalPolicyContribution0000000000000000000000000000000000000

Marriage decision: single females

Value functions

$$V_{f}^{S,N} \equiv \{ \max \ln(c_{f}^{S}) + ln(\nu) \quad s.t \quad b_{f}(c_{f}^{S},0) \leq 0 \}$$

$$V_{f}^{S,Y} \equiv \{ \max \ln(c_{f}^{S}) + ln(\nu + \epsilon^{S}n) \quad s.t \quad b_{f}(c_{f}^{S},n) \leq 0 \}$$

$$V_{f}^{M,N} \equiv \{ \max \ln(c_{f}^{M}) + ln(\nu) \quad s.t \quad b(c_{f}^{M},c_{m}^{M},0) \leq 0 \}$$

$$V_{f}^{M,Y} \equiv \{ \max \ln(c_{f}^{M}) + ln(\nu + \epsilon^{M}n) \quad s.t \quad b(c_{f}^{M},c_{m}^{M},n) \leq 0 \}$$

Marriage if and only if

$$\left[\chi_f + (1-\chi_f)\chi_m\right]V_f^{M,N} + (1-\chi_f)(1-\chi_m)V_f^{M,Y} \ge \chi V_f^{S,N} + (1-\chi)V_f^{S,Y}$$

Four types of childlessness

- 1. Natural sterility
- 2. Poverty-driven sterility: $c(n = 1) < \hat{c}$
- 3. Social-stigma-driven sterility
- 4. Opportunity-cost-driven childlessness

Social-stigma-driven sterility

$$V_{f}^{S}(n \ge 1 | \epsilon^{S} = \epsilon^{M}, w_{f}, a_{f}) > V_{f}^{S}(n = 0 | \epsilon^{S} = \epsilon^{M}, w_{f}, a_{f}), (10)$$

$$V_{f}^{S}(n = 0 | \epsilon^{S} < \epsilon^{M}, w_{f}, a_{f}) \ge V_{f}^{S}(n \ge 1 | \epsilon^{S} < \epsilon^{M}, w_{f}, a_{f}), (11)$$

$$c_{f}^{S} \ge \hat{c}.$$
(12)

Opportunity-cost-driven childlessness

For married women

$$V_f^M(n \ge 1 | w_f, a_f) \le V_f^M(n = 0 | w_f, a_f),$$
(13)
$$c_f^M \ge \hat{c}.$$
(14)

For single women

$$V_f^S(n \ge 1 | \epsilon^S = \epsilon^M, w_f, a_f) \le V_f^S(n = 0 | \epsilon^S = \epsilon^M, w_f, a_f),$$
(15)
$$c_f^S \ge \hat{c}.$$
(16)

Estimation

South Korea's censuses and household surveys

17 paramters

- 1. 6 are estimated directly from the data
- 2. 11 parameters are estimated using SMM

Parameters Estimated Directly from the Data

1. γ , ρ

$$w_e = \gamma z \exp(\rho e) \tag{17}$$

2. α' 3. ψ $ln(\frac{l_m}{l_f}) = \frac{1}{\psi - 1}[ln(w_m) - ln(w_f)]$ (18) 4. μ^S / μ^M

5. $\chi_f = \chi_m = 0.05$

Parameters Estimated Directly from the Data

Panel A: a priori information							
Description	Parameter	Value	Source	Comparison to Literature			
				Baudin	et al.	Baudir	n <i>et al</i> .
				(2015)		(2018)	
					Mean	Min	Max
Return to schooling	ρ	0.0764	2000 SLCTE	0.092	0.05	0.05	0.05
Gender wage gap	γ	0.770	2000 SLCTE	0.869	0.794	0.67	0.88
Fraction childcare provided by women	α'	0.780	1999 KTUS	0.524	0.754	0.506	0.974
Elasticity parameter	Ψ	0.385	1999 KTUS	1.0	1.0	1.0	1.0
Ratio of good costs: singles vs. married	μ^S/μ^M	0.733	2000 HIE	1.0	1.0	1.0	1.0
Natural sterility parameter	$\chi_f = \chi_m$	0.005	-	0.0121	0.01	0.01	0.01

Simulated Method of Moments

$$f(p) = [d - s(p)][W][d - s(p)]'$$

- d: 34 empirical moments
 - 32 based on the 2000 census: marriage rates by gender, completed fertility and childless rates for married women, by 8 educational categories
 - 1 based on SPFS: average fertility rate for single mothers
 - 1 based on the 2015 census: average childless rate for single women
- $W = 1/d^2$
- *p*: Model parameters

Marriage Rates and Fertility from the 2000 South Korea

Census

			Childlessness	Completed fertility	ity Marriage	
			rate	of mothers	rate	
Education level	е	Observations	Married	Married	Women	Men
1. No school	0	15,501	0.0155	4.516	0.985	0.959
2. Primary school	6	60,322	0.0119	3.507	0.993	0.973
Middle school	9	52,015	0.0156	2.604	0.990	0.974
High school	12	85,074	0.0180	2.275	0.979	0.980
5. Some college	14	11,925	0.0218	2.160	0.958	0.986
6. 4-year college	16	27,426	0.0170	2.174	0.956	0.988
7. Master's	18	4,782	0.0268	2.051	0.883	0.986
8. PhD	20	1,618	0.0348	2.013	0.831	0.989
All		258,663	0.0156	2.899	0.983	0.979

Introduction 0000000 Model | 00000000000000 (0000 0000

tual Explana O ion Histor:

torical Polic 00 Contributior 000

SMM Estimates

Panel B: Parameters estimated by SMM							
Description	Notation	Value	s.e.	Comparison to Literature			ature
				Baudin et al. Baudin		n et al.	
				(2015)		(2018)	
					Mean	Min	Max
Mean of non-labor income	ma	0.234	0.0044	0.435 ^a	0.302	0.042	0.533
Standard deviation of non-labor income	σ_a	0.333	0.0108	0.247	0.111	0.034	0.220
Goods cost to support a household (married)	μ^M	0.343	0.0434	0.272	0.302	0.042	0.533
Minimum consumption level to procreate	ĉ	0.200	0.0212	0.399	0.342	0.099	0.521
Preference parameter	v	7.646	0.0477	9.362	9.518	6.367	10.967
Time cost of being single (men)	δ_m	0.100	0.0118	0.256	0.141	-0.03	10.367
Time cost of being single (women)	δ_f	-0.034	0.0073	0.077	0.080	-0.05	10.272
Bargaining parameter	$\frac{\theta}{A^S}$	0.232	0.0464	0.864	0.545	0.002	0.996
Productivity for home production (single)	A^S	1.916	0.0369	1.0	1.0	1.0	1.0
Variable cost of raising a child ^b	ø	0.524	0.0068	0.206	0.188	0.154	0.206
Social norm of stigma	ϵ^{S}	0.854	0.0154	1.0	1.0	1.0	1.0

Model Fitness

28 / 40

Robustness

- 1. Social norm on the intrahousehold division of childcare (α')
- 2. Elasticity parameter in home production (ψ)
- 3. Ratio in household fixed cost between single and married households $(\frac{\mu^S}{\mu^M})$
- 4. Assortative matching

IntroductionModelEstimationCounterfactualExplanationHistoricalPolicyContribution000000000000000000000000000000000000

Counterfactual analyses

Two types of counterfactual analyses

- 1. The roles of the two social norms in marriage and fertility in South Korea
- 2. Differences in marriage and fertility patterns between South Korea and the US

Counterfactual Analysis: No Social Norm on Unequal Gender Division of Childcare

lodel Estimat 0000000000000 000000 on Counteri 00 0000 ial Explanat O

anation Hi

storical H

Contributio

Counterfactual Analysis: Social Stigma Attached to Out-of-Wedlock Births

Childlessness	s Rate of Single	Women	Completed Fertility of Single Mothers			
Women's Education	Benchmark	$\varepsilon^S = \varepsilon^M = 1$	Benchmark	$\varepsilon^S = \varepsilon^M = 1$		
	(1)	(2)	(3)	(4)		
0	0.697	0.437	1.389	1.455		
6	0.974	0.909	1.071	1.204		
9	0.996	0.980	1.000	1.071		
12	1.000	0.997	0.0	1.000		
14	1.000	0.999	0.0	1.000		
16	1.000	1.000	0.0	0.0		
18	1.000	1.000	0.0	0.0		
20	1.000	1.000	0.0	0.0		
Average	0.982	0.954	1.290	1.324		

Counterfactual analysis: Using US Parameters

- 1. the gender wage gap (γ)
- 2. the preference parameter that determines the utility of remaining childless (ν)
- 3. the parameter that determines a wife's bargaining power for consumption $(\underline{\theta})$

IntroductionModelEstimationCounterfactualExplanationHistoricalPolicyContribution00000000000000000000000000000000

Explaining the Three Facts about Marriage and Fertility

- 1. High Marriage Rates
- 2. Low Total Fertility for Married Mothers
- 3. Low Childlessness Rates for the Married
- 4. High Childlessness for Single Women

We conclude that the tension between persistent Confucianism and socioeconomic development results in three notable facts about marriage and fertility in East Asian societies.

Historical simulation

Total: 87.1%; education: 33.61%; TFP: 35.56%; gender gap: 17.85%

35 / 40

Gender Wage Gap, Optimal Division of Childcare (α), and Social Norm Costs

IntroductionModelEstimationCounterfactualExplanationHistoricalPolicyContributio000000000000000000000000000000000

Policy Experiment 1: Providing Childcare Service

 $F(n) = (1 - \tau)\phi n, \ \tau = 0.046$

 Introduction
 Model
 Estimation
 Counterfactual
 Explanation
 Historical
 Policy
 Contribution

 00000000
 0000000000
 0000000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Policy Experiment 2: Providing Childcare Subsidy

 $\tau_a = 0.004, \ 0.004/0.073 = 0.048$

IntroductionModelEstimationCounterfactualExplanationHistoricalPolicyContribution00000000000000000000000000000000

Contributions

- 1. Culture/social norms and household/individual decisions
 - Fernández, 2008; Fernández and Fogli, 2006, 2009; Becker and Murphy, 2009; Bongaarts and Watkins, 1996; Munshi and Myaux, 2006; Fernández, 2013; Fernández et al., 2004; Fernández and Fogli, 2009; Burda et al., 2007; Fernández and Sevilla Sanz, 2006; Fuwa, 2004; Qian and Sayer, 2015
- 2. Demographic transition
 - Franck and Galor, 2015; Galor, 2011; Galor and Mountford, 2008; Galor and Weil, 2000, Becker, 1960; Becker et al., 1990; Butz and Ward, 1979; Doepke, 2004; Heckman and Walker, 1990; Willis, 1973, De La Croix and Doepke, 2003; Galor and Weil, 1996; Lagerlöf, 2003, Barro and Becker, 1989; Becker and Barro, 1988, Galor, 2012
 - General implications for demographic transitions in other developing or transitional economies.
- 3. Family decisions and macroeconomics/public finance
 - Greenwood et al., 2017; Doepke and Tertilt, 2016

Policy implications

- 1. Promoting social-norm revolution
 - Advocating more equal gender role
 - Financially supporting nontraditional forms of families
- 2. Providing regulated domestic service markets
- 3. Subsidizing household chores (childcare)

Thank you!