Industrial Revolutions and Global Imbalances

Alexander Monge-Naranjo
Federal Reserve Bank of St. Louis

Konstantin Kucheryavyy
University of Tokyo

Kenichi Ueda
University of Tokyo

ABFER Annual Conference, May 2019

1The views expressed here are those of the authors and do not necessarily reflect the opinion of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Introduction

- **Global Imbalances:** Major Countries: Large CA & NFPs

- **Literature:**
 - SOE or Two Country Models.
 - Stationary Business Cycle Fluctuations.
 - Frictions and Policies.

- **This paper:**
 - Global Capital Markets with Many countries.
 - Industrial Revolutions: Changing World Income Distribution.
 - Alternative contractual environments.
Industrial Revolutions and the World Income Distribution.

Figure: Per Capita Incomes, Maddison Data
Global Imbalances

Figure: The Long History of Global Imbalances

- **Gold**
 - U.K.
 - France
 - Germany
 - U.S.A.
 - Japan

- **NFAs**

The graph shows the country holdings of world gold and NFA/world assets for selected countries over the years 1850 to 2000.
This Paper:

How Should Countries Finance Their Industrial Revolutions?

Theoretical Benchmarks: Global Balances and \(\{K_t, Y_t, C_t\} \).

- **Model of Industrial Revolutions:**
 - **Diffusion:** Time and geography.

- **Contractual Environments:**
 - **Participation:** Universal vs Sequential.
 - **Other Frictions:**
 - Incomplete Markets.
 - Limited Commitment (default temptation).

- **Computational Challenges:**
 - Non-stationary: non-recursive, infinite horizon.
 - Global Markets: Many heterogeneous countries.
The Economic Environment

- Production, Open Economies Extension of Lucas’ (2001)
 - A continuum, ex-ante identical people in \(S \) countries.
 - Calendar time: \(t = 0, 1, 2, \ldots \)
 - Countries’ Ascension times to I.R. \(s: \)
 - \(s < t: \) Country started I.R. before \(t \)
 - \(s = t: \) Country started I.R. at \(t \)
 - \(s > t: \) Countries still in pre-modern age at \(t \).

- Mass of Countries Ascending \(\pi(t) \):
 \[
 \pi(t) = \lambda(t) \times \left[1 - \sum_{s < t} \pi(s) \right].
 \]
 - **Lucas:** \(\lambda(t) \): Increasing in Modern-to-Pre-Modern gap.
The Economic Environment

- Preferences: For all s

$$U_0 = E \left[\sum_{t=0}^{\infty} \beta^t \frac{c(s,t)^{1-\sigma}}{1-\sigma} \right].$$

- Output: year $t = 1, 2, ...$, countries $s \leq t$:

$$y(s,t) = [k(s,t)]^\nu [z(s,t)]^{1-\nu}.$$

- TFP: $z(s,t)$:

$$z(s,t) = \begin{cases}
 z_0 (1+\alpha)^t, & s = 1: \text{Leader;} \\
 z(s,t-1)(1+\alpha) \left[\frac{z(1,t)}{z(s,t-1)} \right]^\theta, & s = 2,...t: \text{Ascended;} \\
 z_0, & s > t: \text{Pre-Modern.}
\end{cases}$$

Pre-Modern TFP $z_0 > 0$. Growth: $\alpha > 0$. Diffusion: $\theta \in [0,1]$.
Universal Participation

Known Ascension Dates

All countries in all t participate in competitive capital markets

- **World Economy**: Aggregation:

 \[
 \text{TFP} \quad Z_t = \left[\sum_{s=0}^{\infty} \pi(s) [z(s, t)]^{1-v} \right]^{1-v}.
 \]

 Output \quad Y_t = Z_t \cdot (K_t)^v.

 Capital \quad K_{t+1} = Y_t + (1 - \delta) K_t - C_t.

 MPKs \quad R_t = v Z_{t+1} \cdot (K_{t+1})^{\nu-1} + 1 - \delta.

 Cons. \quad \left(\frac{C_{t+1}}{C_t} \right)^{\sigma} = \beta \cdot R_t.

- **Individual Countries**: For all s, equalization of MPKs and

 Cons. \quad \left(\frac{c(s, t+1)}{c(s, t)} \right)^{\sigma} = \beta \cdot R_t.

 B.C. \quad (s, 0) = (s, 0).

 NFPs \quad a(s, t) = \sum_{\tau=t}^{\infty} (t, \tau) [k(s, \tau + 1) + c(s, \tau) - y(s, \tau) - (1 - \delta) k(s, \tau)].
Universal Participation

Known Ascension Dates, Lucas’ parameters

GDP

Relative Capital

NFP/ own GDP

NFPs/World GDP
Universal Participation

Known Ascension Dates, Lucas’ parameters

Figure: A Global Savings Glut?
Sequential Participation

Ascension = Diffusion + Participation in Global Capital Markets

► **World Economy:** Aggregation of all **ascended**:

\[
TFP: \quad Z_t^A = \left[\sum_{s=0}^{t} \pi(s) \left[z(s, t) \right]^{\frac{1}{1-\nu}} \right]^{1-\nu}.
\]

Capital: \quad \begin{align*}
K_{t+1}^A &= Y_t^A + (1-\delta) K_t^A - C_t^A + \pi(t+1) k(t+1, t+1).
\end{align*}

CONS. : \quad \left(\frac{\bar{C}_{t+1}^A}{\bar{C}_t^A} \right)^\sigma = \beta \cdot R_t.

► **Ascended Countries:** Equalization of MPKs across all \(s \leq t \):

CONS. : \quad \left[c^A(s, t + 1) \div c^A(s, t) \right]^\sigma = \beta \cdot R_t.

B.C. : \quad (s, s) = (s, s).

NFPs : \quad a(s, t) = \sum_{\tau=t}^{\infty} \left(k(s, \tau + 1) + c(s, \tau) - y(s, \tau) - (1-\delta) k(s, \tau) \right).

► **Pre-Modern** (yet to ascend): \(s > t \): \quad z(s, t) = z_0, \quad a(s, t) = 0.

► \(k(s, t) \): Variations: \(\textbf{(a)} \) known-dates; \(\textbf{(b)} \) unknown dates; \(\textbf{(c)} \) complete unawareness.
Sequential Participation

Outputs

Relative Capital

NFPs/own GDP

NFPs/World GDP
Sequential Participation

Figure: A Global Savings Glut....
Extensions and Frictions

- **Diffusion of Industrial Revolutions**: Beyond Lucas
 - **States**: Pre-Modern (PM), Middle-Income (MI), Advanced (IR)
 - **Transitions**:
 - PM $\implies\{\text{PM, MI, IR}\}$
 - MI $\implies\{\text{MI, IR}\}$
 - IR $\implies\{\text{IR}\}$

- **Hard-Currency/Gold-In-Advance Constraint**

- **Limited Commitment**
Hard-Currency/Gold-In-Advance Constraint

- **Gold**: Country’s Holdings: \(g(s, t) \). World Price: \(p^G(t) \).

\[
\text{GIA: } c(s, t) + [k(s, t + 1) - (1 - \delta) k(s, t)] \leq p^G(t) g(s, t).
\]

- **Implications**: Ascending Countries Accumulate Gold:
- **Gold Holdings**:
 - Initially: From Pre-Modern to Early Ascending.
 - Later: From Advanced to recently Ascended.
- **Universal Participation+GIA**: Sequentially in Gold, NFP.
Limited Commitment

- A Country's value of going rogue: $R (k; s, t)$.

- Participation Constraints:

$$[\xi (s, t)] : \left[\sum_{\tau \geq t}^{\infty} \beta^{\tau - t} \frac{c (s, \tau)^{1-\sigma}}{1 - \sigma} \right] \geq R (k; s, t), \forall t.$$

- Implications of Limited Commitment:

Backloads c: $[c (s, t)]^{-\sigma} \sum_{\ell = 0}^{t} \xi (s, \ell) = \mu (s, t),$

Reduces k: $\mu (s, t) + \xi (s, t) \frac{\partial R (k; s, t)}{\partial k} = \beta \cdot MPK (s, t) \cdot \mu (s, t + 1),$

Enhances a: $\mu (s, t) q_t = \beta \mu (s, t + 1)$.

- Non-Stationary $\xi (s, \ell)$: Asymmetry between Early-Late Ascenders.
Conclusions

- A long history of Global Imbalances.
 - Cycles of Accumulation and Decumulation of External Wealth.
 - Linked to Ascensions to Industrial Revolutions.

- Derived Theoretical Benchmarks on a Stylized Model.
 - Suggestive Results on "Global Savings Glut"

- Future Work:
 - Richer contractual arrangements.