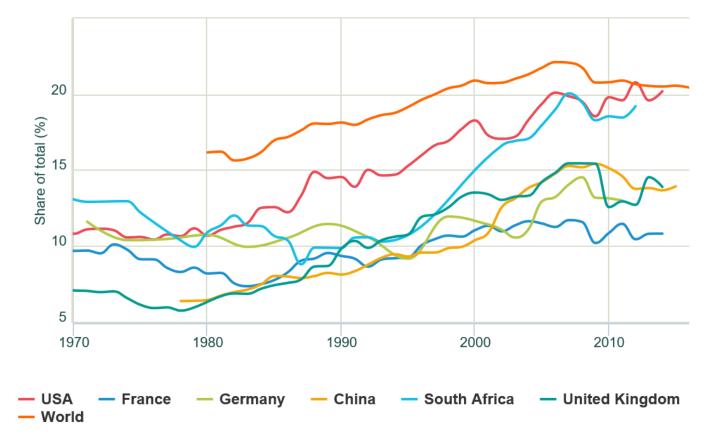

Financial Globalization vs. Income Inequality: The Surprising Role of Foreign Portfolio Flows in Taming the Top 1%

> Si Cheng (CUHK) Massimo Massa (INSEAD) Hong Zhang (PBC School of Finance)

ABFER 7th Annual Conference, May 2019

Income Inequality Is an Important Issue

Income inequality, USA, 1970-2014



- Top 1%: 10.8% in 1970 to 20.2% in 2014
 - Bottom 50%: 21% in 1970 to 12.6% in 2014
 - "Private wealth dwarfed national income and was concentrated in the hands of the *rich families* who sat atop a relatively rigid class structure."

—The *Economist*, 2014

• Income from firms' cash flows vs. salaries

Top 1% National Income Share: World

- US: Piketty and Saez (2003), Guvenen, Karahan, Ozkan, and Song (2016), De Nardi, Fella, and Pardo (2016)
- International: Piketty (2003), Alvaredo, Atkinson, Piketty, and Saez (2013)

Economic Grounds of Income Inequality

- Properties of capitalism: return to capital > growth rate of output, Piketty (2014), Acemoglu and Robinson (2015), Blume and Durlauf (2015), Krusell and Smith (2015)
- Tax and transfer system: Alvaredo, Atkinson, Piketty, and Saez (2013), Kaymak and Poschke (2016)
- Technology development: Kuznets (1955)
- Labor market polarization: Autor and Dorn (2013)
- Education: Jaumotte, Lall, and Papageorgiou (2013)
- Trade and *financial globalization*: Jaumotte, Lall, and Papageorgiou (2013)

Financial Globalization and Income Inequality

- Existing evidence: Lane and Milesi-Ferretti (2007)
 - Foreign *direct* investment (FDI) seems to boost income inequality.
 - Portfolio investment (foreign *indirect* investment, FII) plays an insignificant role.
 - FII measures lack information to analyze this question.
- Does FII affect income inequality?
 - FII: delegated portfolio investment from the entire global mutual fund industry
 - Identify the exogenous component of FII from fire sales

Why FII Affects Income Inequality?

- Asset reallocation channel: FII incentivizes rich families to rebalance their portfolio (e.g., diversification) → impact on inequality depends on the optimality of asset rebalance.
- Governance channel: FII improves corporate governance of local firms (Aggarwal, Erel, Ferreira, and Matos (2011)) → large shareholders are less likely to transfer wealth from small investors.
- Alternative channels through known country characteristics: tax, labor market, technology, education, financial development

Construction of Control Relations

- Income inequality has a *micro* foundation: heterogeneity in cash flow rights in sharing companies' sales revenue
- Firm-level cash flow rights
 - ORBIS database of Bureau van Dijk
 - Financial and ownership information of 48,461 publicly listed firms from 134 countries, and 101,882 private firms from 190 countries.
 - Identify control relations and *ultimate owner* using firm-specific ownership map and corporate network

Income Inequality Measures

- Traditional income inequality: *Top 1% Income* from World Wealth and Income Database
- •Cash flow inequality: *Top Income from Sales* reaped by ultimate owners (UOs)

• $TopIncome_Sales_{i,c,t} = \frac{\sum_{u} Sale_{u,i,c,t} \times I\{Sale_{u,i,c,t} / IndSale_{i,c,t} > 0.2\}}{IndSale_{i,c,t}}$

 Benefits: clearer economic ground (source of income at the firm level) + better identification (countryindustry level as opposed to country level)

Data and Variable

- Global mutual fund database
 - Factset/Lionshares + Morningstar
 - Compute delegated portfolio investment flows and fire sale flows (*Flow_Shock*)
- Global stock database
 - Datastream/Worldscope + CRSP/Compustat
 - Stock price, firm characteristics, and industry classifications
- Country characteristics
 - World Bank
- Sample: 34 countries, 561 country-industry, 2,602 ultimate owners from 2001–2013

Baseline Results (Country Level)

• $\Delta TopIncome_WWID_{c,t} = \alpha + \beta Flow_Shock_{c,t-1} + \gamma N_{c,t-1} + e_{c,t}$

Change in income inequality, based on *Top* 1% Income from WWID Delegated portfolio flows due to fire sales

- Controls: Stock Market Turnover, Stock Market/GDP, Private Bond Market/GDP, Common Law, Judicial, Good Government Index, Anti-Self-Dealing Index, Disclosure, Property Rights Index, Control Premium and Ownership Concentration
- Year fixed effects, standard errors clustered at both the country and year level

FII on Top Income from WWID (Country Level)

• $\Delta TopIncome_WWID_{c,t} = \alpha + \beta Flow_Shock_{c,t-1} + \gamma N_{c,t-1} + e_{c,t}$

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10
Flow_Shock	-2.834***					(-2.834***	:	-2.840***	
	(-4.23)						(-4.14)		(-4.06)	
Flow_Shock_For		-2.006***		-1.966***				-1.965***		-1.960***
		(-4.98)		(-4.98)				(-4.88)		(-4.88)
Flow_Shock_Dom	L		-1.827	-1.425				-1.432		-1.662
			(-0.79)	(-0.61)		((-0.62)		(-0.73)
Flow_Top_For				(-0.017**	-0.017*	1 ctd	.dev. hi	abor for	raian
					(-2.53)	(-2.17)			9	9
Flow_Top_Dom					-0.000	-0.000		Jal fund		
					(-0.07)	(-0.08)	$\rightarrow 16$	5% lowe	er incom	ne
Flow_Other					0.074	0.073	ineq	uality.		
				((0.76)	(0.75)	'	'		
Flow							0.026	0.026	0.025	0.025
							(0.60)	(0.56)	(0.56)	(0.53)
∆Inward FDI/GDF)					-0.005			-0.005	-0.006
						(-0.84)			(-0.81)	(-0.96)
Controls					Cou	ntry				
Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Expand to Cash Flow Inequality Measure

•Country level:

- $\Delta TopIncome_Sales_{c,t} = \alpha + \beta Flow_Shock_{c,t-1} + \gamma N_{c,t-1} + e_{c,t}$
- •Country-industry level:
- $\label{eq:sales_i,c,t} \bullet \Delta TopIncome_Sales_{i,c,t} = \alpha + \beta Flow_Shock_{i,c,t-1} + \\ \gamma_1 M_{i,c,t-1} + \gamma_2 N_{c,t-1}$
- Country-industry controls: Industry Size/GDP and Industry Return
- Year, industry, and country fixed effects, standard errors clustered at both the country and year level

FII on Top Income from Sales (Country Level)

• ∆TopIncome_Sa	$les_{c,t} = \alpha + \beta Flow$	$_{Shock_{c,t-1}} +$	$\gamma N_{c,t-1} + e_{c,t}$
-----------------	-----------------------------------	----------------------	------------------------------

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Flow_Shock	-1.432***		-1.914***		-1.914**	
	(-9.63)		(-3.07)		(-2.97)	
Flow_Shock_For		-1.427***		-1.830***		-1.827***
		(-9.78)		(-3.64)		(-3.57)
Flow_Shock_Dom				2.317		1.775
				(0.33)		(0.25)
Flow			0.017	0.015	0.017	0.014
			(0.68)	(0.67)	(0.66)	(0.64)
Δ Inward FDI/GDP					-0.075	-0.074
					(-0.76)	(-0.72)
Controls			Cou	ntry		
Year FE	Y	Y	Y	Y	Y	Y
Industry FE	Ν	Ν	Ν	Ν	Ν	Ν
Country FE	Ν	Ν	Ν	Ν	Ν	Ν

FII on Top Income from Sales (Country-Industry Level)

• $\Delta TopIncome_Sales_{i,c,t} = \alpha + \beta Flow_Shock_{i,c,t-1} + \gamma_1 M_{i,c,t-1} + \gamma_2 N_{c,t-1}$

	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
Flow_Shock	-2.091***		-2.052***		-1.983**		-2.070**	
	(-4.72)		(-3.79)		(-2.95)		(-2.93)	
Flow_Shock_For		-2.040***		-1.996***		-2.004***		-2.107***
		(-4.17)		(-3.44)		(-3.10)		(-3.24)
Flow_Shock_Dom				29.617*				31.261*
				(1.93)				(2.07)
Flow			-0.001	-0.001			0.002	0.002
			(-0.23)	(-0.27)			(0.81)	(0.88)
Controls				Industry -	+ Country			
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y	Y	Y	Y
Country FE	Y	Y	Y	Y	Ν	Ν	Ν	Ν

• 1 std.dev. increase in foreign flow shocks \rightarrow 6% lower inequality.

Two-Stage Test on Asset Reallocation Channel • Allocation Efficiency: $AE_{u,i,c,t} = \sum_{s \in i,c} (w_{s,u,t} - w_{s,u,t-1}) \times ROA_{s,t}$

• 1st:
$$AE_{i,c,t} = a + \beta Flow_Shock_{i,c,t-1} + \gamma_1 M_{i,c,t-1} + \gamma_2 N_{c,t-1} + e_{i,c,t}$$

• 2nd:
$$\Delta TopIncome_Sales_{i,c,t} = \alpha + \theta \widehat{AE}_{i,c,t} + \gamma'_1 M_{i,c,t-1} + \gamma'_2 N_{c,t-1} + e_{i,c,t}$$

	1st Stage	2nd Stage	1st Stage	2nd Stage	1st Stage	2nd Stage	1st Stage	2nd Stage
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
AE		39.143***		34.541***		38.674***		33.539***
		(4.52)		(6.03)		(4.06)		(5.20)
Flow_Shock	-0.104***		-0.110***					
	(-3.99)		(-4.48)					
Flow_Shock_For					-0.104***	:	-0.112***	
					(-3.84)		(-4.10)	
Controls				Industry -	⊦ Country			
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y	Y	Y	Y
Country FE	Y	Y	Ν	Ν	Y	Y	Ν	Ν

• 1 std.dev. increase in foreign flow shocks \rightarrow 11% lower inequality.

Exit of Ultimate Owners

• $Exit_{u,i,c,t} = \alpha + \beta_1 Flow_Shock_{i,c,t-1} + \beta_2 Flow_Shock_{i,c,t-1} \times Char_{u,i,c,t-1} + \beta_3 Char_{u,i,c,t-1} + \gamma_1 M_{i,c,t-1} + \gamma_2 N_{c,t-1} + e_{u,i,c,t}$

	Model 6	Model 7	Model 8	Model 9	Model 10
Flow_Shock_For	2.086***	1.590***	1.168*	1.098*	1.346***
	(6.81)	(3.03)	(2.14)	(2.05)	(3.91)
Flow_Shock_For × UOROA		-0.061			
		(-0.88)			
Flow_Shock_For × UORET			-0.021		
			(-0.18)		
Flow_Shock_For × Manufacturing				0.331	
				(0.46)	
Flow_Shock_For × Core					1.287**
					(2.43)
Controls		Indu	ustry + Cou	ntry	
Year FE	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y

• Ultimate owners exit their core assets to diversify.

Impact on Firm Profits

• $ROA_{i,c,t} = \alpha + \beta_1 Exit_{i,c,t-1} + \beta_2 Flow_Shock_{i,c,t-1} + \beta_2 F$ $\beta_3 Exit_{i,c,t-1} \times Flow_Shock_{i,c,t-1} + \gamma_1 M_{i,c,t-1} + \gamma_2 N_{c,t-1} + e_{i,c,t}$

	C	Country-Industi	сy	Ultimate	Owner-Country	y-Industry
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Exit	-0.546	-0.547	-0.560	-0.487	-0.488	-0.499
	(-1.10)	(-1.10)	(-1.13)	(-1.34)	(-1.34)	(-1.38)
Flow_Shock	-0.510***			-0.502***		
_	(-3.78)			(-8.49)		
Flow_Shock_For		-0.506***	-0.506***		-0.495***	-0.495***
		(-3.67)	(-3.51)		(-7.97)	(-7.98)
Flow_Shock_Dom			-1.004			-0.093
			(-0.28)			(-0.02)
Exit × Flow_Shock	0.666***			0.635***		
	(4.37)			(8.09)		
Exit × Flow_Shock_For		0.665***	0.663***		0.635***	0.633***
		(4.49)	(3.56)		(7.81)	(7.69)
Exit × Flow Shock Dom			6.069			4.908
			(0.80)			(0.66)
Controls			Industry	+ Country		
Year FE	Y	Y	Y	Ŷ	Y	Y
Industry FE	Y	Y	Y	Y	Y	Y

Two-Stage Test on Alternative Channels

	Country	-Industry					Cou	Intry				
	1st	2nd	1st	2nd	1st	2nd	1st	2nd	1st	2nd	1st	2nd
	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12
CorpGov		0.311										
		(0.05)										
Tax				-31.615								
				(-0.15)								
Unemployment				. ,		15.339						
1 0						(0.86)						
Computer												
Adoption								-3.077				
1								(-1.75)				
Post-Secondary										-2.338*		
5										(-1.83)		
MktDev										(1.00)		-6.322
												(-0.11)
Flow Shock For	1.286		0.043		-0.093		0.494		1.430*		0.225	(0.11)
	(0.56)		(0.15)		(-0.83)		(1.64)		(1.99)		(0.11)	
	(0.50)		(0.15)		(-0.05)		(1.04)		(1.))		(0.11)	
Controls	Industry ·	+ Country					Cou	intry				
Year FE	Ŷ	Ŷ	Y	Y	Y	Y	Y	Ŷ	Y	Y	Y	Y
Industry FE	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν

• Other channels do not explain the influence of FII on income inequality.

FII on Top Income from Sales by Ultimate Owners

		Cou	intry			Country-Indust			
	Domestic UO		c UO Foreign UO		Domes	tic UO	Foreign UO		
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	
Flow_Shock	-1.489***		0.057		-1.875***		-0.108		
	(-17.14)		(1.11)		(-3.60)		(-0.45)		
Flow_Shock_For		-1.484***		0.057		-1.882***		-0.123	
		(-19.67)		(1.13)		(-3.84)		(-0.49)	
Controls		Cou	intry			Industry +	- Country		
Year FE	Y	Y	Y	Y	Y	Y	Y	Y	
Industry FE	Ν	Ν	Ν	Ν	Y	Y	Y	Y	

• Foreign portfolio flows mostly affect domestic rich families.

Conclusion

- •Large waves in foreign indirect investment help reduce income inequality because of a *asset misallocation* mechanism.
- Rich families exit their core assets to diversify → unintended consequences as the selling industries subsequently outperform holding ones.
- •Our results suggest a beneficial effect of financial globalization by taming the income of the top.