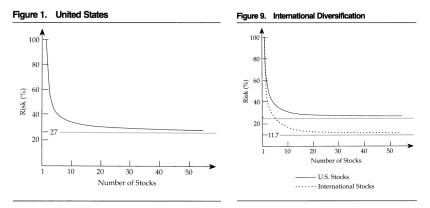
Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	00000	0000	000

Global Currency Hedging with Common Risk Factors

${\sf Wei} \ {\sf Opie}^1 \quad {\sf Steven} \ {\sf J}. \ {\sf Riddiough}^2$


¹Deakin University ²University of Melbourne

ABFER 7th Annual Conference

28th May, 2019 Shangri-La's Rasa Sentosa Resort, Singapore

Introduction	Method	Data	Main Results	Extensions	Conclusions
●○○○○○	0000000	O	00000	0000	
Background					

Background: Foreign Investments and Diversification Gains

(a) U.S. diversification...

(b) enhanced with foreign stocks

Source: Solnik (1974)

Introduction	Method	Data	Main Results	Extensions	Conclusions
○●0000	0000000	O	00000	0000	000
Motivation					

Motivation: U.S. Foreign Investments Growing Rapidly

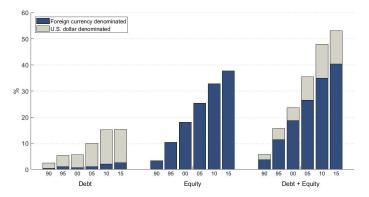


Figure: U.S. Domestically Owned Foreign Assets (% GDP)

Introduction	Method	Data	Main Results	Extensions	Conclusions
○0●000	0000000	O	00000	0000	
Motivation					

The Impact of Foreign Currency on International Portfolios

 Foreign exchange exposure impacts the local currency return and risk profile of foreign investments,

$$r_t \approx r_t^* + e_t;$$
 $var(r_t) \approx var(r_t^*) + var(e_t) + 2cov(r_t^*, e_t)$

where, r_t is the local-currency-denominated return, r_t^* is the foreign-currency-denominated return, e_t is the FX return

Can hedge FX exposure using FX forwards:

•
$$e_{t,h} = \frac{F_{t-1}}{S_{t-1}} - 1 \approx r_{f,t-1} - r_{f,t-1}^*$$

- $var(r_{t,h}) = var(r_t^*)$
- BUT... is this the best option?
 - Does not necessarily lower volatility
 - Limits upside to total return if currency return is predictable

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	00000	0000	
Motivation					

Motivation: Foreign Exchange Exposure Matters

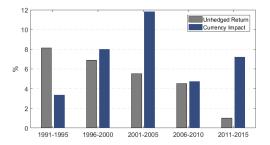


Figure: MSCI World Returns and the Impact of Foreign Currency

- Average unhedged MSCI World return = 5.2%
- Average impact of foreign currency = 7.2% (absolute difference between fully hedged and unhedged return)

Introduction	Method	Data	Main Results	Extensions	Conclusions
○○○○●○	0000000	O	00000	0000	000
Motivation					

Motivation: The Problem

- How should we manage FX exposure?
 - One of the largely unresolved questions in international finance
- 1. Adopt mean-variance (MV) optimization
 - 1.1 Glen and Jorion (1993) Campbell et al. (2010)
 - 1.2 MV usually fails out-of-sample because of estimation error (Jorion (1985) DeMiguel et al. (2009))
 - 1.3 The big problem is estimating expected currency returns (Gardner and Stone, 1995; Larsen, Jr and Resnick, 2000)
- 2. Avoid MV optimization
 - Construct a separate currency portfolio
 - Combine currency carry, value and momentum strategies (see, Asness et al. (2013), Kroencke et al. (2014))
 - Secondary issue: institutional investors often required to overlay existing portfolio with FX forwards

Introduction ○○○○○●	Method 0000000	Data 0	Main Results 00000	Extensions 0000	Conclusions 000
What We Do					

What We Do

- We propose a novel method for hedging foreign exchange exposure using common risk factors in currency markets
 - Dollar and carry factors can predict currency excess returns in the cross section (Lustig, et al., 2011; Verdelhan, 2018)
 - Factor premia are predictable in the *time series* (see e.g., Bakshi and Panayotov, 2013; Ready, et al., 2017)

Introduction ○○○○○●	Method 0000000	Data O	Main Results 00000	Extensions 0000	Conclusions
What We Do					

What We Do

- We propose a novel method for hedging foreign exchange exposure using common risk factors in currency markets
 - Dollar and carry factors can predict currency excess returns in the cross section (Lustig, et al., 2011; Verdelhan, 2018)
 - ► Factor premia are predictable in the *time series* (see e.g., Bakshi and Panayotov, 2013; Ready, et al., 2017)
- We take the perspective of a mean-variance U.S. investor with an existing position in either foreign equities or bonds
 - Investors need to estimate expected currency returns and the cross-asset covariance matrix
 - We form expected currency returns conditionally via common risk factors

Introduction ○○○○○●	Method 0000000	Data O	Main Results 00000	Extensions 0000	Conclusions
What We Do					

What We Do

- We propose a novel method for hedging foreign exchange exposure using common risk factors in currency markets
 - Dollar and carry factors can predict currency excess returns in the cross section (Lustig, et al., 2011; Verdelhan, 2018)
 - ► Factor premia are predictable in the *time series* (see e.g., Bakshi and Panayotov, 2013; Ready, et al., 2017)
- We take the perspective of a mean-variance U.S. investor with an existing position in either foreign equities or bonds
 - Investors need to estimate expected currency returns and the cross-asset covariance matrix
 - We form expected currency returns conditionally via common risk factors
- Dynamic Currency Factor (DCF) hedging: determine FX hedges using expected currency returns in MV optimization

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	●0000000	O	00000	0000	000
DCF Hedging					

A Mean-Variance Investor

We select FX forward positions that maximize the risk-return trade-off for a MV investor:

$$\mu_{p,t} - \frac{\gamma}{2}\sigma_{p,t}^2 \tag{1}$$

 $\mu_{\textit{p,t}}:$ expected portfolio return, $\sigma_{\textit{p,t}}^2:$ portfolio risk, $\gamma:$ risk aversion

Partition the expected return vector and associated covariance matrix (see, e.g. Anderson and Danthine, 1981)

$$\mu = \begin{pmatrix} \mu_x \\ \mu_f \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{xx} & \Sigma_{xf} \\ \Sigma_{fx} & \Sigma_{ff} \end{pmatrix}$$
(2)

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	○●○○○○○○	O	00000	0000	000
DCF Hedging					

The Optimal FX Forward Positions

The optimal weights in FX forwards are given by:

$$w_{f,t}^*(f|x) = \frac{1}{\gamma} \left(\Sigma_{ff,t}^{-1} \mu_{f,t} \right) - \delta_t w_{x,t}$$
(3)

 $w_{x,t}$: vector of pre-determined underlying security weights,

 δ_t : regression coefficient obtained from projecting underlying asset returns on currency returns, i.e, $\delta_t = \sum_{ff,t}^{-1} \sum_{fx,t}$

We constrain each element of $w_{f,t}^*$ to be between $-w_{x,t}$ (100% hedge) and zero (0% hedge)

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	००●०००००	O	00000	0000	000
DCF Hedging					

Common Risk Factors

Substantial recent developments in currency research. We now have a much better understanding of the common risk factors driving currency returns than we did even 10 years ago

Lustig et al. (2011) and Verdelhan (2018) show that currency returns are function of two factors: *dollar* and *carry* risk

$$\mathbb{E}[R_{i,t}] = \beta_i^{dol} \lambda^{dol} + \beta_i^{car} \lambda^{car}$$
(4)

- Dollar: average return of a basket of foreign currencies against the US dollar
- Carry: returns to the currency carry trade (long high interest rate currencies, short low interest rate currencies)

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	000●0000	O	00000	0000	
DCF Hedging					

Expected Currency Returns

Estimate currency returns using a conditional version of the model

Allow both betas and factor premia to vary over time

$$\mu_{f,t} = \begin{bmatrix} \mathbb{E}_t R_{1,t+1} \\ \mathbb{E}_t R_{2,t+1} \\ \vdots \\ \mathbb{E}_t R_{K,t+1} \end{bmatrix} = \begin{bmatrix} \beta_{1,t}^{dol} E_t \lambda_{t+1}^{dol} + \beta_{1,t}^{car} E_t \lambda_{t+1}^{car} \\ \beta_{2,t}^{dol} E_t \lambda_{t+1}^{dol} + \beta_{2,t}^{car} E_t \lambda_{t+1}^{car} \\ \vdots \\ \beta_{K,t}^{dol} E_t \lambda_{t+1}^{dol} + \beta_{K,t}^{car} E_t \lambda_{t+1}^{car} \end{bmatrix}$$

- Betas are estimated using a rolling 60-month window
- Expected factor returns are formed using theoretically motivated predictor variables

(5)

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000●000	O	00000	0000	
DCF Hedging					

Predicting Currency Factor Returns

$$E_t \lambda_{t+1}^j = \varsigma_{j,t} + \psi_{j,t} X_t; \ j = \{ dol, car \},$$
(6)

- We use theoretically motivated predictor variables X_t to forecast the following month's currency factor returns:
 - Average forward discount: $\overline{fd_t} = \frac{1}{N} \sum_{i=1}^{N} fd_{i,t}$
 - Lustig et al. (2014)

• FX volatility:
$$\Delta \sigma_t^{FX} = \frac{1}{3} \log \left(\frac{\sigma_t^{FX}}{\sigma_{t-3}^{FX}} \right)$$

- Merton (1973); Menkhoff et al. (2012)
- TED spread: $\Delta TED_t = \frac{1}{3} log \left(\frac{TED_t}{TED_{t-3}} \right)$
 - Brunnermeier et al. (2009)
- Commodity returns: $\Delta CRB_t = \frac{1}{3} log \left(\frac{CRB_t}{CRB_{t-3}} \right)$
 - Bakshi and Panayotov (2013), Ready et al. (2017)

Introduction	Method	Data	Main Results	Extensions	Conclusions		
000000	○○○○● ○ ○	O	00000	0000			
Alternative Hedging Frameworks							

Alternative Hedging Frameworks

- We evaluate DCF hedging against a set of alternative currency hedging frameworks, split into three groups:
 - Naive hedges
 - Characteristic hedges
 - Mean-variance hedges
- Naive hedges (simple rules, no optimization)
 - No hedging: 0% hedge ratios
 - Full hedging: 100% hedge ratios
- Characteristic hedges (exploits currency return predictability)
 - Carry: hedge currencies with lower interest rates
 - Value: hedge currencies that are overvalued based on PPP
 - Momentum: hedge currencies that depreciated over 3 month

Introduction	Method	Data	Main Results	Extensions	Conclusions		
000000	○○○○○●○	O	00000	0000			
Alternative Hedging Frameworks							

Alternative Hedging Frameworks (cont)

- Mean-variance hedges (exploits returns and covariances)
 - Uses similar information to DCF hedging
 - Recall that *DCF* hedging is based on estimating:

$$w_f^*(f|x) = \frac{1}{\gamma} \left(\Sigma_{ff}^{-1} \mu_f \right) - \delta w_x$$

 $\gamma,\,\Sigma_{\rm ff}^{-1},\,\delta$ and $w_{\rm x}$ are the same but $\mu_{\rm f}$ changes

- UIP: expected currency return is zero
- Random walk: expected currency return is forward discount
- Interest rate: expected currency return is extracted after first estimating the OLS regression

$$R_{i,t+1} = a_i + b_i(i_t^* - i_t) + e_{i,t+1}$$

- Model combo: combine forecasts from multiple regressions
 - Predictor variables: average forward discount, commodity returns, FX volatility, TED spread, carry, value, momentum, equity volatility, and the output gap

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	○○○○○○●	O	00000	0000	
Performance measures					

Performance Measures

We compare the performance of *DCF* hedging against alternative schemes using statistical and economic performance measures

- Statistical performance measures
 - Focus on the Sharpe ratio

$$\widehat{SR}_k = \frac{\widehat{\mu}_k^e}{\widehat{\sigma}_k},$$

- also calculate Sortino ratio, "manipulation-proof" theta measure (Ingersoll et al., 2007), and information ratio
- Economic performance measures
 - Focus on the Certainty Equivalent (CEQ) return

$$\widehat{CEQ}_k = \hat{\mu}_k^e - \frac{\gamma}{2}\hat{\sigma}_k^2,$$

 also calculate the performance fee a mean-variance investor would pay to switch to DCF hedging

Introduction 000000	Method 0000000	Data ●	Main Results 00000	Extensions 0000	Conclusions 000
Core data					

Data

Data is collected for G10 economies: Australia, Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, UK, and US Sample period: January 1987 – July 2017

- Foreign exchange rate data
 - Daily spot and 1-month forward rates from Barclays
 - Daily spot rate data from Olsen Financial Technologies
 - Incorporate transaction costs following Darvas (2009)
- Common currency risk factors
 - Dollar and carry returns from website of Adrien Verdelhan
 - We update the factors until end of our sample
- Underlying security returns
 - Daily MSCI country equity indices from Datastream
 - Daily government 10-year bonds from Global Financial Data

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	●○○○○	0000	000
International Equities					

Global Equity Portfolio: A U.S. Investor's Perspective

		Na	ive	CI	haracteri	stic	Mean-Variance			
	DCF	UH	FH	CAR	VÃL	МОМ	UIP	RW	ÍR	MC
			Statia	tical mark		a valvatia				
				•		evaluatic				
mean (%)	7.93	4.92	5.10	6.46	4.95	6.21	5.10	5.62	5.83	6.11
std (%)	15.3	17.9	13.9	16.5	15.2	15.4	13.6	14.5	15.2	15.1
Sharpe	0.52	0.27	0.37	0.39	0.33	0.40	0.38	0.39	0.38	0.40
$\Delta Sharpe$	-	-0.25	-0.15	-0.13	-0.19	-0.12	-0.14	-0.13	-0.14	-0.12
skew	-0.58	-0.79	-0.88	-0.81	-0.70	-0.62	-0.84	-1.02	-1.00	-1.02
MDD (%)	52.2	60.8	49.7	58.3	50.3	50.1	48.7	55.8	56.6	57.03
Sortino	0.76	0.38	0.50	0.54	0.45	0.57	0.52	0.53	0.53	0.56
theta (%)	4.28	-0.20	2.04	2.16	1.33	2.52	2.20	2.27	2.16	2.47
IR _{unhedged}	0.15	-	0.01	0.11	0.00	0.07	0.01	0.03	0.05	0.06
IR hedged	0.16	-0.01	-	0.07	-0.01	0.07	0.00	0.05	0.05	0.07
0			Econo	omic perf	formance	evaluatio	n			
CEQ	4.40	0.12	2.19	2.39	1.48	2.66	2.33	2.45	2.38	2.69
ΔCEQ	-	-4.28	-2.21	-2.01	-2.92	-1.74	-2.07	-1.95	-2.02	-1.71
φ	-	3.30	2.70	1.60	2.97	1.73	2.67	2.23	2.08	1.80

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	○●0○○	0000	000
International Bonds					

Global Bond Portfolio: A U.S. Investor's Perspective

		Naive Characteristic		Mean-Variance						
	DCF	UH	FH	CAR	VĂL	MOM	UIP	RW	ÍR	MC
			C 1. 11		<i>c</i>					
				•		evaluatio				
mean (%)	5.21	2.33	2.52	3.88	2.37	3.63	1.94	3.19	3.11	3.28
std (%)	6.81	9.23	4.66	6.84	6.92	6.70	4.61	5.99	6.39	6.53
Sharpe	0.77	0.25	0.54	0.57	0.34	0.54	0.42	0.53	0.49	0.50
$\Delta Sharpe$	-	-0.52	-0.23	-0.20	-0.43	-0.23	-0.35	-0.24	-0.28	-0.27
skew	0.22	-0.05	0.09	0.07	0.26	0.29	0.08	0.00	-0.03	0.02
MDD (%)	15.2	27.2	10.5	12.2	27.0	17.5	11.5	11.3	15.4	15.3
Sortino	1.32	0.38	0.87	0.92	0.54	0.90	0.65	0.83	0.76	0.78
theta (%)	4.52	1.06	2.19	3.17	1.66	2.96	1.62	2.65	2.50	2.64
IR _{unhedged}	0.15	-	0.01	0.11	0.00	0.07	-0.02	0.05	0.04	0.05
IR _{hedged}	0.15	-0.01	-	0.07	-0.01	0.07	-0.12	0.05	0.04	0.05
0			Econo	omic peri	formance	evaluatio	on			
CEQ	4.52	1.06	2.19	3.18	1.65	2.96	1.62	2.65	2.50	2.64
ΔCEQ	-	-3.46	-2.33	-1.34	-2.87	-1.56	-2.90	-1.87	-2.02	-1.88
φ	-	3.01	2.62	1.34	2.85	1.58	3.20	1.99	2.08	1.92

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	○○●○○	0000	000
International Bonds					

Results: Cumulative Returns

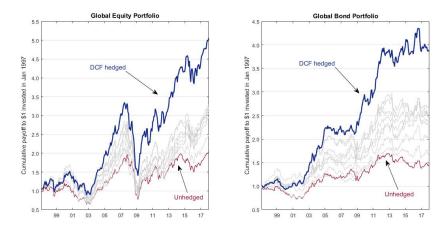


Figure: Cumulative Payoff to Investing in Foreign Portfolios

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	00000000	O	○○○●○	0000	000
The Source of Hedgin	g Profits				

The Source of Profits: FX Returns or Interest Rates

The return on a currency hedged asset can be expressed as the sum of the unhedged return and the return from currency hedging

$$R_{x,t+1}^{hedged} = R_{x,t+1}^{unhedged} + \underbrace{h_t \left(\frac{F_t - S_t}{S_t} + \frac{S_t - S_{t+1}}{S_t}\right)}_{\text{hedging return}}$$
(7)

- h_t is the hedge ratio, $0 < h_t < 1$
- F_t and S_t are the forward and spot exchange rates

Implies investors can generate positive returns from currency hedging *iff* they hedge currencies:

- 1. trading at a forward premium $(F_t > S_t)$
- 2. that subsequently depreciate $(S_t > S_{t+1})$

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	○○○○●	0000	000
The Source of Hedging	Profits				

The Source of Profits: FX Returns or Interest Rates

		Naive Hedges		Characteristic Hedges		Mea	n-Var O _l	otimized	Hedges	
		No	Full		\mathbf{r}			Rnd	∼ Int	Model
	DCF	Hedge	Hedge	Carry	Value	Mom.	UIP	Walk	Rates	Combo
				C	lobal Equ	ity Dortf	lia			
					,	5				
mean	3.02	0.00	0.18	1.55	0.04	1.30	0.19	0.70	0.92	1.20
fp	0.23	0.00	-0.23	0.78	-0.40	0.09	-0.47	0.37	0.21	0.24
fx	2.79	0.00	0.41	0.77	0.44	1.21	0.66	0.33	0.71	0.96
				G	lobal Boi	nd Portfo	lio			
mean	2.88	0.00	0.18	1.55	0.04	1.30	-0.40	0.86	0.78	0.95
fp	0.33	0.00	-0.23	0.78	-0.40	0.09	-0.27	0.70	0.32	0.38
fx	2.55	0.00	0.41	0.77	0.44	1.21	-0.13	0.16	0.46	0.57

 Majority of return from DCF hedging is from timing foreign exchange rate movements

Introduction	Method	Data	Main Results	Extensions	Conclusions		
000000	0000000	O	00000	●○○○			
Alternative investor perspectives							

Alternative Investors' Perspectives

				Investor	's Home	Country			
	DE	JP	GB	CA	AU	CH	SE	NO	NZ
	Global Equity Portfolio								
Sharpe	0.44	0.52	0.47	0.42	0.39	0.41	0.47	0.47	0.47
	[1/10]	[2/10]	[1/10]	[1/10]	[1/10]	[1/10]	[1/10]	[1/10]	[1/10]
CEQ	3.26	4.49	3.64	2.90	2.48	2.71	3.65	3.62	3.67
	[1/10]	[2/10]	[1/10]	[1/10]	[1/10]	[1/10]	[1/10]	[1/10]	[1/10]
ϕ UH	0.38	1.24	1.15	1.70	2.39	0.97	0.63	1.66	3.97
ϕ FH	1.12	3.06	1.45	1.03	0.59	0.71	1.81	1.98	1.20

- [1/10] indicates that DCF hedging generates the highest out-of-sample performance measure among all alternative hedging schemes
- ▶ *φ* UH is the fee a mean-variance investor would pay to switch from an unhedged equity portfolio

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	0	00000	○●○○	000
Independent Currency I	Portfolio				

Constructing a Separate Currency Portfolio

- A fund manager may be able to construct a separate currency portfolio to diversify a global equity or bond portfolio
 - In the literature currency carry, value and momentum have been found to have useful properties
 - Asness, Moskowitz, and Pedersen (2013); Kroencke, Schindler, and Schrimpf (2014); Barroso and Santa-Clara (2015)
- ► We form a time-series portfolio each month
 - Long position in currencies with positive expected returns
 - Short position in currencies with negative expected returns
- Evaluate diversification gains from the time-series portfolio
 - Compare with a currency "style" portfolio
 - Includes currency carry, value and momentum

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	0	00000	○0●0	000
Independent Currency	Portfolio				

International Diversification via a Pure Currency Portfolio

Panel A: Pure Currency Portfolios										
	DEM	JPY	GBP	CAD	AUD	CHF	SEK	NOK	NZD	TS
mean (%)	5.58	1.34	4.26	4.15	8.11	3.66	5.67	7.33	10.86	5.78
std (%)	9.87	10.71	8.53	8.72	12.33	10.33	10.95	10.97	12.76	7.38
Sharpe	0.57	0.13	0.50	0.48	0.66	0.35	0.52	0.67	0.85	0.78
skew	0.08	-0.22	-0.24	0.60	0.41	-0.08	0.14	0.07	0.41	0.20

Panel B: Allocating Capital to Currency Strategies

	Global	Equity Po	rtfolios	Glob	Global Bond Portfolios			
	FH	STYLE	TS	FH	STYLE	TS		
	Statistical performance evaluation							
mean (%)	5.10	6.82	10.88	2.52	4.24	8.30		
std (%)	13.9	14.9	15.4	4.66	5.46	8.60		
Sharpe	0.37	0.46	0.70	0.54	0.78	0.97		
$\Delta Sharpe$	-	0.09	0.33	-	0.24	0.43		
skew	-0.88	-0.64	-0.52	0.09	-0.08	0.32		
	Eco	onomic per	formance	evaluatio	n			
CEQ	2.19	3.50	7.30	2.19	3.79	7.19		
ΔCEQ	-	1.31	5.11	-	1.57	5.00		

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	00000	○○○●	000
Additional Analyses					

Additional Analyses

- 1. alternative out-of-sample estimation periods
- 2. alternative expanding windows
- 3. alternative rolling windows
- 4. including and excluding crises periods
- 5. role of turnover and transaction costs

Introduction 000000	Method 0000000	Data O	Main Results 00000	Extensions 0000	Conclusions ●00
Conclusions					

Conclusions

- ► Effective management of foreign exchange exposure is critical
 - Key question in international finance
- MV optimization typically performs poorly *out-of-sample*
 - Estimation error in expected currency returns
- We propose a novel approach to currency hedging
 - Exploits predictability associated with common currency factors
 - Improves estimation of expected currency returns
 - Superior to alternative approaches out-of-sample
- Approach can be used to build independent currency portfolio
 - Diversification benefits relative to currency "style" portfolio

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	o	00000	0000	
Conclusions					

References I

Anderson, R. W., and J.-P. Danthine. 1981. Cross hedging. Journal of Political Economy 89:1182-96.

- Asness, C. S., T. J. Moskowitz, and L. H. Pedersen. 2013. Value and momentum everywhere. Journal of Finance 68:929–85.
- Bakshi, G., and G. Panayotov. 2013. Predictability of currency carry trades and asset pricing implications. Journal of Financial Economics 110:139–63.
- Barroso, P., and P. Santa-Clara. 2015. Beyond the carry trade: Optimal currency portfolios. Journal of Financial and Quantitative Analysis 50:1037–56.
- Brunnermeier, Markus, K., S. Nagel, and L. H. Pedersen. 2009. Carry trades and currency crashes. In D. Acemoglu, K. Rogoff, and M. Woodford, eds., NBER Macroeconomics Annual 2008. University of Chicago Press.
- Campbell, J. Y., K. Serfaty-De Medeiros, and L. M. Viceira. 2010. Global currency hedging. Journal of Finance 65:87–121.
- Darvas, Z. 2009. Leveraged carry trade portfolios. Journal of Banking & Finance 33:944-57.
- DeMiguel, V., L. Garlappi, and R. Uppal. 2009. Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? *Review of Financial Studies* 22:1915–53.
- Gardner, G. W., and D. Stone. 1995. Estimating currency hedge ratios for international portfolios. Financial Analysts Journal 51:58–64.
- Glen, J., and P. Jorion. 1993. Currency hedging for international portfolios. Journal of Finance 48:1865-86.
- Ingersoll, J., M. Spiegel, W. Goetzmann, and I. Welch. 2007. Portfolio performance manipulation and manipulation-proof performance measures. *Review of Financial Studies* 20:1503–46.
- Jorion, P. 1985. International portfolio diversification with estimation risk. Journal of Business 58:259-78.
- Kroencke, T. A., F. Schindler, and A. Schrimpf. 2014. International diversification benefits with foreign exchange investment styles. *Review of Finance* 18:1847–83.

Introduction	Method	Data	Main Results	Extensions	Conclusions
000000	0000000	O	00000	0000	○●●
Conclusions					

References II

- Larsen, Jr, G. A., and B. G. Resnick. 2000. The optimal construction of internationally diversified equity portfolios hedged against exchange rate uncertainty. *European Financial Management* 6:479–514.
- Lustig, H., N. Roussanov, and A. Verdelhan. 2011. Common risk factors in currency markets. *Review of Financial Studies* 24:3731–77.
- ------. 2014. Countercyclical currency risk premia. Journal of Financial Economics 111:527-53.
- Menkhoff, L., L. Sarno, M. Schmeling, and A. Schrimpf. 2012. Carry trades and global foreign exchange volatility. Journal of Finance 67:681–718.
- Merton, R. C. 1973. An intertemporal capital asset pricing model. Econometrica 41:867-87.
- Ready, R., N. Roussanov, and C. Ward. 2017. Commodity trade and the carry trade: A tale of two countries. Journal of Finance 72:2629–84.
- Solnik, B. H. 1974. Why not diversify internationally rather than domestically? Financial Analysts Journal 30:48–54.
- Verdelhan, A. 2018. The share of systematic variation in bilateral exchange rates. Journal of Finance 73:375-418.