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Abstract

Neoclassical theory suggests that stocks exposed to common pricing factors must face
common production risks. We estimate firm-level productivity shocks and decompose
them into six aggregate risk components via asymptotic principal component analysis.
We find that fundamental risks drive 13 of 15 prevailing pricing factors. First, we show
that the fundamental shocks capture most factors proposed in the Fama-French six-
factor model (Fama and French, [2018), the g-factor model (Hou et al., [2015), except the
expected investment growth factor in the ¢° model (Hou et al., 2018). Second, we find
that fundamental shocks explain most mispricing and behavioral factors (Stambaugh
and Yuan, 2017; Daniel et al., 2018), except the post-earnings-announcement-drift
factor. Third, we identify an important fundamental risk, the first principal component
of productivity shocks, is missed in all of these empirical factor models. We interpret
this missing factor as the labor risk. Overall, the productivity-based model performs

at least as well as the prevailing factor models.
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Motivated by the failures of the Fama-French three-factor and Carhart four-factor models
to account for many anomalies, several new factor models are suggested in the literature,
from the risk or behavioral perspectives (Fama and French, 2015, [2018; Hou et al., [2015], 2018}
Stambaugh and Yuan, 2017; Daniel et al., 2018). These models use asset prices to construct
15 pricing factors, based on various characteristics, and empirically perform well. However,
often it is difficult to distinguish them. In this paper, we start with the common fundamental
risks in firm productions and explore their asset pricing implications. This helps to trace the
systematic risks behind prevailing pricing factors and also identify the factors missed in the
existing models. Empirically, we identify six principal components of aggregate productivity
shocks, which captures 13 of 15 prevailing factors. We show that the size factor, profitability
factor, and investment factor used in Fama and French| (2015)), |Fama and French! (2018)), Hou
et al.| (2015), and Hou et al.| (2018)), correspond to the second to fourth productivity factors,
respectively. We find that the momentum factor is captured by the fifth productivity factor
while the sixth productivity factor captures the mispricing factor in Stambaugh and Yuan
(2017) and the long-horizon behavioral factor in Daniel et al.| (2018). But, the productivity
factors fail to capture the expected investment growth factor in Hou et al.| (2018) and the
short-horizon behavioral factor in Daniel et al.| (2018). Moreover, we find that an important
productivity factor, the first principal component, contain information not captured by the
existing factors, e.g., a missing factor. We show that this missing factor captures the labor
risks in the economy. Overall, the productivity-based model prices various test assets well
and performs similarly to the ¢°> model (Hou et al., 2018) and the behavioral model |Daniel
et al.| (2018).

Why cares about fundamental risk sources? For example, given the large literature on
empirical asset pricing models which propose various pricing factors and compute factor
returns from asset prices, one might suggest we bypass fundamental risks and use those
factor returns directly. The advantage of using fundamental risks is that the true system-

atic risks are from macroeconomic sources and asset risks arise endogenously from these



fundamental risks. For example, this explains why stocks with similar characteristics like
investment or profitability comove together. Also, fundamental risks help us distinguish dif-
ferent return-based factors, which are often hard to differentiate among competing models.
In fact, different exposures to the multiple fundamental risks generate cross-sectional return
variations.

Empirically, we identify the fundamental risk sources and their mimicking factor returns
in three steps. We first estimate firm-level total factor productivity, following |Olley and
Pakes (1996) and Tmrohoroglu and Tiizel (2014). Second, we apply the asymptotic princi-
pal component analysis (Connor and Korajczyk, 1987; (Chen et al., 2018|) to estimate the
systematic TFP components across all firms to identify fundamental risks. We identify six
principal components of productivity shocks, which explain about 52% of total factor pro-
ductivity across firms. We also validate such decompositions by showing that the systematic
productivity factors predict stock returns while the idiosyncratic productivity is not priced.
We find that the second productivity component traces the size factor in |Fama and French
(2015) and Hou et al| (2015)), with a correlation coefficient of -0.24 and -0.25, respective-
ly. The third productivity component captures the profitability factor in Fama and French
(2015) and Hou et al. (2015]), with a correlation coefficient of -0.48 and -0.42, respective-
ly. The fourth productivity component captures the investment factor in |Fama and French
(2015) and Hou et al| (2015), with a correlation coefficient of 0.50 and 0.43, respectively.
The fifth productivity component captures the momentum factor in |Fama and French|(2018)),
with a correlation coefficient of 0.35. The mispricing factor in |Stambaugh and Yuan| (2017)
and the short-horizon behavioral factor in Daniel et al. (2018)) are highly correlated with the
sixth productivity component, with a correlation coefficient of -0.35 and -0.48, respectively.

Third, we construct the mimicking productivity factors for these six components, follow-
ing |Adrian et al. (2014). Then we test whether the productivity factors can explain the pre-
vailing 15 pricing factors, as follows: (1) six factors used in[Fama and French| (2018), including

the market factor (M KT), the size factor (SM B), the value factor (HM L), the investment



factor, (CM A), the profitability factor (RMW), and the momentum factor (MOM); (2)
four factors used in Hou et al.| (2018)), including the size factor (Qag), the investment factor
(Q14), the profitability factor (Qrog), and the expected investment growth factor (EG);
(3) three mispricing factors used in [Stambaugh and Yuan| (2017), including the univariate
mispricing measure (M1S), a component related to firms’ management (MGMT), and a
component related to firms’ performances (PERF); (4) two behavioral factors used in Daniel
et al.| (2018), including a factor related to long-horizon behavioral bias (FIN), and a factor
related to short-horizon behavioral bias (PEAD). We find that 13 out of 15 pricing factors
can be explained by the productivity factors, except the expected investment growth fac-
tor (EG) and the short-horizon behavioral bias factor (PEAD). The mispricing factors in
Stambaugh and Yuan|(2017)), though constructed from 11 anomalies, indeed capture the fun-
damental risks. We also show that productivity factors well explain more broad test assets,
including 25 size and book-to-market sorted portfolios, 25 size and operating profitability
sorted portfolios, 25 size and investment sorted portfolios, 25 size and momentum sorted
portfolios, 25 size and idiosyncratic volatility portfolios, and 30 Fama-French industry port-
folios. We further show that the productivity-based model provides the highest maximum
squared Sharpe ratio among competing models. The productivity-based model delivers sim-
ilar performance to that of the ¢°> model (Hou et al.| |2018) or the behavioral model |Daniel
et al.| (2018).

On the other hand, we find that these prevailing 15 pricing factors can explain the second
to sixth productivity factors. But the first productivity factor is missed by these pricing
factors. We dig deeply to understand this missing factor. Empirically, we first show that
labor productivity is an important part of total factor productivity and captured by the first
productivity factor. Then, we construct the labor share portfolios, following |[Donangelo et al.
(2018). We find that this labor sorted portfolios are not explained by the prevailing pricing
factors as they capture mainly returns to the installed capital. But, the first productivity

factor fully explains the labor sorted portfolios. Therefore, returns to installed labor appear



to be missing in existing factor models while the first productivity factor tacks such labor
risks.

This paper follows the tradition of production-based asset pricing literature, e.g., Cochrane
(1991), Berk et al. (1999)), Carlson et al. (2004)), Zhang (2005)), and |Hou et al.| (2015). Neo-
classical theory links real investment returns to the stock returns and suggests that pro-
duction shocks drive the stock return volatilities. This implies that rational pricing factors
could be derived from various systematic productivity shocks. Our paper contributes to the
literature by empirically constructing a productivity-based model.

Recently, several asset pricing models have been proposed in the empirical literature.
The first type of models are based on rational risk factors. For example, motivated by
the dividend discount model/surplus clean accounting, Fama and French| (2015) construct
a five-factor model, including a market factor (M KT), a size factor (SM B), a value factor
(HML), an investment factor (C'M A), and a profitability factor (RMW). Fama and French
(2018)) further add the momentum factor (UM D) to the five-factor model, i.e., a six-factor
model. Motivated by the neoclassical g-theory of investment, Hou et al. (2015 propose
a g-factor model, including a market factor (M KT), a size factor (Qug), an investment
factor(Qr4), and a profitability factor (Qrog), where the investment and profitability fac-
tors are constructed differently from those in [Fama and French| (2015). Hou et al| (2018)
add the expected investment growth factor (EG) to the g-factor model, i.e., a ¢° model.
The second type of factor models suggests using mispricing or behavioral factors. For ex-
ample, Stambaugh and Yuan (2017)) suggest a four-factor model, which includes a market
factor, a size factor, and two mispricing factors. They construct two mispricing factors by
aggregating over six anomalies which are related to firms’ management (M GMT factor) and
five anomalies that are related to firms’ performances (PERF factor). |Daniel et al. (2018)
propose a three-factor model, including a market factor, a factor related to long-horizon be-
havioral bias (FIN), and a factor related to short-horizon behavioral bias (PEAD). FIN

is based on security issuance and repurchase, which measures managerial responses to the



long-horizon behavioral bias. PEAD derives limited attention and underreaction to earnings
information, e.g., post-earnings announcement drift. Overall, these factor models enjoy some
success in explaining more anomalies. But, often it is difficult to evaluate these factors[l] Our
paper explores the fundamental risks possibly embedded or missed in these pricing models
to understand these pricing factors. In a similar vein, |Belo et al.| (2018)) show that factors
other than installed physical capital are important determinants of firm values, suggesting
the importance of recognizing the multiple risk sources in stock returns.

This paper also adds to the recent asset pricing literature on labor risks. Besides installed
capital, installed labor affects firm value when labor market frictions are present. Important
labor frictions include labor adjustment costs (Merz and Yashiv, 2007; Belo et al., 2014]),
wage rigidity (Favilukis and Lin, |2016a,b]), and search frictions in labor markets (Petrosky-
Nadeau et al., 2018)). For asset pricing purpose, labor can increase equity risks through
the labor leverage channel (Danthine and Donaldson| [2002; [Donangelol 2014} [Donangelo
et al., 2018)), or the insurance provided by the shareholders to workers (Marfe, 2016, 2017}
Hartman-Glaser et al.| [2017; Lettau et al., [2018). Different from the literature, our paper
considers the labor risk embedded in the productivity shocks and estimates the labor factor
without directly considering the labor market frictions.

The rest of the paper proceeds as follows. Section (1| describes the data and empirical
procedures of estimating systematic productivity factors. Section [2| presents the empirical
estimates of productivity factors. Section [3] tests the pricing power of productivity factors
over other prevailing pricing factors and test assets. Section [4] examines the explanatory
power of productivity factors over mispricing portfolios in details. Section |5| identifies a
productivity factor missed in the prevailing models and relates it to the labor risk. Finally,

Section [6] concludes.

Hou et al.| (2018) provide some thoughtful discussions on the traditional covariance view, behavioral view,
and investment CAPM perspective of factors. Empirically, |Hou et al. (2018b) show that many seemingly
different factor models are closely related. For example, they find that the g-factor and ¢° models subsume
the Fama-French five- and six-factor premiums, and the mispricing factors in [Stambaugh and Yuan| (2017)),
but not the PEAD factor in |Daniel et al.| (2018).



1. Estimating systematic productivity shocks

Production-based asset pricing models directly relate stock returns with real investment
returns, i.e., returns on investment of physical capital and labor. This implies that stock
risks are inherited from production risks. Therefore, if stock returns depend on multiple
rational pricing factors, firms’ production must be subject to multiple systematic productiv-
ity shocks reflected in the pricing factors, and wvice versa (See Appendix [A| for illustrations
in a motivating model). In this section, we first estimate firm-level productivity. Then we
identify systematic productivity shocks across firms and construct mimicking productivity

factors.

1.1.  Estimating firm-level total factor productivity

We follow |Olley and Pakes| (1996)) to estimate TFP. Compared with the Sorrow residuals,
Olley and Pakes (1996|) address two issues. First, there is an endogeneity problem in the
estimation of TFP because input factors such as labor and capital stock are contempora-
neously correlated with TFP. They estimate the production function parameters separately
to avoid the simultaneity problem. Second, there is a selection issue. Firms with very low
(high) TFP exit (enter) the markets. Olley and Pakes| (1996) mitigates this issue by spec-
ifying TFP as a function of the survival probability. |Olley and Pakes| (1996) assume: (1)
productivity is a first-order Markov process; (2) capital is predetermined after productivity
is observed; (3) investment contains the information on productivity. Recently, Imrohoroglu
and Tuzel (2014)) apply Olley and Pakes (1996)) to estimate firm level TFP. We follow their

approach with some modiﬁcations.ﬂ

2Levinsohn and Petrin| (2003) suggest another often used approach to estimate TFP. Both |Olley and
Pakes| (1996) and Levinsohn and Petrin| (2003)) address the endogeneity concern of the correlation between
the unobserved productivity and factor inputs. |Olley and Pakes|(1996) assume that investment contains the
information on productivity. [Levinsohn and Petrin| (2003)) assume that intermediate inputs (like materials
and electricity) contain information on productivity. Intermediate inputs could be a better proxy for pro-
ductivity than investment because investment is often lumpy. However, the firm level data of intermediate
inputs (e.g., in Compustat) are often missing.



Assume the simple Cobb-Douglas production function:

Y = L KD% 7, (1)

where Y}, L;;, K;;, and Z;; are value-added, labor, capital stock, and productivity of a firm ¢
at time ¢, respectively. The productivity shocks include both some systematic productivity
shocks and an idiosyncratic component. Next, we scale the production function by its capital
stock and take the logarithm at both sides. We scale the production function by the capital
stock for several reasons. First, since TFP is the residual term, it is often highly correlated
with the firm size. Second, this avoids estimating the capital coefficient directly. Third,

there is an upward bias in labor coefficient, without scaling. Eq. can be rewritten as

Y; L;
LogK% = BLLogK‘t + (Bk + B — 1) LogKs + LogZy (2)
Denote Log}?ft, Logfg’ft, LogK;, and LogZy as yky, lk;, ki, and zy;. Also, let B, and

(B + B — 1) be B and k. Rewriting the above equation as follows:

yki = Bilki + Brki + zit (3)

We can estimate the labor coefficient (/3;) and capital coefficient (/3;) using linear regressions.
Then, the logarithmic TFP (z;) can be computed as yk; — Bilki+ — Biki. We estimate TFP
with a 5-year rolling window. TFP shocks can be computed as first-order autoregressive
residuals by running regression of TFP in year t against TFP in year ¢t — 1.

We use annual Compustat data to estimate the total factor productivity (TFP) for all
common stocks from NYSE/Amex/Nasdaq, applying the above procedures. We only include
firms with four-digit SIC code lower than 4900. These firms are in agriculture, mining, man-
ufacturing, construction, and transportation, which well fit the Cobb-Douglas production

function. Also, we drop firms with asset or sales below $1 million or stock price lower than



$1 at the end of each year. The sample starts from 1966, the rolling-window estimates are

available from 1972 to 2015. See Appendix |B| for more details about TFP estimation.

1.2.  Estimating systematic productivity factors

Next, we estimate the systematic TFP components across all firms to identify common
risk sources. Similar to Herskovic et al.| (2016), we estimate common risk sources via asymp-
totic principal component analysis, following Connor and Korajczyk| (1987). The time-series
estimates of TFP for N firms over time 7', denoted as T F Pyp, are decomposed into k

principal components, as follows:
TFPNT:BNk*PCkT+€NT (4)

where TFP is an N x T matrix, PC is a k x T matrix of aggregate TFP shocks, B is an
N x k matrix of the sensitivities to aggregate TFP shocks, and € is an N x T matrix of the
idiosyncratic TFP shocks. We calculate €2 = %TF PTTFP and estimate the eigenvector of
). Then, we multiply \/LT with each element of the eigenvectors to have the unit standard
deviation.

Two issues remain while applying the asymptotic principal component over the TFP
matrix (7FP). First, TFP matrix is unbalanced due to missing observations. (Connor and
Korajczyk (1987) address this issue by replacing those missing observations to zero. They
prove that if the missing observations follow the same approximate factor structure, the
estimated principal components are close to the true factors. (Chen et al. (2018)) show that
the main finding of |Connor and Korajczyk| (1987)) is robust by using simulations. We require
the sample firms to have at least 11 years of TFP estimates to be included in the principal
component analysis. This is similar to the requirement in (Chen et al.| (2018). Second, we

need to decide the number of principal components. In this paper, we choose six principal



components, based on the model fit and empirical implicationsﬁ First, we show that the
first six components capture about 52% of TFP across firms. Second, we find that there is
a positive contemporaneous relationship between stock return and systematic TFP shocks.
Third, we find that the volatility of systematic TFP growth positively predicts stock return.
Fourth, we further show that the residual TFP, idiosyncratic TFP, has no predictability over

stock returns. This validates the TFP decomposition.

1.3.  Estimating mimicking productivity factors

We construct the mimicking portfolios to track the principal components of TFP. One
difficulty is that the frequency of TFP is annual. To construct the monthly mimicking
portfolios, we follow |Adrian et al.| (2014). First, we project TFP principal component n,

PC,,, onto a set of annual base asset returns:

PCy, = Ko + Ky Xi'y +u,n =1,2,...,6 (5)

where X¢, denotes the annual returns of some base assets in year t, ko, and x,, are the
coefficients. We use 9 base assets for each productivity component. First, the excess market
return (M KT') and the univariate mispricing factor (M 1S) are included in the base asset-
s. Second, to extract the information of productivity components as much as possible, we
consider 18 portfolios used in [Hou et al.| (2015]), which are from a triple 2-by-3-by-3 inde-
pendent sort on size, investment, and profitability. However, since using all 18 portfolios
causes the multicollinearity problem, we only use 7 of these 18 portfolios. To choose the
certain portfolios, we start to project each principal component onto all 18 portfolios, mar-
ket portfolio, and the mispricing factor. Then, we choose portfolios which have significant

coefficients. Ideally, we want to use the same base assets across all principal components to

avoid arbitrariness, but using the same base assets causes the multicollinearity issues. To

3Bai and Ng (2002) suggest the statistical criteria to determine the optimal number of factors. However,
their is inapplicable to the unbalanced panel data.



avoid multicollinearity and to capture productivity-specific information, we change some of
base assets for each principal component. The base assets for each principal component are

as follows:

e X,1 = [MKT, MIS, SSL, BLM, BLH, BMH, BSL, SMH, BSH]
e X,, = [MKT, MIS, SSL, BLM, BLH, BLL, BMH, BSL, SMH]
e X,3 = [MKT, MIS, SSL, BLM, BLL, BSL, SMH, BSH, SSH]

e X,, = [MKT, MIS, SSL, BLM, BLH, BLL, BMH, BSL, SLM]
e X,5; = [MKT, MIS, SSL, BLM, BLH, BLL, BSL, SLM, SMH]
e X, = [MKT, MIS, SSL, BLM, SSM, BLH, BLL, BSL, SML].

For 7 portfolios other than the excess market return (MKT) and the mispricing factor (MIS),
the first letter describes the size group, i.e., small (S) or big (B). The second letter describes
the investment group, i.e., low (L), medium (M), or high (H). The third letter describes
the profitability group, low (L), medium (M), and high (H). For example, SSL denotes
the portfolio of stocks with small size, low investment, and low profitability. Overall, 4
base assets are common across all productivity factors and the rest of them are different.
Each annual mimicking productivity portfolio tracks its productivity principal component
very well. On average, annual correlation coefficient between each productivity principal

component and its mimicking portfolio is about 0.53.

After we estimate &/, ,, at annual frequency, we normalize those coefficients: &, ,, = IS::M .
The denominator is the sum of absolute value of 9 coefficients for each principal component.
The last step is to compute the mimicking productivity portfolios at monthly frequency, by

multiplying the normalized coefficients and the monthly base asset returns,

PCpy = i, X]" (6)

where X" is the monthly returns of base assets in month ¢. In this paper, we will use the

monthly mimicking portfolios for the time-series and the cross-sectional tests.
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When we construct the mimicking productivity portfolios, two look-ahead bias emerge.
First, look-ahead bias occurs when we apply the principal component analysis over TFP

matrix using the full sample. Second, look-ahed bias also occurs when constructing mimick-

!
,n

ing portfolios since the portfolio weights (k/,,,) are estimated in full sample. To avoid the
look-ahead biases, we also construct the mimicking productivity portfolios with an extending
window as a robustness check. That is, both principal component analysis and the mimicking
portfolio weights are computed with data up to year t. The extending window starts from
2001 to allow for enough number of observations. In other words, the principal components
and their portfolio weights are estimated from 1972 to 2001 first, and then extended to 2015.

Also, to estimate the weights with enough degree of freedom for the extending-window case,

we use 6 base assets only, as follows:

e X,1 = [MKT, MIS, BLL, BMH, SMH, BSH]
e X,, = [MKT, MIS, BLL, BSL, SMH, BLM|
e X,3 = [MKT, MIS, SSL, BSL, SMH, BLM]

X4 = [MKT, MIS, SSL, BLH, SLM, BLM|

X,5 = [MKT, MIS, BLL, BSL, SLM, SMH]|

X, = [MKT, MIS, SSL, BLM, BLL, BSL].

2. Productivity factors

In this section, we first describe our TFP estimates and its principal components. Then

we show that these principal components reasonably capture firms’ productivity shocks.

2.1.  Productivity estimates and the mimicking portfolios

We first examine the production function estimated from (Olley and Pakes| (1996)) and
Imrohoroglu and Tiizel (2014). The labor coefficients, (5;), is 0.62 and the capital coefficient,

(BK), is 0.34. These numbers are very similar to those reported in Olley and Pakes| (1996).
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Also, these estimates are consistent with the neoclassical models. For example, |Zhang| (2005)
use 0.30 as the capital coefficient. The production function is slightly decreasing return to
scale over the sample period.

Panel A of Table [1] shows that log TFP growth (ATFP) has a mean of 0.01 and a
standard deviation of 0.19. There are large variations of TFP growth in both time-series
and cross-section. The average first-order autocorrelation coefficient is only 0.07. Panel A
presents the summary statistics for six principal components (PC1 to PC6). By construction,
the standard deviations are normalized as one. R? shows how much principal components
explain TFP growth. For each firm, we run the time-series regression of log TFP growth on
principal components. We estimate the fitted value of log TFP growth and its explanatory
power. We report the average R? in Panel A. For example, the first principal component
(PC1) explains 15% of log TFP growth on average. When we add the second principal
component (PC2), the average R? increases to 24%. The first six principal components
explain 52% of log TFP growth and the marginal increment of R? decreases by adding more
principal components.

In Panel B of Table [}, we report the annual correlation coefficients between productivity
components and other pricing factors. In the main context, we consider 15 prevailing pring
factors, either risk based and behavioral based: (1) six factors used in Fama and French
(2018)), including the market portfolio (MKT), the size factor (SMB), the value factor (HML),
the investment factor (CMA), the profitability factor (RMW), and the momentum factor
(UMD). We download these factors and the corresponding portfolios from Kenneth French’s
website. (2) five factors used in [Hou et al. (2018)) including the market portfolio (MKT),
the size factor (Qpg), the investment factor (Qr4), the profitability factor (Qrog), and the
expected investment growth factor (EG). We follow Hou et al. (2018) to construct these
factors. (3) three mispricing factors used in [Stambaugh and Yuan| (2017). Stambaugh and
Yuan (2017) construct the mispricing factors from 11 mispricing anomalies. They categorize

these anomalies into two types of mispricing. One mispricing is related to the management,
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MGMT. Another mispricing is related to the firm performance, PERF. They also construct
a univariate mispricing factor (MIS), including both MGMT and PERF information. We
download two mispricing factors (MGMT and PERF) from Robert Stambaugh’s website and
construct the univariate mispricing factor (MIS) by using their mispricing scorefl] (4) two
behavioral factors used in [Daniel et al. (2018)). |Daniel et al.| (2018) suggest two different
behavioral factors, i.e., the short-horizon behavioral factor (post earnings announcement
drift, PEAD), and the long-horizon behavioral factor (financing, FIN). PEAD derives limited
attention and underreaction to earnings information. FIN is based on security issuance and
repurchase, which measures managerial responses to the long-horizon behavioral bias.E]
First, we note that none of pricing factors have strong correlation with the first pro-
ductivity component (PC1) except for the momentum factor (UMD) and the short-horizon
behavioral factor (PEAD). However, the correlation between PC1 and UMD is -0.28 while
the correlation between PC1 and PEAD is -0.22. These two correlations are driven by one
extreme observation in 2009 When we exclude the observation in 2009, the correlations
become 0.17 and 0.16.|j. Given the fact that the first productivity component is the most
important factor in capturing the aggregate productivity shocks, it is surprising that all
pricing factors do not capture this component. Second we see that PC2 to PC5 have strong
correlations with those prevailing pricing factors. The second productivity component (PC2)
is negatively correlated with the size factor (SMB and Qysg), with a correlation coefficient
of -0.24 and -0.25, respectively. It also has similar relationship with the expected investment
growth factor (EG). The third productivity component (PC3) has the pronounced pattern
with the profitability factors (RMW and Qrog). The correlation coefficient between PC3
and RMW (Qgrog) is -0.48 (-0.42). The fourth productivity component (PC4) is positively
correlated with the investment factors (CMA and ();4). The magnitude of its correlation

with CMA (Qr4) is 0.50 (0.43). The fifth productivity principal component (PC5) and the

4http://finance.wharton.upenn.edu/ stambaug/

®We thank them for providing the factor data. The sample period is from July 1972 to December 2014.
6In 2009, PC1 increases dramatically because of the financial crisis.

"We exclude the observation in 2009 for other productivity factors but their correlations are stable.
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momentum factor (UMD) are positively correlated, with a correlation coefficient of 0.35. The
sixth productivity component has significant correlation with the mispricing factor (MIS)
and long-horizon behavioral factor (FIN). The correlations are -0.35 and -0.48, respectively.
Overall, Panel B shows that PC2-PC4 are highly correlated with the risk-based factors while
PC5 and PC6 seem to capture the mispricing and behavioral factors.

Panel C of Table |I| reports the mean, standard deviation (S.D.), Sharpe ratio (SR),
and the pairwise correlations among mimicking portfolios. The first mimicking productivity
portfolio (PC1) has an average return of 1.31% per month and a standard deviation of 7.38%
per month. Its monthly Sharpe ratio is 0.18. Other mimicking portfolios also have sizable
mean returns and Sharpe ratios. Since the the pairwise correlation coefficients across the

mimicking factors are not very sizable, this alleviates the multicollinearity concern.

2.2.  Validating productivity decomposition

Table |2 further validates the productivity decomposition. We compute the systematic
and idiosyncratic parts of TFP, using the six principal components. For each firm, we run the
time-series regression of TFP growth on six principal components. Then, we use the predicted
TFP growth as the systematic TFP growth and the residuals as the idiosyncratic TFP
growth. Imrohoroglu and Tiizel (2014) find that the contemporaneous correlation between
stock returns and TFP is significantly positive. If TFP and its decomposition are estimated
correctly, then both TFP and its systematic part should have positive correlations with
contemporaneous stock returns. At the end of each June, we construct the quintile portfolios,
sorted on either log TFP growth (AT FP) or the systematic TFP growth (AT FP;,,). The
contemporaneous value-weighted portfolio returns are calculated and reported in the Panel
A of Table 2 We see portfolio returns increase with both the total TFP and its systematic
part. Also, the long-short portfolios (high minus low, H-L) generate sizable return spreads,
1.47% for log TFP growth and 0.83% for systematic TFP growth.

Next, we examine whether the idiosyncratic productivity shocks are priced to further
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validate our productivity decomposition. From the asset pricing perspective, we expect
that only systematic productivity shocks are priced because firms cannot hedge against the
systematic uncertainty. We compute the standard deviation of log TFP growth (oarrp),
systematic TFP growth (oarrpp,,,), and the idiosyncratic TFP growth (ocarrp,,,) over the
last 5 years. We exclude stocks with a price lower than $5 and industry-month observations
fewer than 5 firms. In Panel B of Table[2] Models (1) - (3) present the coefficients from Fama-
MacBeth regressions of excess stock returns against the total TFP volatilities, systematic
TFP volatilities, and idiosyncratic TFP volatilities, together with other control variables. We
take logrithm on the standard deviations. Model (1) shows that the total TFP volatilities
are positively correlated with stock returns. In model (2) we decompose the total TFP
volatilities into systematic and idiosyncratic parts. We see that systematic TFP volatility is
positively correlated with stock returns while the idiosyncratic TFP volatility is marginally
significant only. We further control for asset growth (AG) and cashflow (CF/K) in model

(3). Asset growth is defined as M’Z}—’f*l, where AT is total asset. Cashflow is computed

IBi+DP;

S PPENT, 1

where IB is the income before extraordinary item, DP is the depreciation
and amortization, and PPENT is the net property, plant, and equipment. We see that
idiosyncratic TFP volatility becomes insignificant while systematic TFP volatility remains
significantly positive in Model (3). Turning to the return volatilities, in Models (4) and (5),
we run panel regression of return volatilities against the absolute value of log TFP growth,
systematic TFP growth, and idiosyncratic TFP growth, with both firm and month fixed
effects. Return volatilities are computed by using daily returns over the last year. Models
(4)-(5) show that TFP volatilities are positively related to the stock return volatilities. Bloom
et al| (2018) also find that the absolute size of TFP shocks is positively related to stock

return volatilities. Overall, the results in Table [2[ confirm that our TFP estimate and its

decomposition reasonably captures common risk sources.
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3. Asset pricing tests

3.1.  Using productivity factors to explain other pricing factors: Time-series
regressions

Panel B of Table [I] shows that PC2-PC5 are highly correlated with those prevailing
pricing factors. In this subsection, we formally test whether productivity factors can capture
those pricing factors. We use the six mimicking productivity factors and the empirical asset

pricing model is as follows:

R; i = a;+Bpc1,iPCLi+Bpc2,i PC2i+4-Bpcs i PO31+Bpcai PC4+Bpes i PCS+Bpce,i PC6+€i 4

(7)
where R;; is the excess return of asset ¢ in month ¢, PC'1 to PC6 are the returns of the
mimicking productivity factors at month ¢. If the mimicking productivity factors correctly
capture the common risk sources, this model should explain those pricing factors. We run
the time-series regressions of each pricing factor on our mimicking productivity portfolios.
Table [3| presents the intercept, factor loadings, R?, and Newey-West adjusted t-statistics
with 6-month lags.

Panel A reports the results using full-sample estimation. First, 13 of 15 pricing factors
have insignificant pricing errors after controlling for six mimicking productivity portfolios.
This suggests that these 13 pricing factors share common fundamental risk sources. There
are only 2 pricing factors having the significant alphas. The expected investment growth
factor (EG) in|Hou et al.|(2018) has an alpha of 0.32% per month. The alpha is significantly
positive (t=2.79), but its magnitude is about 43% of the factor return after controlling
for the six productivity factors. The post-earnings-announcement-drift (PEAD) also has a
significantly positive alpha of 0.46% per month, and our productivity-based model captures

about 30% of its factor returnf]

8Hou et al.| (2018b) also find that the g-factor and ¢® models fail to capture the PEAD factor in Daniel
et al.| (2018)).
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Turning to the factor loadings, we recognize that our mimicking portfolios track their
principal components very well. Specifically, two size factors (SMB and Q,x) have significant
factor loadings on the second mimicking productivity factor (PC2). Spcg of SMB is -0.52 (t=-
11.84) and that of Qg is -0.62 (t=-14.64). The third mimicking productivity factor loadings
(Bpcs) are negatively significant for the profitability factors, -0.11 (t=-4.72) for RMW and
-0.21 (t=-9.21) for Qrog. Investment factors (CMA and Qr4) and the value factor (HML)
are significantly correlated with the fourth mimicking productivity factor. Spcy of CMA,
Qra, and HML are 0.14 (t=5.55), 0.16 (t=25.03), and 0.14 (t=20.50), respectively. Therefore,
Fama-French factors and ¢-factors are quite similarﬂ The fifth mimicking productivity factor
is significantly priced for the momentum factor (UMD), with a factor loading of 1.07 (¢=7.75).
Also, market portfolio is significantly priced on the sixth mimicking productivity portfolio.

Moreover, as we observe in Panel B of Table [I] the sixth productivity component has
a significant correlation with the univariate mispricing factor (MIS), with a factor loading
of -0.30 (¢t=-9.44). The two components, MGMT and PERF, have significantly negative
coefficients on the sixth mimicking productivity factor, -0.13 (¢=-3.67) and -0.42 (t=-5.55),
respectively. We also can see that MGMT and MISC are highly correlated with the fourth
productivity factor (PC4), which suggest that they capture a lot of investment factor as well.
This is consistent with findings in Hou et al.| (2018), where they argue that MGMT (PERF)
is a different investment or profitability measure. Given the fact that our fourth mimicking
productivity factor is strongly correlated with the investment factor, the significance of Bpcy
is consistent with the finding of |[Hou et al, (2018]). The long-horizon behavioral factor (FIN)
is fully captured by our productivity-based model.

To avoid the look-ahead bias, we use the extending-window estimation as a robustness
check and report results in Panel B of Table 8] One caveat for the extending window
approach is that the principal components are not as clear as those from the full-sample esti-

mation because the principal components change with the estimation windows. Nonetheless,

9Hou et al. (2018b) show that g-factor model subsumes the Fama-French five-factor premiums.
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extending-window estimation shows qualitatively similar results. Overall, our model fully
explains 14 of 15 pricing factors, except that PEAD remains marginally significant.
Overall, Table |3| shows that although various pricing factors are constructed in different

ways, they really capture the same set of fundamental risks.

3.2.  Using productivity factors to explain test portfolios: Time-series regres-

S10NS

Next, we apply our productivity-based model to many test portfolios. Specifically, since
the productivity factors are able to explain many pricing factors, we expect that they explain
broad test portfolios as well. We report the alphas from time-series regressions of each test
asset in Table , using full SampleET] Our playing fields include 25 size and book-to-market
sorted portfolios (Panel A), 25 size and operating profitability sorted portfolios (Panel B),
25 size and investment sorted portfolios (Panel C), 25 size and momentum sorted portfolios
(Panel D), 25 size and idiosyncratic volatility portfolios (Panel E), and 30 Fama-French
industry portfolios (Panel F'). The test portfolios are from Kenneth French’s website.

Generally, the productivity-based model explains the test portfolios very well. In Panel
A, all of 25 size and book-to-market sorted portfolios have insignificant alphas. In Panel B,
all of 25 size and operating profitability sorted portfolios have insignificant abnormal returns.
The highest alpha is 0.28% per month only, fairly low. We see similar results in Panel C
for 25 size and investment sorted portfolios. In Panel D and E, the abnormal returns are
generally small and only 2 of 50 portfolios are marginally significant. In Panel F, we see
that 27 of 30 Fama-French industry portfolios have insignificant abnormal returns. Only
industries like smoke (0.72%), the drugs (0.55%), and gold (1.07%), have significant alphas.
These results suggest that even though TFP and its principal components are estimated
from manufacturing industry only, the principal components reflect the aggregate risks across

different industries.

10We tabulate the complete regression results in Appendix Table
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3.3.  Using productivity factors to explain test portfolios: Fama-MacBeth

regressions

Lastly, we examine the ability of productivity factors to explain the cross-sectional return
variations by using Fama-MacBeth two-pass regressions. Test assets are 155 portfolios used
in Table . Following [Lewellen et al. (2010), we also add the pricing factors of the tested
factor model to the test assets in order to restrict the price of risk to be equal to the average
factor return.

We compare the productivity-based model (TFP) with other factor models, including
Fama and French| (1993) three-factor model (FF3), Carhart| (1997) four-factor model (F-
F4), Fama and French| (2015)) five-factor model (FF5), Fama and French| (2017) six-factor
model (FF6), Hou et al.| (2015)) g-factor model (HXZ), Hou et al. (2018) ¢°-factor model (H-
MXZ), Stambaugh and Yuan| (2017) mispricing factor model (SY), and Daniel et al.| (2018))

behavioral factor model (DHS), as follows:

o TEFP: Ry = v + 7P015P01,z‘ + 7PC2BPC2,¢ + 7P033PC3,1' + 7PC4BPC4,¢ + 7PC5BPC5,¢ +
VPCGBPCG,z + €t

o FIF3: Ry =+ ’YMKTBMKT,i + 'YSMBBSMB,Z' + 7HMLBHML,1’ + €t

o F'F4: Ry = o + VMKTBMKT,i + 75MBBSMB,¢ + 'VHMLBHML,i + 'VUMDBUMD,i + €t

o I'F5: Ry = ”Yo—l-”YMKTBMKT,i+’YSMBBSMB,i+’YHMLBHML,¢+’YCMABCMA,Z‘+’YRMWBRMW,¢+
it

o I'F6: Ry = %+7MKT5’MKT,¢-WSMBBSMB,z‘+7HMLBHML,7;+70MABCMA,2‘+7RMWBRMW,1'+
”YUMDBUMD,i + €5

o HXZ: Ryy = v+ VMKTBMKT,i + VQMEBQME,i + 7914 BQ, AT VQROEBQROE,i + €t

o HMXZ: Ry = '70+'7MKTBMKT,1‘+7QMEBQME,i+7Q1ABQIA,i+7QROEBQROE,1+7EGBEG,i+Eit

o SY: Ryt =0+ 'YMKTBMKT,i + YMISyE BMISM i T 'YMGMTBMG’MT,Z' + 'VPERFBPERF,i + €

e DHS: Ry =y + WMKTBMKT,i + VFINBFIN,i + WPEADBPEAD,z' + €it.

In the first stage, we run the time-series regressions of each model to estimate the factor
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loadings for each test asset, using full sample. Second, we run the cross-sectional regression of
all test assets against the estimated factor loadings in each month and report the time-series
average of the price of risk in Table[5] Table[5|also reports t-statistics adjusted for the errors-
in-variables problem (Shanken) [1992). We also compute the adjusted R? as in |Jagannathan
and Wang] (1996). Following Lewellen et al.| (2010), we construct a sampling distribution
of adjusted R?. Specifically, we bootstrap the time-series data of returns and factors by
sampling with replacement to estimate the adjusted R?. We repeat these procedures 10,000
times and report the 5 and 95" percentiles of the sampling distribution. The sample period
is from January 1972 to December 2015, except for DHS model, which is from July 1972 to
December 2014, as limited by data availability.

Table |5 presents the price of risk of each factor across the tested factor models. First, we
see that FF3, FF6, and DHS have a significant intercept, -, which are 0.51%, -0.07%, and
0.30%, respectively. Other models, e.g., FF5, HXZ, HMXZ, SY, and TFP, have insignificant
intercepts. That is, these models explain almost all return variations among test portfolios.

Next, we check the price of risk for each pricing factor. The price of risk should be equal
to the mean excess return of the corresponding factor. Mimicking productivity factors have
significant prices of risks and their magnitudes are close to the average of mimicking produc-
tivity factors. For FF5, even though the intercept is insignificant, the price of risk for HML,
YHMmL, 1s insignificant and its magnitude (0.07%) is quite different from the average return
of HML (0.36%). Also, the price of risk for SMB, vsyp = 0.22, is marginally significant
only (t=1.65). Factors from HXZ, HMXZ, and SY models have about similar size of their
average factor returns.

Finally, we compare the explanatory power (adjusted R?) across different models. Al-
though FF5, HXZ, HMXZ, SY, and TFP models have insignificant intercepts, TFP model
has the highest adjusted R?, 0.78. Even the 5" percentile of adjusted R?, 0.59, is compa-
rable to R? of FF5, HMXZ, and SY models. This suggests the strong explanatory power of

productivity factors.
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3.4. Comparing different models

Previously, we use the left-hand-side (LHS) approach to examine the pricing power of
the productivity-based model and compare it with other factor models. That is, we use a
set of test assets as the LHS variables to test whether unexplained average returns from
competing models are significant (see, e.g., Fama and French| (1996| 2015, |2016|, |2017; Hou
et al., [2015,[2018,b)). However, this approach is often sensitive to the choice of LHS portfolios.
Alternatively, following Barillas and Shanken| (2017) and Fama and French| (2018), in this
subsection, we use the right-hand-side approach to compare different factor models. If the
goal is to minimize the max squared Sharpe ratio of the intercepts for all LHS portfolios,
Barillas and Shanken| (2017) suggest we rank competing models on the maximum squared
Sharpe ratio for model factors.

To test a factor model ¢ with factors f;, let’s consider the time-series regressions of test
assets (II;), which include nonfactor test assets and factors from other competing models,

on model i’s factors f;. The maximum squared Sharpe ratio of the intercepts is

Sh2(a;) = a/¥7 ta,, (8)

where (Sh?(-)) denotes the maximum squared Sharpe ratio, a; is the vector of intercepts from
the time-series regressions of II; on model #’s factors (f;) and ¥; is the residual covariance
matrix. (Gibbons et al.| (1989) further show that the maximum squared Sharpe ratio of the
intercepts is the difference between the maximum squared Sharpe ratio constructed by II;

and model i’s factors and that constructed by model i’s factors only:

ShZ(ai) = Sh2(Hi7fi) - Shz(fz‘)~ (9)

Since II; and f; together include all competing factors, Sh2(Il;, f;) does not depend on i.

Therefore, to minimize the max squared Sharpe ratio of the intercepts, it is sufficient to
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find the maximum squared Sharpe ratio for model factors f;, i.e., Sh?(f;). The maximum
squared Sharpe ratio can be computed from the tangent portfolio formed by model factors.

Panel A of Table [0] presents the maximum squared Sharpe ratios for various factor mod-
els. Limited by data availability, we compare FF3, FF4, FF5, FF6, HXZ, HMXZ, DHS,
and TFP models.@ Among all competing models, the productivity-based model delivers a
highest maximum squared Sharpe ratio of 0.32. The HMXZ and DHS models have a similar
maximum squared Sharpe ratio of 0.26 and 0.27, respectively. But, other models have much
lower maximum squared Sharpe ratios, which are below 0.15. One concern about this right-
hand-side approach is that there are sampling errors when estimating tangent portfolios,
which are larger for models with more factors. This becomes an issue when we compare
non-nested models. Following Fama and French| (2018]), we use bootstrap simulations to
provide the distribution of the maximum squared Sharpe ratios. Specifically, we bootstrap
the time-series data of factors by sampling with replacement. Then we estimate the maxi-
mum squared Sharpe ratio. We repeat these procedures 10,000 times and report the 57 and
95" percentiles of the maximum squared Sharpe ratios from competing models in Panel A
of Table @ We see that even the 5 percentile of the maximum squared Sharpe ratio from
the productivity-based model (which is 0.26) is higher than or close to that of other models.

Next,we run spanning regressions to examine the marginal contribution of each produc-
tivity factor. We regress each productivity factor against the rest productivity factors. Panel
B reports the intercept (), its t-statistic, loadings, R?, residual standard error (s(e)), and

2

each productivity factor’s marginal contribution to the model Sh2(f), i.e., (S&)Q). The t-

statistic for the intercept measures if a factor statistically contributes to the model Sh?(f).
We see that except PC2, all other productivity factors have a significant intercept, with a
t-statistic above 3. Examining the marginal contribution to the model Sh?(f), we see that
PC5, PC3, and PC4 contribute most, followed by PC6 and PC1, but the contribution from

PC2 is negligible.

H'We can’t compute Sh?(f) for SY model as we only have data of spread factors but not the corresponding
portfolios.
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Overall, this right-hand-side approach further confirms that the productivity-based fac-
tors span the largest space of asset returns. We close this section by concluding that the
productivity-based model explains most of pricing factors and test assets in both time-series
and cross-section tests. These findings support that the idea that productivity factors cap-

tures fundamental risks embodied in most pricing factors.

4. Explaining Mispricing portfolios

It is surprising to see that in Table 3], the productivity-based model explains [Stambaugh
and Yuan| (2017)) mispricing factors (MGMT, PERF, and MIS). |Stambaugh and Yuan|(2017)
construct the mispricing factors by using 11 mispricing anomalies, which they attribute to
behavioral bias and market frictions. But, Table |3 seems to suggest that fundamental risks
explain most of the mispricing. In this section, we dig this deeply by investigating the 11
mispricing portfolios, the building blocks for mispricing factors, to see if the productivity-
based model is able to explain these 11 anomalies. The 11 mispricing anomalies are the net
equity issuance (ISS, Ritter, [1991]), the composite equity issuance (CI, Daniel and Titman),
20006), the accrual (ACC, [Sloan, |1996), the net operating assets (NOA, |Hirshleifer et al.|
2004)), the asset growth (AG, Cooper et al., 2008), the investment-to-asset (InvA, Titman
et al., 2004), the financial distress (DIST, Campbell et al., |2008)), O-score (OSCO, Ohlson),
1980), the momentum (Mom, |Jegadeesh and Titman) 1993), the gross profitability (GP,
Novy-Marx|, |2013), and the return on asset (ROA, [Fama and French, 2006). |[Stambaugh and
Yuan (2017)) cluster the first six anomalies (which are more related to managerial decisions)
as MGMT and the next five anomalies (which are more related to firm performance) as
PERF'. We obtain portfolio return data for 11 anomalies from Robert Stambaugh’s website
and use the long-short portfolio returns of 11 anomalies. Due to data limitation, the sample
period is from January 1972 to December 2015, except for the distress risk, which is from

October 1973 to December 2015.
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We present the time-series regression coefficients of these 11 anomaly portfolios on mim-
icking productivity factors in Panel A of Table[7] First, Panel A shows that 9 of 11 anomaly
portfolios do not have significant abnormal returns after controlling for the productivity fac-
tors. The accrual portfolio (ACC) and the O-score portfolio (OSCO) have only marginally
significant abnormal returns. The accrual portfolio has an intercept of 0.23% per month
(t=1.78) and the O-score portfolio has an intercept of 0.31% per month (¢=1.67). It seems
that the mimicking productivity factors capture almost all of information from 11 mispric-
ing portfolios. Second, these anomaly portfolios show significant exposure to the fourth
productivity factor, which captures firm investment. All 6 anomalies clustered in MGMT
have significant coefficients on PC4. For example, the accrual portfolio has a loading of 0.14
(t=7.07) on PC4. The asset growth portfolio has a very significant loading on PC4, 0.23
(t=15.58). Also, 3 of 5 anomalies clustered in PERF have significant loadings on PC4. Only
the distress and momentum anomalies have insignificant exposures to PC4. Third, 7 of 11
anomalies have significant loadings on PC3, which captures profitability. Fourth, momentum
is strongly related with PC5 as PC5 captures the momentum effect.

As we use the mispricing factor as part of the base assets in constructing mimicking
productivity factors in our benchmark case, this might mechanically relate mispricing port-
folios with the productivity factors. To alleviate this concern, we reconstruct the mimicking
productivity factors without using the mispricing factor and present the results in Panel B.
Again, we see that the productivity-based models explains 9 of 11 anomalies. The accrual
(ACC) and the gross profitability (GP) anomalies have significant abnormal returns. Except
the momentum anomaly, all other anomalies have significant exposures to the investment
factor (PC4). 9 of 11 anomalies are highly correlated with PC3, the profitability factor.

Overall, Table [7] demonstrates that most anomalies used in [Stambaugh and Yuan| (2017)
can be traced back to the fundamental risks. This echoes|Hou et al. (2018), where they show

that MGMT (PERF) has strong correlation with the investment (profitability) factor.
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5. Identifying a missing factor

So far, we show that productivity factors explain most pricing factors and test portfolios.
In this section, we further explore if the mimicking productivity portfolios can be explained
by other pricing factors. If the mimicking productivity portfolios have the same risk sources
as other pricing factors, those mimicking productivity portfolios should also be explained
by other pricing factors. We show that the first productivity factor is not captured by
other prevailing factors. Next, we further examine what kind of risk is captured by the first

productivity factor. We argue that this missing risk factor is related to the labor risk.

5.1.  Identifying a missing factor

If productivity factors and other pricing factors share the common fundamental risks, they
should capture similar risk prices. We test whether productivity factors can be explained
by prevailing pricing factors. The benchmark models include the CAPM, [Fama and French
(1993) three-factor model (FF3), Carhart| (1997)) four-factor model (FF4), Fama and French
(2015) five-factor model (FF5), Fama and French| (2018)) six-factor model, Stambaugh and
Yuan| (2017) mispricing factor model (SY), Daniel et al. (2018) behavioral model (DHS),
Hou et al. (2015)) g-factor model (HXZ), and Hou et al. (2018) ¢°> model (HMXZ). We run
time-series regressions for each productivity factor. Table |§] reports the intercept (a™ede)
and R? from each model. Panel A uses the full sample, while Panel B uses the extending
window.

Examining Panel A, we see that all of six mimicking productivity portfolios have sizable
and significant raw excess returns, similar to those shown in Table [l Except PC1, all
other productivity factors (PC2-PC6) can be explained by some benchmark models. That
is, PC2-PC6 share common fundamental risks with other pricing factors. For example, the

abnormal return of the second mimicking productivity factor (PC2) loses its significance

when we apply SY mispricing factor model or DHS behavioral model, i.e., a®¥=0.15%
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(t=1.28) and aP#9=-0.08% (t=-0.48), respectively. PC2 has a high correlation with the
size factor. The unreported results show that size factor of SY explains most of PC2 return
variations. The third mimicking productivity factor (PC3), which captures the profitability,
has insignificant abnormal returns for HXZ model. a7 is-0.11% per month (¢=-0.37). The
coefficient on the profitability factor (Qrog) is -0.69 (t=-6.19). FF5 can partially explain
PC2, which brings the excess returns from -0.95% to -0.59% per month. But, Qror from
the g-factor model seems to have stronger explanatory power than RMW from Fama-French
five-factor model. Abnormal returns of the fourth mimicking productivity factor (PC4)
disappear when we control for the mispricing factor. Coefficients on both size factor and
MGMT are very significant, 2.28 (¢t=7.54) and 1.33 (¢t=5.93) respectively. This suggests
that MGMT contains information about the investment factor (Hou et al., [2018). The fifth
mimicking productivity factor (PC5) is fully captured by SY or DHS model. Also, HMXZ
model generates a marginally significant alpha for PC5. These insignificant alphas are mainly
driven by PERF, PEAD, and EG which are highly correlated with the momentum factor
(UMD). FF4 and FF6 explain more than half of the abnormal returns but alphas remain
significant. Lastly, the sixth mimicking productivity factor (PC6) is explained by FF6, DHS,
HXZ, and HMXZ models.

Importantly, Panel A shows that the first mimicking productivity factor (PC1) is missed
by prevailing factors. PC1 has significant alphas after controlling for those prevailing pricing
factors[? Its raw return is 1.30% per month (=4.71). Across 9 factor models, the mag-
nitudes of their alphas are similar. The lowest alpha is 0.91% per month ({=3.04) from
Stambaugh and Yuan| (2017) model. This can be inferred from Panel B of Table [1} where
PC1 only has a moderate correlation with momentum factor but very low correlations with
all other pricing factors. Overall, the explanatory power (R?) is fairly low, ranging from 0 to
0.12. The low R? further suggests that the first mimicking productivity factor is a missing

factor from the prevailing factor models.

12 Appendix |C| shows more regression details of PC1 on various factor models. We see that PC1 has
significant exposures to the size factors (SMB, Qarg, and M 1Sy ), RMW, and momentum factor (UMD).
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Turning to the extending-window results in Panel B, we see similar results. That is,
PC1 has significant alphas from various benchmark models. The sign of abnormal returns
is different from that in Panel A because the first principal component in extending window
is negatively correlated with the first principal component from the full-sample estimation.
The raw returns of PC1 is about -1.85% per month. The abnormal returns vary from -0.92%
to -1.51% per month. PC2 and PC4 have significant raw returns but their intercepts become

insignificant once we control for other pricing factors.

5.2.  Interpreting the missing factor

We interpret the missing factor, PC1, as a labor factor, for two theoretical reasons.
First, total factor productivity in Eq. contains labor factor. For example, total factor

productivity can be decomposed into the labor productivity and the capital productivity:

LogTFP; = LogYy — BrLog Ly — BxLog Ky

= Br(Log Yy — Log L) + Bk (Log Yy — Log Kit) + (1 — B, — Bk )Log Yy (10)

Y Y
= A Log — +BK Log — +(1 — B — Bk )Log Y.

Lt Kt
Labor productivity Capital productivity
Therefore, by construction, TFP measures labor productivity as well as capital productivity
when we estimated TFP following |Olley and Pakes| (1996]). However, prevailing pricing
factors, like investment or profitability factors in Fama and French (2017)), [Hou et al. (2015]),
and Hou et al.| (2018)), capture mainly the capital productivity, and not specifically designed
to capture the labor productivity. This suggests that the missing factor, PC1, likely captures
the labor risk.
Second, recent literature suggests that labor risks are important sources to the equity

premium. Installed labor affects firm value when there exist some labor market frictions.

Current literature considers several sources of labor frictions: costly to hire and fire employees
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(Merz and Yashiv}, 2007; Belo et al., [2014), wage rigidity (Favilukis and Lin, 2016ab)) , search
frictions (search and matching) in labor markets (Petrosky-Nadeau et al., 2018). Installed
labor can increase equity risks because labor leverage plays a role similar to the operating
leverage (Danthine and Donaldson, [2002; |Donangelo], 2014 |Donangelo et al., 2018)), or due to
the fact that shareholders provide insurance to workers (Marfe, 2016|, 2017; [Hartman-Glaser
et al., 2017} Lettau et al., [2018)).

Moreover, we empirically establish the connection between PC1 and labor risk in four
steps. First, we explore how labor productivity and capital productivity contribute to the
total productivity at firm level. In the first column of Panel A of Table [9] we report Fama-
MacBeth regression of log TFP growth on the labor productivity growth, the capital pro-

ductivity growth, and the output growth. The labor productivity growth is the log growth of

Yis
L’

labor productivity, Log the capital productivity is the log growth of capital productivity,

Yit
K’

Log and the output growth is the log growth of output. The coefficient on the labor
productivity growth is 0.39 (¢=44.50), which is larger than that on the capital productivity
growth is 0.22 (t=23.19). Hence, labor productivity is an important part of total factor
productivity.

Second, we link the first productivity principal component (PC1) with aggregate labor
productivity, by running time-series regressions of either PC1, or its mimicking productivity
portfolio, labeled as RFC!, on the aggregate labor growth and capital growth. The aggregate
labor growth and capital growth data are from Federal Reserve Bank of San Francisco"|
The second and third columns of Panel A of Table [d show that both PC1 and RFC! have
significant coefficients on the aggregate labor growth, but not aggregate capital growth.
Therefore, PC1 mainly captures the labor productivity.

Third, we investigate the asset pricing implications of labor risk. Following |Donangelo
et al. (2018), we construct the labor share portfolios. Labor share is defined as the ratio of

:. Sales;;—Materials;;

the labor expense over the value-added. Value-added (Yi) is G5, Flator - Material cost

Bhttps:/ /www.frbsf.org/economic-research /indicators-data/total-factor-productivity-tfp/
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(Materialsy) is total expenses minus labor expense. Total expense is sales minus operating
income before depreciation and amortization (oibdp). Labor expense is the staff expense
(xIr). Only a small number of firms report the staff expense in Compustat. We replace those

missing observations with the interaction of industry average labor expense ratio and total

xlr

YT for each firm.

expense. Specifically, we first calculate the labor expense ratio
Next, in each year we estimate the industry average of the labor expense ratio at 4-digit SIC,
with at least three firms available in the industry. Otherwise, we estimate the average of the
labor expense ratio at 3-digit SIC. In the same manner, we estimate the industry average of
labor expense ratio at 2-digit and 1-digit SIC code. Then, we back out the staff expense by
multiplying the industry average labor expense ratio and total expense. If the labor expense
is still missing, we interpolate those missing observations with the interaction of annual wage
from the Bureau of Labor Statistics and the number of employees. We exclude financial and
utility firms. Also, we exclude firms with a stock price below $5, total assets below 12.5
million dollars, the number of employees below 100, or the sales growth or the asset growth
above 100%. Finally, we trim the labor share at 0.5* and 99.5"" percentiles. We sort all
stocks at the end of June at year ¢t based on the labor share into 5 portfolios and compute
equally-weighted portfolio returns in the next 12 months.

We report returns of 5 labor sorted portfolios and the long-short portfolio in Panel B
of Table @] Consistent with Donangelo et al.| (2018)), the portfolio returns monotonically
increase with labor share. As the labor share increases, the labor risk increases because the
wage is sticky (Belo et al., [2014; [Donangelo et al., 2018)). The long-short portfolio of the
labor share, R¥X | is 0.47% per month (¢=2.98). The long-short portfolio generates significant
alphas across different models except for the productivity-based model. This suggests that
the prevailing factors cannot explain the labor risk. But the six productivity factors track
the labor risk well.

Fourth, we check whether the first productivity component is related to the labor risk.

In Panel C of Table [9] we presents the annual correlation coefficients between the annual

29



long-short labor share portfolio return (LS factor) and the six productivity components
(PC1 to PC6). LS factor is highly correlated with the first productivity principal component
(PC1), with a correlation coefficient of 0.43, while its correlations with other productivity
components are very minor. This further confirms that PC1 captures the labor risk.

If the labor share factor and the first productivity factor capture similar labor risks, we
expect that the productivity-based model explains other pricing factors when we replace the
first productivity factor with the labor share factor. We run the time-series regressions of
each pricing factors on the labor share factor and the second to sixth mimicking productivity
factors and present the intercepts and the coefficients of each factor in Panel A of Table [T0}
The labor factor, LS, is significantly priced among most pricing factors, except for HM L and
PEAD. Similar to the productivity-based model, this labor share augmented productivity
model explains most of pricing factors. However, it cannot fully explain the profitability
factors (RMW and Qgrog), the investment factors (CMA and Qra), expected investment
growth factor (FG), and PEAD. Overall, it performs worse than the productivity-based
model. This is not surprising, as the labor-augmented productivity model can’t fully explain
PC1 as well, which suggests PC1 may better capture labor risk than LS measure.

Lastly, we run Fama-MacBeth regression using the prevailing factor models augmented
with the first mimicking productivity portfolio (PC1) or the labor share factor (LS). If
the labor risk is missed by the prevailing factor models, adding the missing factor should
improve their empirical performances. In Panel B of Table[10] we report the Fama-MacBeth
regression results, using the 155 portfolios from Table [5| as test assets. First, we see that
PC1 is significantly priced in all models while LS is priced in FF6, HMXZ, and DHS models.
Adding the labor factor (PC1 or LS) improves the model performances, especially for FF6
and DHS models. For example, after adding PC1, FF6 model has an insignificant intercept
(t=-1.41). Also, the adjusted R? increases by 0.04. When the DHS model adds the LS
factor, the intercept becomes insignificant (¢=-0.03) and the adjusted R? increases from

0.18 to 0.51. Overall, the missing factor (PC1 or LS) helps to reduce the intercepts of
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various models. Also, even though some factor models, such as FF5 or HXZ, already have
insignificant intercepts, the missing factor increases their explanatory power. Therefore, the

labor risk helps other factor models to explain the stock returns.

6. Conclusions

Inspired by the neoclassical theory, we start with productivity shocks in firms’ production
to identify multiple systematic productivity risks and explore their asset pricing implications.
We find that the first six productivity factors well explain lots of test assets and the prevailing
pricing factors, including [Fama and French (2018)) six factors, Hou et al.|(2015) ¢ factors, the
mispricing factors in Stambaugh and Yuan| (2017, and the long-horizon behavioral factor in
Daniel et al.| (2018). This indicates the common risk sources behind these seemingly different
factors. In particular, we find an important productivity factor missed in these empirical
asset pricing models, which we interpret as the labor risk. This suggests the importance
of recognizing labor risk in asset pricing models. Overall, we show the productivity-based

model performs at least as well as the prevailing factor models.
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Table 1. TFP growth factors: Descriptive statistics and relations with other
factors

Panel A summarizes the annual log TFP growth and six principal components (PC1 to PC6), including
the mean, standard deviation, and percentiles. Full-sample data are used in estimating principal compo-
nents. AR(1) denotes the first-order autocorrelation. R? denotes the average explanatory power of principal
components at firm-level. Panel B reports the annual time-series correlation coefficients between principal
components and other pricing factors. The pricing factors include [Fama and Frenchl (2015 market factor
(MKT), size factor (SMB), value factor (HML), investment factor (CMA), and profitability factor (RMW),
Carhart| (1997) momentum factor (UMD), Hou et al.| (2015) size factor (Qag), investment factor (Qra),
and profitability factor (Qror), Hou et al. (2018)) expected investment growth factor (EG), and [Stambaugh
and Yuan| (2017) mispricing factor (MIS), and Daniel et al.| (2018) long-horizon behavioral factor (FIN) and
short-horizon behavioral factor (PEAD). Panel C presents the monthly mean (% per month), standard devi-
ation (% per month, S.D.), Sharpe ratio (SR), and correlations for the mimicking portfolios of six principal
components. The sample period is from January 1972 to December 2015, but |Daniel et al.| (2018)) factors
are from July 1972 to December 2014.

Panel A: TFP and its 6 principal components

Mean S.D. Min Max  10%  25% 50% 7%  90% AR(l) R?
ATFP 00l 0.19 -1.35 126 -0.20 -0.08 001 010 022  0.07

PC1  -008 101 -354 338 -0.76 -046 -0.15 025  0.74 -0.03 0.15
PC2 006 1.01 -351 255 -115 -0.57 0.0l 038 118 020 0.24
PC3 005 101 -277 332 -0.8% -046 -0.03 063 107 024 0.32
PC4 017 100 -1.54 386 -1.08 -041 024 055 087 045 0.39
PC5 003 101 -357 287 -082 -035 012 051 082 045 0.6
PC6  0.12 1.00 -215 311 -1.02 -040 0.1 0.62 130 025 0.52

Panel B: Correlations between 6 TFP components and pricing factors

MKT SMB HML CMA RMW UMD Qur Qra Qror EG MIS FIN PEAD

MKT 1.00

SMB 0.15  1.00

HML -0.27 0.17 1.00

CMA -036 0.17 0.71 1.00

RMW  -0.30 -0.13 0.21 0.04 1.00

UMD -0.21 -0.26 -0.16 -0.11 0.02 1.00

QmE 0.10  0.99  0.20 0.17  -0.08 -0.20  1.00

Qra -038 0.05 0.68 0.93 0.09 -0.05 0.07 1.00

Qror -0.27 -0.38 -0.08 -0.13 0.72 0.52  -0.30  0.00 1.00

EG -0.26 -0.10 0.10 0.23 0.29 0.36 -0.06 0.21 0.37 1.00

MIS -0.52 -0.39 0.11 0.31 0.31 0.61 -0.33 0.33 0.52 0.66  1.00

FIN -056 -0.22  0.67 0.57 0.55 0.16 -0.19 0.59 0.35 0.36  0.57 1.00
PEAD 0.00 -0.07 -0.06 -0.02 -0.27 0.55 -0.03 0.01 0.18 029 043 -0.04
pC1 -0.01 0.01 -0.07 -0.14 0.11 -028 0.01 -0.14 -0.08 0.14 -0.01 -0.05
PC2 0.12 -0.24 -0.14 -0.12  -0.16 0.17  -0.25 0.00 0.05 -0.24  0.09 0.05
PC3 0.19 0.06 -0.15 -0.07 -0.48 -0.06 0.01 -0.23 -0.42 -0.02 -0.18 -0.27
pPC4 -014 028 0.21 0.50 0.00 -0.13 026 043 -0.22 0.12 0.03 0.17
PC5 0.09 -0.10 0.01 -0.04 -0.09 0.35 -0.09 -0.07 0.13 0.09 0.17 -0.04
PC6 034 -0.14 -0.23 -0.29 -044 -0.17 -0.18 -0.26  -0.29 -0.27  -0.35 -0.48

1.00
-0.22
0.20
0.11
-0.12
0.19
-0.07

Panel C: Statistics of monthly mimicking productivity portfolios

Mean SD SR PC2 PC3 PC4 PC5 PC6
PC1 1.31 7.38  0.18 0.36 0.05 0.22  -0.03 -0.27

PC2 039 355 0.11 -0.21  -0.38  0.26 -0.07
PC3 -095 567 -0.17 0.15 021 0.20
PC4 1.59 10.25 0.16 -0.30 -0.24
PC5 0.70 212  0.33 -0.39

PC6 -099 485 -0.20

w
=~



Table 2. Validating TFP decompositions

Panel A tabulates the contemporaneous excess value-weighted returns (% per month) and t-statistics (in
parentheses) of portfolios sorted by total TFP growth (ATFP) and systematic TFP growth (ATF Pyys).
Systematic TFP growth is the predicted TFP growth from the regression of total TFP growth on 6 principal
components for each firm. Panel B regresses the monthly excess returns or annual return volatility on
TFP and its components. Annual return volatility is the standard deviation of daily returns over the last
year. Models (1)-(3) use logarithmic total TFP volatility (carrp), logarithmic systematic TFP volatility
(0ATFP,sys), logarithmic idiosyncratic TFP volatility (carFp,idio), asset growth (AG), and logarithmic cash
flow (CF/K) as regressors. Total TFP volatility is the standard deviation of last 5 year TFP growth.
Systematic TFP volatility is the standard deviation of last 5 year systematic TFP growth. Idiosyncratic
TFP volatility is the standard deviation of last 5 year idiosyncratic TFP growth, which is total TFP growth
- systematic TFP growth. Asset growth is % where AT is total asset. Cash flow is Ig%&. IB is
the income before extraordinary item. DP is the/depreciation and amortization. PPENT is the net property,
plant, and equipment. Models (1)-(3) are Fama-MacBeth regressions with industry fixed effects (4-digit
SIC). Newey-West adjusted t-statistics with 6-month lags are reported in parentheses. Models (4)-(5) are
panel regressions of logarithmic return volatility on absolute value of TFP growth (JATFPJ), systematic
TFP growth (|ATF P;ys|), and idiosyncratic TFP growth (|JATF P,g4i0|) with firm and month fixed effects.
The standard errors are clustered by both firm and month. All coefficients are multiplied by 100. The sample
period is from January 1972 to December 2015.

Panel A: Contemporaneous returns of TFP sorted portfolios

Low 2 3 4 High H-L
ATFP 0.16 0.74 0.95 1.20 1.63 1.47
(0.66) (3.27) (4.95) (6.23) (7.36) (9.49)
ATF Pyys 0.65 0.79 0.84 1.14 1.48 0.83
(2.58) (3.86) (4.35) (5.78) (6.27) (4.88)
Panel B: Predicting return and volatility with TFP and its components
Model (1) Model (2) Model (3) Model (4) Model (5)
Excess returns Return volatilities
OATFP 0.22
(3.61)
OATFP,sys 0.15 0.14
(2.44) (2.35)
UATFP,idio 009 008
(1.78) (1.63)
AG -0.84
(-4.46)
CF/K -0.11
(-1.51)
|ATFP| 0.20
(7.49)
|ATF Py 0.11
(2.76)
|ATF P,gio| 0.22
(7.37)
Firm FE No No No Yes Yes
Ind. FE Yes Yes Yes No No
Time FE No No No Yes Yes
R? 0.36 0.37 0.37 0.67 0.67
N 177416 177416 177416 28138 28138
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Table 4. Explaining various test portfolios with productivity factors

This table presents the intercepts (o, % per month) and their ¢-statistics from time-series regressions of
various portfolios on productivity factors. Test portfolios include 25 size and book-to-market sorted portfo-
lios (Panel A), 25 size and operating profitability sorted portfolios (Panel B), 25 size and investment sorted
portfolios (Panel C), 25 size and momentum sorted portfolios (Panel D), 25 size and idiosyncratic volatility
sorted portfolios (Panel E), and 30 Fama-French industry portfolios (Panel F). Factors include the 6 mim-
icking productivity portfolios constructed from the full sample. Newey-West t-statistics with 6-month lags
are provided. The sample period is from January 1972 to December 2015.

a (% per month) t-statistic
Panel A: 25 size and book-to-market (BM) sorted portfolios
Low BM 2 3 4 High BM Low BM 2 3 4 High BM
Small -0.19 0.30 0.14 0.33 0.43 -0.55  1.03 048 1.21 1.31
2 0.03 0.12 0.19 0.18 0.11 0.09 046 070 0.73 0.35
3 0.20 0.18 0.17 0.22 0.26 069 0.69 0.70 0.85 0.82
4 0.33 0.08 0.10 0.23 0.07 1.27 030 040 0.91 0.23
Big 0.22 0.08 -0.01 -0.19 0.07 1.10 040 -0.05 -0.73 0.29
Panel B: 25 size and operating profitability (Op) sorted portfolios
Low Op 2.00 3.00 4.00 High Op Low Op 2 3 4  High Op
Small 0.06 0.24 013 0.17 0.03 0.19 0.86 045 0.54 0.08
2 0.06 0.00 0.12 0.25 0.19 021 0.02 046 0.89 0.62
3 0.19 0.15 0.15 0.11 0.28 066 0.62 0.62 044 0.99
4 024 0.17 0.12 0.23 0.15 0.89 0.72 0.51 0.92 0.56
Big 0.07 0.00 0.05 0.20 0.17 0.27 0.01 0.23 0097 0.90
Panel C: 25 size and investment (Inv) sorted portfolios
Low Inv 2 3 4  High Inv Low Inv 2 3 4  High Inv
Small 0.38 037 029 0.13 -0.19 1.15 126 1.02 0.47 -0.58
2 0.12 0.13 021 0.21 0.02 0.39 0.50 0.89 0.79 0.05
3 024 020 0.18 0.23 0.22 087 0.82 0.74 094 0.79
4 0.09 0.10 0.14 0.26 0.35 0.32 040 0.62 1.11 1.32
Big 0.08 -0.04 0.02 0.13 0.37 0.34 -0.21 0.13 0.70 1.69
Panel D: 25 size and momentum sorted portfolios
Loser 2 3 4 Winner Loser 2 3 4 Winner
Small 024 0.19 032 040 0.49 054 0.60 1.10 1.42 1.58
2 0.38 031 025 0.23 0.26 093 1.00 094 0.87 0.97
3 0.63 0.33 0.21 0.03 0.14 .59 112 0.77  0.12 0.54
4 0.66 0.37 024 0.15 0.04 .70 129 0.93 0.63 0.14
Big 049 0.40 0.04 -0.04 -0.13 1.38 170 0.18 -0.23 -0.57
Panel E: 25 size and idiosyncratic volatility (Ivol) sorted portfolios
Low Ivol 2 3 4 High Ivol Low Ivol 2 3 4 High Ivol
Small 048 0.48 0.46 0.46 -0.29 1.93 156 1.26 1.12 -0.64
2 0.29 0.26 030 0.29 -0.05 1.36 094 1.02 0.83 -0.12
3 0.17 021 0.21 0.23 0.08 0.83 0.85 0.73 0.75 0.24
4 0.18 0.16 0.17 0.18 0.29 091 0.74 0.67 0.63 0.89
Big -0.02 -0.02 -0.04 0.10 0.42 -0.11 -0.12 -0.18 0.43 1.56
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a (% per month)

t-statistic

Panel F: 30 Fama-French industry portfolios
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Table 7. Explaining mispricing portfolios with productivity factors

Panel A reports the intercepts (in % per month) and factor loadings from full-sample time-series regressions of
11 mispricing portfolios from Stambaugh and Yuan (2017) against productivity factors. Mispricing portfolios
cluster in either mispricing related to the management (MGMT) or mispricing related to the performance
(PERF). Panel B tabulates the similar results but the mimicking portfolios of productivity factors are
constructed with base assets excluding the mispricing factor. Acc denotes the accruals, following [Sloan
(1996). AG denotes the asset growth, following |Cooper et al.| (2008]). CI denotes the composite equity
issuance, following Daniel and Titman (2006). InvA denotes the investment-to-asset, following [Titman et al.
(2004). NOA denotes the net operating assets, following [Hirshleifer et al. (2004). ISS denotes the net equity
issuance, following Ritter| (1991). DIST denotes the financial distress, following |(Campbell et al.| (2008).
GP denotes the gross profitability, following Novy-Marx| (2013). Mom denotes the momentum following
Jegadeesh and Titmanl (1993). OSCO denotes O-score, following (Ohlson| (1980). ROA denotes the return on
asset, following [Fama and French| (2006). Factors include 6 mimicking productivity portfolios constructed
from the full-sample estimation. Newey-West t-statistics (t-stat) with 6-month lags are provided. R? and
standard errors of residuals (s(e), %) are reported. The sample period is from January 1972 to December
2015 except for DIST (October 1973 to December 2015).

Panel A: Including mispricing factor as base assets
MGMT PERF

Acc AG CI InvA NOA ISS DIST GP Mom OSCO ROA
a 023 -0.14 0.08 004 018 0.05 -0.26 0.22 -0.27 0.31 0.18
t-stat 1.78 -1.06 055 029 134 045 -0.77 1.25 -0.76 1.67 1.04
Bpc1 -0.13  -0.18 -0.21 -0.08 0.02 -0.13 -0.04 0.01 0.19 -0.05 0.07
t-stat -4.64 -8.03 -745 -2.54 063 -6.90 -0.67 0.38 3.07 -1.26 2.70
Bpc2 050 025 042 0.14 -0.02 0.25 -0.10 0.02 -0.38 0.30 -0.21
t-stat 8.06 493 744 221 -031 556 -0.68 0.19 -2.18 413  -3.71
Bpcs  0.02 -0.14 -0.10 -0.12 -0.12 -0.12 -0.12 0.19 -0.07 0.03 -0.19
t-stat  0.76 -3.77 -247 -2.88 -2.68 -4.35 -1.03 444 -0.73 0.75  -4.66
Bpcse 014 023 0.14 0.18 0.08 0.08 -0.06 -0.09 0.08 -0.12  -0.19
t-stat  7.07 1558 6.60 9.13 339 593 -099 -3.74 1.29 -5.63 -10.11
Bpcs -0.09  0.22 0.00 024 0.35 0.18 0.33 -0.15  1.48 -0.41 0.16
t-stat -0.93 236 0.02 257 258 2.68 1.13 -1.03 7.14 -2.74 1.61
Bpce 0.04 -0.10 -0.22 005 0.15 -0.18 -0.63 -042 -0.19 -0.20  -0.38
t-stat  0.88 -2.39 -5.10 1.25 345 -4.82 -474 -6.05 -1.37 -4.51  -8.51
R? 022 050 038 027 007 0.37 0.31 0.25 031 0.20 0.46
s(e) 289 233 267 249 279 214 5.19 3.19 5.48 3.27 2.99
Panel B: Excluding mispricing factor as base assets
MGMT PERF

Acc AG CI InvA NOA ISS DIST GP Mom OSCO ROA

o 044 -0.01 0.12 014 021 011 -020 045 0.50 0.06  -0.03
t-stat 297 -0.08 094 118 141 092 -048 220 1.17 0.28  -0.22
Bpci -0.01 -0.02 -0.03 -0.01 0.00 -0.01 0.00 0.03 0.03 0.00 0.01
t-stat -2.95 -4.35 -4.67 -240 042 -2,57 -0.15 497 184 -0.30 1.75
Bpc2 0.08 0.04 0.07 0.03 -0.01 002 -0.10 -0.05 -0.16 0.03  -0.08
t-stat  6.06 294 6.18 222 -0.85 216 -2.58 -3.08 -3.94 213  -6.67
Bpcs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
t-stat -0.22 -2.57 -2.00 -2.26 -3.57 -5.20 -290 0.89 -2.22 -1.96  -9.39
Bpcsa 011 023 0.16 018 0.05 0.06 -0.15 -0.14 -0.11 -0.10  -0.22
t-stat  4.73 1432 6.63 7.8 2.09 297 -2.79 -513 -1.57 -3.35  -10.27
Bpcs -0.02  0.09 006 0.08 0.07 0.04 0.01 -0.08 0.13 -0.03 0.01
t-stat -0.68 445 278 471 3.36 2.20 0.20 -2.59 217 -0.92 0.39
Bpce 0.01 -0.06 -0.10 -0.01 0.06 -0.04 -0.12 -0.06 -0.01 -0.01  -0.05
t-stat  0.68 -3.33 -5.52 -0.66 2.96 -2.87 -2.05 -2.44 -0.22 -0.70  -2.89
R* 018 046 037 029 008 0.27 024 020 0.18 0.16 0.49
s(e) 297 242 270 246  2.76 43,32 544 329 598 3.36 2.90




Table 8. Explaining productivity factors with other pricing factors

This table presents the excess returns (RF%X) and alphas of productivity factors, using full-sample estimation
in Panel A and extending-window estimation in Panel B. Alphas are computed from various factor models,
including CAPM (a®AFM) the Fama and French| (1993)) three-factor model (af'#?), (Carhart| (1997) four-
factor model (af¥*), Fama and French| (2015) five-factor model (af'¥?), |[Fama and French| (2018) six-factor
model (af'F%) |Stambaugh and Yuan| (2017) mispricing factor model (a°"), |Daniel et al. (2018) behavioral
model («PH9) Hou et al.|(2015) g-factor model (af7X#), and Hou et al. (2018) ¢° model (oM X%). Panel B
presents similar results from the extending-window estimation. R? is reported. All returns are multiplied with
100. Newey-West adjusted ¢-statistics with 6-month (4-month for Panel B) lags are provided in parentheses.
The sample period is from January 1972 to December 2015, but |Daniel et al.| (2018]) factors are from July
1972 to December 2014. The testing period for panel B is from January 2001 to December 2015, but it is

from January 2001 to December 2014 for |Daniel et al.| (2018) factors.

Panel A: Full-sample estimation

PC1 PC2 PC3 PC4 PC5 PC6
RFX 131 (4.71)  0.39 (2.78)  -0.95 (-3.13) 1.59 (3.29) 0.70 (7.40)  -0.99 (-4.30)
aCAPM 199 (4.41)  0.32 (2.26)  -1.17 (-3.94) 1.93 (4.18) 0.62 (6.87)  -1.20 (-5.53)
R% 0.00 0.03 0.11 0.08 0.13 0.13
ofF3 137 (4.82)  0.34 (2.89)  -0.96 (-3.28) 1.32(3.28) 0.63 (7.15)  -1.05 (-5.52)
R? 0.06 0.41 0.34 0.47 0.14 0.20
ofF4 117 (3.79) 032 (2.82)  -1.00 (-4.08) 1.10 (2.60) 0.38 (4.53)  -0.57 (-3.11)
R? 0.08 0.42 0.34 0.48 0.43 0.39
ofF5 131 (4.27) 027 (2.08)  -0.59 (-2.03) 1.08 (3.67) 0.46 (4.15)  -0.40 (-2.49)
R?* 0.09 0.43 0.43 0.71 0.28 0.53
afF6 115 (3.53)  0.25(2.09)  -0.67 (-2.56) 0.96 (3.26) 0.27 (3.26)  -0.09 (-0.65)
R? 0.10 0.43 0.43 0.71 0.52 0.65
a®Y 091 (3.04) 0.15 (1.28)  -0.95 (-3.79) 0.28 (0.72) 0.06 (0.81)  0.26 (1.82)
R? 0.12 0.39 0.27 0.50 0.63 0.66
oPHS 127 (3.60)  -0.08 (-0.48) -0.73 (-2.42) 2.09 (3.64) 0.15 (1.28)  -0.34 (-1.56)
R?* 0.02 0.16 0.28 0.09 0.33 0.28
X2 1.35(4.20)  0.45 (3.59)  -0.11 (-0.37) 1.22 (3.41) 0.38 (3.29)  -0.15 (-0.94)
R%? 0.04 0.50 0.53 0.75 0.38 0.54
oTMXZ 116 (3.90)  0.41 (3.34)  -0.42 (-2.01) 0.74 (2.68) 0.21 (1.95)  0.06 (0.34)
R%? 0.05 0.50 0.56 0.77 0.44 0.56
Panel B: Extending-window estimation
PC1 PC2 PC3 PC4 PC5 PC6
RFPX 171 (-3.53) 3.36 (1.89)  0.18 (0.74)  1.98 (2.29) -0.63 (0.92)  0.19 (0.14)
QCAPM 185 (-3.84) 4.42 (2.28)  0.08 (0.29)  1.65 (1.80) -0.37 (-0.68) -0.36 (-0.24)
R%? 0.04 0.13 0.10 0.07 0.11 0.06
afF3 151 (-3.50) 3.32(2.25)  0.03 (0.13)  1.79 (1.74) -0.31 (-0.56) -0.18 (-0.12)
R? 0.23 0.32 0.20 0.08 0.13 0.06
ofF4 139 (-3.24) 2.76 (1.94)  0.00 (0.00)  1.53 (1.49) -0.49 (-0.79) -0.27 (-0.19)
R? 0.27 0.40 0.22 0.13 0.20 0.07
ofF5 1,08 (-2.41) 081 (0.73)  0.08 (0.33)  1.16 (1.04) -0.17 (-0.31) -0.09 (-0.05)
R* 0.27 0.46 0.21 0.10 0.14 0.07
ofF6 _1.11 (-2.63) 0.97 (0.93)  0.10 (0.41)  1.26 (1.17) -0.07 (-0.15) -0.05 (-0.03)
R? 0.29 0.49 0.23 0.14 0.23 0.07
a®Y  -0.92 (-2.19) 1.43 (1.09)  -0.01 (-0.03) 0.70 (0.68) -0.73 (-0.83) 0.36 (0.20)
R%? 0.30 0.38 0.20 0.13 0.14 0.07
oPHS 1,19 (-2.68) 1.93 (1.49)  0.25 (0.91)  0.70 (1.03) -0.53 (-0.78) 0.28 (0.15)
R* 0.13 0.32 0.18 0.11 0.14 0.07
afXZ 1,04 (-2.86) 1.11 (0.99)  0.12 (0.48)  0.86 (0.78) -0.60 (-0.87) 0.17 (0.10)
R? 0.33 0.52 0.16 0.18 0.17 0.09
aTMXZ 096 (-2.64) 0.93 (0.82)  0.15 (0.56)  0.61 (0.55) -0.47 (-0.74) 0.58 (0.34)
R%? 0.33 0.52 0.16 0.20 0.18 0.10
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Table 9. Interpreting the missing factor as labor risk factor

In Panel A, the first column presents Fama-MacBeth regression of total TFP growth (AT FP) on labor pro-
ductivity growth (ALabor productivity), capital productivity growth (ACapital productivity), and output
growth (AOutput). The second and third columns report the time-series regressions of first productivity
component (PC1) and its mimicking portfolio (RF¢!) against aggregate labor growth (ALabor#99) and
capital growth (ACapital?99). Panel A reports the coefficients, t-statistics, and R?. Panel B reports the
monthly quintile portfolios and long-short portfolio returns sorted on the labor share, in percentage. Newey-
West adjusted t-statistics (t-stat) with 6-month lags are provided. Panel C tabulates the annual time-series
correlation coefficients between labor share factor and productivity components. The sample period is from
January 1972 to December 2015.

Panel A: Productivity and labor risk
ATFP PC1  RPCI
ALabor 0.39
productivity  (44.50)
ACapital 0.22
productivity  (23.19)
AQutput 0.04

(4.50)
ALabor499 -0.20  -3.70
(-2.67) (-3.39)
ACapital?99 0.18 2.34

(1.04)  (0.92)
R? 0.70 0.24 0.14
Panel B: Portfolios sorted by labor share
Low 2 3 4 High H-L t-stat
RFX 0.55 0.52 0.64 071 1.02 047 (2.98)
aCAPM 0.08  -0.05 0.06 0.10 0.41 0.33 (2.18)
af'F3 0.14  -0.02 0.01 004 0.38 024 (1.88)
ol 0.19 0.14 0.17 0.18 051 0.32 (2.46)
al'F's 0.09 -0.05 -0.02 0.03 038 029 (2.09
ol Fo 0.14 0.09 0.11 0.15 049 035 (2.59)
(2.09)
(2.82)
(2.07)
(3.11)

(

Y 0.14 0.08 0.09 0.11 0.42 0.28
aPHS 0.10 0.11 0.16 0.27 0.61 0.51
i X2 0.15 0.04 0.04 0.08 047 0.31
AMXZ 0.08 0.09 0.14 0.19 055 0.47
aTFP 0.28 0.28 0.33 0.25 0.58 0.30
Panel C: Correlation between labor share factor and the first productivity factor
PC1 PC2 PC3 PC4 PC5 PC6
LS factor 0.43 -0.11 0.14 0.15 -0.11 0.09
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Online Appendices

A.  Productivity shocks and stock returns: A motivating model

Consider a one-period setting where an all-equity firm uses physical capital and labor to

generate outputs. Assume the simple Cobb-Douglas production function:
Y = LK< Z (1)

where Y}, L, K, and Z; are value-added, labor, capital stock, and productivity of a firm
1 at time ¢, respectively. Suppose the capital depreciation rate is ¢ and the labor separation

rate is ©. The capital installation equation is
Ki1 = I + (1 = 0)K; (2)

where [;; is capital investment at time ¢. Capital adjustment is subject to a cost of G(I;;, Ky).

Similarly, the labor evolves as
L1 = Hy + (1 =)Ly (3)

where Hj; is labor hiring at time ¢. The labor hiring costs are ¢(H;, L;;). Given a one-period
pricing kernel of M; .y, this firm optimally chooses capital investment and labor hiring to

maximize the firm value, as follows:

max Yit — Iy — G(Lit, Kit) — WiLiy — ¢(Hit, Lit) (4)
FEAM,; 4 1[Yierr + (1 — 0) K1 — Wip1 Lizia]}
s.t. Kit-‘,—l = 1y + (1 - 5)Kz (5)

Lipy1 = Hyy + (1 — ) Ly, (6)
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where W, is exogenously given WageE

The Lagragian function is

L=Yy— Iy — Gy, Ky) = WLy — ¢(Hyt, Lit) (7)
+EA{M;pi1[Yier + (1 — 6) Kip1 — Wi1 Lia ]}
- qz']t([Kit—&—l — Iy — (1 - 5>Ki ]

— q5[Litt1 — His — (1 — ) Ly).

where ¢5 and ¢ are the Lagragian multipliers associated with capital installation and labor
hiring constraints in Egs. (B]) and (6), respectively. Gy, Yx,,,,, ¢n,, and Y, indicate the
partial derivatives of the corresponding functions.

The first order conditions give the optimal investment and hiring decisions, as follows:

gy —1—Gp, =0 (8)
E{ M1 [Vicyy, + (1= 0)]} —gif =0 (9)
Gt — Om, = 0 (10)
E{ M1 [V — Wen]} — ¢ = 0. (11)

Therefore, the marginal costs and benefits of adding one additional unit of physical capital

is given by

qut( =1+ Gfit = Et{Mt,t+1[YKit+1 + (1 - 5)]} (12)

The marginal costs and benefits of labor hiring is given by

qilg = ngit - Et{Mt,t+1[YLit+1 - Wt—f-l]}' (13)

M For simplicity, we don’t consider wage bargaining process here.
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The ex-dividend stock price is

Py =E{Miii1[Yiterr + (1 — 0)Kitp1 — Wiy Linsa |} (14)

If the production function is homogenous of degree one with respect to capital and labor,

then the stock price can be simplified as

Py = qf Kity1 + ¢ L. (15)

That is, firm value equals the summation of current values of physical capital and labor,
which can be computed from their marginal ¢ directly. The cash flows at time t + 1 is

Y1+ (1 — 8) K1 — WisqLigy1. Therefore, the stock return is

Y (Zis1, Kit1, Ligs1) + (1 — 8) Kiyp1 — Wi Lia

R; = . 16
i E{ M t1[Y (Zitg1, Kivg1, Liggr) + (1 = 0) Kigr — Wiga Liga |} (16)
Suppose the productivity is governed by some systematic components, as follows

log Ziy = b; Xy + €, (17)

where X, is a vector consisting the systematic productivity components, b; is firm i’s exposure
to the systematic productivity shocks, ¢ is the idiosyncratic productivity shocks. Then Eq.
says that the expected stock returns are affected by these systematic risks. In other
words, if the expected stock returns are governed by multiple pricing factors, these factors
should correspond to the common productivity components in firms’ production. Moreover,
if we attribute the total factor productivity to capital productivity and labor productivity,
then we see common shocks to both capital productivity and labor productivity affect stock

returns.
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B.  TFP estimation

(1) Data

In order to estimate the total factor productivity (TFP), we use two main datasets:
annual Compustat and CRSP files. By matching Compustat and CRSP, we estimate TFP
for public firms in the United States. Sample period starts from 1965 to 2015. Compustat
items used include total assets (at), net PPE (ppent), sale (sale), operating income before
depreciation (oibdp), depreciation (dp), capital expenditure (capx), depreciation, depletion
and amortization (dpact), employees (emp), and staff expense (xIr).

We apply several filters to estimate coefficients of labor and capital. We include common
stocks listed at NYSE/Amex/Nasdaq with 4-digit SIC codes less than 4900. This corresponds
to agriculture, mining, construction, manufacturing, and transportation industries. Also,
firms with sales or total assets less than $1 millions, or with negative employees, capital
expenditure, and depreciation are excluded. Firms with value-added and material costs less
than 0.01 are excluded as well. Stock price of each firm must be greater than $1 at the end
of a year. The labor expense ratio, which we will describe below, should be between 0 and
1. Finally, the sample firms should report their accounting information more than 2 years
to avoid the survivorship bias.

To calculate real values, we use GDP deflator (NIPA Table 1.1.9 qtr linel) and price
index for nonresidential private fixed investment(NIPA Table 5.3.4 qtr line2). We obtain
employees’ earnings data from Bureau of Labor Statistics (CES0500000030). Because this
table reports weekly earnings for each month, we calculate annual earnings.

(2) Input variables

We calculate value-added, employment, physical capital, and investment to estimate TFP.

"\ 1o Salesii—Materialsit . . N .
Value-added (Yj;) is =G5 o . Material cost (Materials;) is total expenses minus

labor expense. Total expense is sales minus operating income before depreciation and amor-
tization (oibdp). Labor expense is the staff expense (xIr). However, only a small number of

firms report the staff expense. We replace those missing observations with the interaction
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of industry average labor expense ratio and total expense. To be specific, we calculate the

xlris

labor expense ratio, Sl —oibdpi

for each firm. Next, in each year we estimate the industry
average of the labor expense ratio at 4-digit SIC. In each 4-digit SIC code, the number of
firms should be greater than 3. Otherwise, we estimate the industry average of the labor
expense ratio at 3-digit SIC. In the same manner, we estimate the industry average of labor
expense ratio at 2-digit and 1-digit SIC code. Then, we back out the staff expense by mul-
tiplying the industry average labor expense ratio and total expense. If the labor expense is
still missing, we interpolate those missing observations with the interaction of annual wage
from the Bureau of Labor Statistics and the number of employees.

Capital stock (Kj) is net property, plant, and equipment divided by the capital price
deflator. We calculate the capital price deflator by following Imrohoroglu and Tiizel (2014]).
First, we compute the age of capital in each year. Age of capital stock is %. Further, we
take a 3-year moving average to smooth the capital age. Then, we match the current capital
stock with the the price index for private fixed investment at current year minus capital age.
Finally, we take one-year lag for the capital stock to measure the available capital stock at
the beginning of the period.

Investment ([;) is capital expenditure deflated by current fixed investment price index.

Labor (L;) is the number of employees.

(3) TEFP estimation

We follow Olley and Pakes| (1996) to estimate the total factor productivity (TFP) because
this is one of the robust ways of measuring production function parameters by solving the
simultaneity problem and selection bias. |Olley and Pakes| (1996)) estimate the labor coefficient
and the capital coefficient separately to avoid the simultaneity problem. Also, they include
the exit probability in TFP estimation to avoid the selection bias. 1mroh0ro§;lu and THizel

(2014) show how to estimate [Olley and Pakes| (1996) TFP using annual COMPUSTAT and

share their Codes Our TFP estimation process is based on Imrohoroglu and Tiizell (2014)

Bhttp: / /www-bef.usc.edu/ tuzel/ TFPUpload /Programs/
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with some modifications.

We start from the simple Cobb-Douglas production technology.
Y = L K" Za, (18)

where Yy, Ly, K, and Z;; are value-added, labor, capital stock, and productivity of a firm
1 at time t. We scale the production function by its capital stock, for several reasons. First,
since TFP is the residual term, it is often highly correlated with the firm size. Second, this
avoids estimating the capital coefficient directly. Third, there is an upward bias in labor
coefficient, without scaling. After being scaled by the capital stock and transformed into

logarithmic values, Eq. can be rewritten as

Y; L;
Log Kf — B Log Kf + (Bk + B — 1) LogKy, + LogZ. (19)

We define Log ;?ft, Logfg_i, LogK;;, and LogZy as ykis, lky, ki, and z;. Also, denote G, and

(Bkx + B — 1) as 5, and Sy. Rewrite Eq. as

yki = Bilki, + Brki + 2t (20)

When facing the productivity shock (z;;) at ¢, a firm decides the optimal labor and capital
investment. Because the productivity (z;) is a state variable, the optimal capital investment
(ik};) is a function of the productivity (z;). (Olley and Pakes (1996]) assume a monotonic
relationship between the investment and productivity, so the productivity is a function of
investment, i.e., z; = h(ik;). We assume that the function h(ik;) is 3"%-order polynomials
of ik;.

Specifically, we estimate the following cross-sectional regression at the first stage:

Yir = Bilkie + Brki + Bo + Binikie + Ba2ikl, + Busiky, +n; + €it, (21)
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where h(iky) = Bo + Bikiki + Binziki + Busiky and n; is 4-digit SIC code to capture the
differences of industrial technologies. From this stage, we estimate the labor coefficients, Bl
Second, the conditional expectation of y/k; 11 — le /kit+1 —n; on information at ¢ and

survival of the firm is following:

Ey(ykit1 — Bllki,t—i—l —1;) = Brkizrr + Ei(2i 41|z, survival) (22)

- Bkki,t+1 + g(zity PSUT’Uanl,t)7

where ﬁsurviwl’t is the probability of a firm survival from ¢ to ¢t + 1. The probability is
estimated with the probit regression of a survival indicator variable on the 3"-order poly-
nomials of investment rate. When we run the probit regression, we include all firms with-
out financial industry and regulated industry to have enough number of observations and
use this exit probability to estimate TFP for manufacturing industry. z; is computed as
Bo + Birikis + Bir2ik? + Bustky,. The function g is the polynomials of the survival probability
(ﬁsurvival,t) and lagged TFP (z;). At this step, we estimate the coefficient of capital, BA;C,
which gives EI\(

From the second stage, total factor productivity (TFP) can be computed as follows:
TFP, = exp(yky — Bilkiy — (Bxc + B — ki — ;). (23)

We estimate TFP growth as the innovations of logarithmic TFP from the first-order autore-

gressions, using a 5-year rolling window. TFP estimates are available from 1972 to 2015.

C. Explaining the first mimicking productivity factor

D. Alternative test assets
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Table B1. Explaining the first productivity factor with other pricing factors:
Identifying a missing factor

Panel A presents the abnormal returns and the factor loadings of the first productivity factor from various
factor models, using the full sample. Panel B shows similar results from the extending-window estima-
tion. Factor models include the market model (CAPM), Fama and French| (1993)) three-factor model (FF3),
Carhart| (1997)) four-factor model (FF4), |[Fama and French/ (2016) five-factor model (FF5), Fama and French
(2018) six-factor model (FF6), |Stambaugh and Yuan| (2017) model (SY), Daniel et al.| (2018) model (DHS),
Hou et al.|(2015) g-factor model (HXZ), and Hou et al.| (2018)) ¢°> model (HMXZ). All returns are multiplied
with 100. Newey-West adjusted t-statistics (t-stat) with 6-month (4-month) lags are provided in Panel A
(Panel B). R? denotes the explanatory power of the corresponding factor model. The sample period is from
January 1972 to December 2015. The testing period for panel B is from January 2001 to December 2015.

Panel A. Full-sample estimation

CAPM a MKT R?
Coeff 1.29  0.04 0.00
t-stat 4.41  0.45

FF3 a MKT SMB HML R?
Coeff 1.37 -0.10 0.54 -0.30 0.06
t-stat 4.82  -1.05 3.38 -1.98

FF4 a MKT SMB HML UMD R?
Coeff 1.17  -0.06 0.54 -0.23 0.21 0.08
t-stat  3.79  -0.59 3.14 -1.39 2.14

FF5 a MKT SMB HML CMA RMW R?
Coeff 1.31 -0.11 0.67 -0.14  -0.45 0.44 0.09
t-stat  4.27  -1.17 5.25 -0.78  -1.42 2.36

FF6 a MKT SMB HML CMA RMW UMD R?
Coeff 1.15 -0.08 0.66 -0.01  -0.56 0.39 0.22 0.10
t-stat  3.53  -0.81 5.24 -0.04  -1.59 2.00 2.18

SY a MKT MISME MGMT PERF R?
Coeff 0.91 -0.02 0.64 -0.20 0.43 0.12
t-stat  3.04 -0.18 4.54 -1.17 3.77
DHS a MKT FIN PEAD R?
Coeff 1.27 -0.03 -0.19 0.34 0.02
t-stat  3.60  -0.30 -1.57 1.25
HXZ a MKT QvmE Qra  Qrok R?
Coeff 1.35 -0.09 0.42 -0.45 0.19 0.04
t-stat  4.20  -0.93 3.15 -1.80 1.34

HXMZ « MKT QME QIA QROE EG R2
Coeff 1.16 -0.05 0.43 -0.55 0.06 0.38 0.05
t-stat  3.90 -0.58 3.04 -1.92 0.29 1.22
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Panel B.

Extending-window estimation

CAPM a MKT R?
Coeff -1.85 0.32 0.04
t-stat  -3.84  2.10

FF3 a MKT SMB HML R?
Coeff -1.51  0.49 -0.86 -0.60 0.23
t-stat -3.50  4.82 -4.64 -3.29

FF4 a MKT SMB HML UMD R?
Coeff -1.39  0.33 -0.86 -0.59  -0.28 0.27
t-stat  -3.24  2.92 -4.98 418  -2.36

FF5 a MKT SMB HML CMA RMW R?
Coeff -1.08  0.25 -0.98 -0.32 -0.31 -0.711 0.27
t-stat  -2.41  1.90 -5.63 -1.75  -1.24  -2.72

FF6 a MKT SMB HML CMA RMW UMD R?
Coeff -1.11  0.20 -0.95 -041  -0.19  -0.52  -0.20 0.29
t-stat  -2.63  1.52 -5.76 -2.27 -081 -1.84 -1.88

SY a MKT MISyr MGMT PERF R?
Coeff -0.92  0.26 -1.25 -0.51  -0.21 0.30
t-stat. -2.19  1.82 -6.60 -3.54  -1.85

DHS a MKT FIN PEAD R?
Coeff -1.19 -0.05 -0.56 -0.57 0.13
t-stat  -2.68  -0.42 -3.03 -1.81

HXZ a  MKT QuE Qra Qroke R?
Coeff -1.04 0.21 -1.13 -0.72  -0.65 0.33
t-stat  -2.86  1.60 -6.31 -3.95  -3.10
HXMZ a  MKT QumE Qra  Qror EG R?
Coeff -0.96  0.18 -1.16 -0.55 -0.54  -0.36 0.33
t-stat -2.64  1.34 -6.46 =252 =227 -1.72
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Table C1. Alternative test assets: 25 Size and Book-to-market sorted portfolios

This table reports the intercepts («, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and book-to-market sorted portfolios. Factors include six productivity factors. The
Newey-West t-statistics with six months lags are provided. The sample period is from January 1972 to
December 2015. R? and standard errors of residuals (s(e), %) are reported.

Low BM 2 3 4 High BM Low BM 2 3 4 High BM
a(% per month) t-statistic

Small -0.19 030 0.14 0.33 0.43 -0.55  1.03 048 1.21 1.31

2 0.03 0.12 0.19 0.18 0.11 0.09 046 070 0.73 0.35

3 0.20 0.18 0.17 0.22 0.26 0.69 0.69 0.70 0.85 0.82

4 0.33 0.08 0.10 0.23 0.07 1.27 030 0.40 0.91 0.23

Big 0.22 0.08 -0.01 -0.19 0.07 1.10 040 -0.05 -0.73 0.29
PC1 loading t-statistic

Small 040 0.32 026 0.22 0.20 7.00 6.92 6.28 5.86 4.67

2 039 0.26 020 0.17 0.19 752  6.28 4.71 4.46 4.23

3 0.36 0.20 0.14 0.09 0.11 769 482 334 226 2.41

4 0.28 0.15 0.09 0.05 0.07 6.32 343 213 131 1.47

Big 0.12 0.08 0.03 -0.01 0.04 4.57 234 081 -0.29 0.93
PC2 loading t-statistic

Small -0.77  -0.68 -0.50 -0.48 -0.36 -5.34 -5.84 -4.42 -4.61 -2.68

2 -0.67 -044 -0.32 -0.27 -0.34 -4.83 -3.54 -2.66 -2.49 -2.87

3 -0.57 -0.26 -0.12 -0.05 -0.04 -4.83 -2.26 -1.07 -0.45 -0.26

4 -0.34 -0.08 0.06 0.08 0.11 -3.24 -0.69 048 0.81 0.88

Big 0.06 0.09 0.17 0.28 0.29 0.77 1.01 205 291 2.43
PC3 loading t-statistic

Small 0.31 0.28 0.14 0.12 0.12 498 4.87 2.06 1.93 1.41

2 0.23 0.14 0.06 0.03 0.04 366 2.08 085 048 0.53

3 0.23 0.09 0.02 0.00 0.00 401 1.56 033 -0.03 -0.05

4 0.23 0.02 0.00 -0.02 -0.06 488 0.32 -0.06 -0.32 -0.68

Big 0.11 -0.03 -0.11 -0.14 -0.10 3.05 -0.77 -2.43 -2.29 -1.65
PC4 loading t-statistic

Small 0.08 0.12 0.11 0.13 0.15 1.67 3.00 2.60 3.20 3.19

2 -0.02 0.04 0.05 0.08 0.13 -0.31 093 119 1.98 2.68

3 -0.05  0.01 0.03 0.06 0.11 -1.23 026 0.71 145 2.14

4 -0.06 -0.01 0.04 0.08 0.10 -1.35 -0.14 0.76 2.01 1.97

Big -0.08 -0.01 0.02 0.08 0.11 -220 -0.26 0.72 1.99 2.48
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PC5 loading

t-statistic

Small 1.64 1.55 1.42 1.37 1.28 6.66 7.74 6.29 6.12 4.72
2 167 152 1.34 1.38 1.56 7.61 7.58 6.22 6.33 5.88

3 1.55 146 1.23 1.20 1.33 8.04 7.60 5.77 6.11 5.40

4 144 134 124 1.22 1.40 9.17 6.79 591 6.90 6.24

Big 1.16 1.28 1.26 1.28 1.23 8.05 7.78 7.59 5.78 5.71

PC6 loading t-statistic

Small 0.90 0.70 0.58 0.51 0.52 11.40 942 643 5.75 4.76
2 0.79 0.57 046 048 0.57 9.71 6.61 5.13 5.08 4.58

3 074 052 045 0.43 0.47 10.57 579 5.15 4.55 4.51

4 068 051 048 0.51 0.60 10.92 6.14 4.69 5.56 5.20

Big 0.52 0.53 0.52 0.58 0.67 9.68 816 7.09 4.79 5.99

R? s(e)

Small 048 049 0.37 0.36 0.29 571 4.95 4.67 4.49 5.06
2 045 036 027 027 0.27 538 4.82 4.62 4.44 5.21

3 048 0.33 0.24 0.21 0.19 484 4.51 4.35 4.38 5.10

4 048 030 0.25 0.26 0.24 4.40 4.38 441 4.15 4.96

Big 0.50 0.41 0.39 0.35 0.29 3.35 3.53 3.46 3.87 4.63
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Table C2. Alternative test assets: 25 Size and Profitability sorted portfolios

This table reports the intercepts («, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and operating profitability sorted portfolios. Factors include six productivity factors.
The Newey-West t-statistics with six months lags are provided. The sample period is from January 1972 to
December 2015. R? and standard errors of residuals (s(e), %) are reported.

Low Op 2 3 4 High Op Low Op 2 3 4 High Op
a(% per month) t-statistic

Small 0.06 0.24 013 0.17 0.03 0.19 0.86 045 0.54 0.08

2 0.06 0.00 0.12 0.25 0.19 0.21 0.02 0.46 0.89 0.62

3 0.19 0.15 0.15 0.11 0.28 0.66 0.62 0.62 0.44 0.99

4 024 0.17 012 0.23 0.15 0.89 0.72 0.51 0.92 0.56

Big 0.07 0.00 0.05 0.20 0.17 0.27 0.01 0.23 097 0.90
PC1 loading t-statistic

Small 031 024 024 0.26 0.32 6.77 585 566 5.67 6.26

2 030 0.24 022 0.25 0.29 6.25 6.01 549 6.00 6.19

3 024 0.15 0.18 0.20 0.25 543 4.09 479 493 5.57

4 0.15 0.13 0.12 0.15 0.20 3.79 336 3.07 3.59 4.51

Big 0.11  0.04 0.09 0.09 0.09 320 1.27 3.04 3.14 3.73
PC2 loading t-statistic

Small -0.61 -0.49 -0.44 -0.48 -0.52 -5.03 -4.12 -3.50 -3.52 -3.38

2 -0.51 -0.36 -0.37 -0.41 -0.45 -4.03 -3.10 -3.46 -3.46 -3.10

3 -0.28 -0.24 -0.21 -0.25 -0.32 -249 -2.50 -2.22 -2.25 -2.37

4 -0.04 -0.05 -0.04 -0.09 -0.20 -0.40 -0.44 -0.38 -0.84 -1.78

Big 0.14 0.19 0.15 0.12 0.06 1.61 225 1.79 1.64 0.82
PC3 loading t-statistic

Small 0.32 0.08 0.04 0.02 0.09 510 1.08 0.48 0.28 1.11

2 0.25 0.08 0.04 0.07 0.06 354 1.18 0.54 1.00 0.75

3 0.25 0.07 0.05 0.03 0.07 382 136 097 048 0.98

4 0.19 0.08 0.03 0.03 0.06 362 1.71 056 0.54 1.02

Big 0.04 0.00 0.00 0.03 0.04 092 0.05 -0.07 0.82 1.04
PC4 loading t-statistic

Small 0.17 0.09 0.06 0.04 0.05 396 193 134 0.88 1.03

2 0.10 0.06 0.04 0.01 -0.01 210 1.38 098 0.12 -0.17

3 0.09 0.04 0.03 0.00 -0.04 2.16 1.05 0.76 -0.02 -0.92

4 0.10 0.06 0.01 -0.01 -0.03 240 149 021 -0.36 -0.76

Big 0.04 0.05 0.02 -0.04 -0.05 1.05 145 0.58 -1.30 -1.51
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PC5 loading t-statistic

Small 147 1.38 1.37 1.41 1.61 6.23 5.60 5.49 583 6.70

2 164 151 142 1.35 1.53 715 7.01 7.02 5.90 6.60

3 145 136 1.33 1.38 1.44 732 749 7.73 6.68 7.16

4 134 133 1.25 132 1.45 8.07 839 6.62 7.26 840

Big 1.33 1.23 126 1.14 1.22 7.88 819 7.89 7.96 8.69
PC6 loading t-statistic

Small 0.78 0.50 0.46 0.48 0.58 9.77 498 4.33 4.55 5.89

2 0.82 054 048 045 0.51 9.43 5.63 5.09 4.23 5.20
3 085 049 049 047 0.47 12.02  5.79 6.55 4.95 5.20
4 083 0.60 049 049 0.52 1211 758 5.34 5.83 6.90
Big 087 0.64 0.63 0.55 0.47 11.33 10.33 896 9.75 8.43

R? s(e)
Small 049 0.31 0.28 0.26 0.31 5.22 471 4.64 497 543
2 044 032 0.29 0.28 0.29 5.35 4.66 4.45 4.74 5.14
3 045 031 031 0.29 0.31 5.00 424 4.13 443 4381
4 043 035 030 032 0.34 4.61 413 414 418 441
Big 0.48 0.44 047 048 047 4.09 346 3.30 3.25 3.24
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Table C3. Alternative test assets: 25 Size and Investment sorted portfolios

This table reports the intercepts («, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and investment sorted portfolios. Factors include six productivity factors. The Newey-
West t-statistics with six months lags are provided. The sample period is from January 1972 to December
2015. R? and standard errors of residuals (s(e), %) are reported.

Low Inv 2 3 4 High Inv Low Inv 2 3 4  High Inv
a(% per month) t-statistic

Small 0.38 037 029 0.13 -0.19 1.15 1.26 1.02 047 -0.58

2 0.12 0.13 021 0.21 0.02 0.39 050 089 0.79 0.05

3 024 020 0.18 0.23 0.22 0.87 0.82 074 094 0.79

4 0.09 0.10 0.14 0.26 0.35 0.32 040 0.62 1.11 1.32

Big 0.08 -0.04 0.02 0.13 0.37 0.34 -0.21 0.13 0.70 1.69
PC1 loading t-statistic

Small 029 0.22 026 0.27 0.34 6.58 559 6.14 6.27 7.03

2 024 019 021 0.23 0.36 516 4.79 553 5.79 7.67

3 0.19 0.12 0.15 0.20 0.31 417 3.16 4.10 5.38 6.80

4 0.12 0.10 0.12 0.15 0.27 2.84 2.60 3.08 4.20 5.75

Big 0.05 0.03 0.01 0.09 0.25 1.44 115 043 3.54 8.56
PC2 loading t-statistic

Small -0.60 -0.47 -0.51 -0.52 -0.62 -4.99 -4.56 -491 -4.55 -4.38

2 -0.40 -0.28 -0.38 -0.37 -0.60 -3.29 -2.35 -3.95 -3.22 -4.65

3 -0.16 -0.16 -0.18 -0.30 -0.45 -1.25 -1.70 -1.68 -3.00 -3.91

4 0.11  0.08 -0.08 -0.19 -0.31 0.99 0.70 -0.82 -2.12 -2.87

Big 0.25 0.17 014 0.07 -0.01 256 257 197 0.92 -0.10
PC3 loading t-statistic

Small 0.30 0.12 0.09 0.11 0.24 493 199 133 1.66 3.02

2 0.14 0.04 0.07 0.09 0.22 2.03 0.62 1.23  1.36 2.92

3 0.10 0.04 0.03 0.11 0.20 1.46 071 045 2.00 3.02

4 0.03 -0.03 0.01 0.07 0.26 041 -0.58 0.28 1.43 4.96

Big -0.07 -0.08 -0.03 0.03 0.18 -1.87 -2.39 -092 0.78 3.96
PC4 loading t-statistic

Small 0.22 0.12 0.10 0.10 0.07 491 296 238 237 1.50

2 0.15 0.06 0.09 0.04 -0.01 3.17 140 231 0.77 -0.22

3 0.10 0.09 0.04 0.01 -0.05 2.08 2.67 088 0.28 -1.26

4 0.09 0.06 0.04 -0.01 -0.05 207 138 119 -0.23 -1.22

Big 0.09 0.05 0.01 -0.04 -0.14 220 1.82 047 -1.10 -3.88
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PC5 loading

t-statistic

Small 1.53 1.32 1.42 1.46 1.54 6.43 597 596 6.14 6.67
2 160 135 145 147 1.64 6.73 6.35 8.07 6.64 7.33

3 134 136 1.32 1.41 1.48 6.22 7.52 7.30 7.53 7.28

4 136 127 1.33 1.35 1.43 6.53 7.62 831 836 843

Big 1.29 1.28 1.29 1.24 1.08 7.79 887 9.12 8.88 7.13

PC6 loading t-statistic

Small 0.78 0.51 0.52 0.56 0.73 9.14 5.67 5.53 6.13 9.01
2 0.70 045 0.51 0.52 0.76 7.06 4.78 6.01 501 9.84

3 058 047 047 0.52 0.71 6.54 6.16 5.50 5.98 9.84

4 061 052 053 052 0.74 726 6.17 731 6.75 11.18

Big 0.59 0.54 0.51 0.55 0.66 7.84 970 8.15 844 11.92

R? s(e)

Small 049 0.35 0.35 0.36 0.42 523 449 4.53 4.64 5.39
2 037 026 034 032 043 5.15 4.48 4.28 4.65 5.26

3 028 0.29 0.29 0.35 043 4.92 4.11 4.08 4.32 491

4 028 0.28 0.32 0.35 0.48 4.69 4.14 3.92 4.05 4.63

Big 0.34 0.43 0.46 0.48 0.56 3.87 3.10 3.10 3.29 3.73
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Table C4. Alternative test assets: 25 Size and Momentum sorted portfolios

This table reports the intercepts («, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and momentum sorted portfolios. Factors include six productivity factors. The Newey-
West t-statistics with six months lags are provided. The sample period is from January 1972 to December
2015. R? and standard errors of residuals (s(e), %) are reported.

Loser 2 3 4 Winner Loser 2 3 4 Winner
a(% per month) t-statistic

Small 0.24 0.19 032 040 0.49 0.54 0.60 1.10 1.42 1.58

2 038 031 025 0.23 0.26 0.93 1.00 0.94 0.87 0.97

3 063 033 021 0.03 0.14 1.59 1.12 0.77 0.12 0.54

4 0.66 0.37 024 0.15 0.04 1.70 1.29 0.93 0.63 0.14

Big 0.49 040 0.04 -0.04 -0.13 1.38 1.70 0.18 -0.23 -0.57
PC1 loading t-statistic

Small 025 020 0.18 0.21 0.32 3.9466 426  4.097 5.0426  7.2253
2 024 020 019 0.22 0.37 3.7063 4.3079 4.5071 5.5312  8.3135

3 016 0.15 0.16 0.17 0.32 2.665 3.3855 3.8717 4.5031  8.1938

4 011 011 011 0.11 0.29 1.7179  2.0177 2.4484 3.02  7.5045

Big 0.08 0.05 0.06 0.07 0.21 1.4937 1.1795 1.8459 2.2366  6.4268
PC2 loading t-statistic

Small -0.35 -0.32 -0.33 -0.38 -0.59 -1.54 -2.12 -2.49 -3.29 -5.08

2 -0.28 -0.27 -0.30 -0.34 -0.65 -1.39 -1.90 -2.73 -3.27 -6.75

3 -010 -0.14 -0.20 -0.17 -0.46 -0.48 -1.00 -1.74 -1.59 -5.25

4 0.09 0.03 -0.01 -0.02 -0.35 0.49 0.19 -0.06 -0.22 -4.22

Big 022 0.13 0.08 0.06 -0.12 1.36 1.09 0.93 0.88 -1.81
PC3 loading t-statistic

Small 0.29 0.10 0.08 0.11 0.17 2.50 1.10 1.00 1.79 3.22

2 0.25 0.10 0.06 0.08 0.13 2.37 1.13 0.89 1.19 2.52

3 020 0.08 0.02 0.01 0.13 2.06 1.00 0.26 0.21 2.74

4 018 0.00 -0.01 0.01 0.11 1.92 -0.03 -0.16 0.20 2.25

Big 0.09 -0.03 -0.04 -0.07 0.03 1.14 -0.57 -0.83 -1.76 0.58
PC4 loading t-statistic

Small  0.10 0.10 0.09 0.09 0.12 1.33 1.84 1.88 2.28 3.34

2 003 004 0.03 0.06 0.06 0.41 0.61 0.71 1.50 1.56

3 -0.01 -0.01 0.01 0.03 0.04 -0.19 -0.14 0.29 0.67 1.24

4 -0.04 -0.01 -0.01 0.00 0.03 -0.54 -0.21 -0.20 0.05 0.85

Big -0.07 -0.03 -0.02 0.00 0.00 -1.19 -0.71 -0.56 -0.13 0.00
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PC5 loading

t-statistic

Small 0.69 1.09 1.19 1.30 1.81 2.08 424 494 5.30 7.59
2 082 1.08 129 150 2.04 278 4.53 6.04 7.00 9.99

3 062 1.01 1.22 1.42 2.05 2.50 4.74 5.72 6.73 10.79

4 060 098 1.12 1.37 1.92 233 4.55 5.72 8.16 11.16

Big 0.65 0.81 1.12 134 184 2.55 4.46 6.45 8.17 11.64

PC6 loading t-statistic

Small 0.86 0.54 0.45 0.45 0.66 551 4.31 4.27 499  9.07
2 087 053 046 048 0.71 5.18 4.18 4.61 5.41 10.38

3 083 054 049 044 0.64 6.16 4.85 4.62 4.85 9.85

4 087 060 049 0.44 0.59 5.72 529 511 598 9.99

Big 0.84 0.59 0.54 0.49 0.58 5.68 5.65 7.18 8.66 11.26

R? s(e)

Small 0.32 0.25 0.26 0.31 0.44 6.69 5.04 4.56 4.45 497
2 030 0.22 027 0.33 0.46 6.69 5.24 4.53 4.39 4.95

3 029 024 025 0.29 047 6.33 4.89 4.43 420 4.60

4 032 024 0.26 0.33 0.46 6.23 491 424 394 435

Big 0.36 0.32 0.39 0.41 0.49 566 4.15 3.49 3.38 3.81
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Table C5. Alternative test assets: 25 Size and Idiosyncratic volatility sorted
portfolios

This table reports the intercepts (a, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and idiosyncratic volatility sorted portfolios. Factors include six productivity factors.
The Newey-West t-statistics with six months lags are provided. The sample period is from January 1972 to
December 2015. R? and standard errors of residuals (s(e), %) are reported.

Low Ivol 2 3 4  High Ivol Low Ivol 2 3 4 High Ivol
a(% per month) t-statistic

Small 048 048 046 0.46 -0.29 1.93 156 1.26 1.12 -0.64

2 029 026 0.30 0.29 -0.05 1.36 094 1.02 0.83 -0.12

3 0.17 021 021 0.23 0.08 083 0.8 073 0.75 0.24

4 0.18 0.16 0.17 0.18 0.29 091 0.74 0.67 0.63 0.89

Big -0.02 -0.02 -0.04 0.10 0.42 -0.11  -0.12 -0.18 0.43 1.56
PC1 loading t-statistic

Small 0.12 0.20 024 0.29 0.32 3.57 416 432 4.72 4.67

2 0.11 0.19 024 0.28 0.39 3.42 430 480 4.93 6.38

3 0.06 0.14 017 0.24 0.36 2.06 3.62 386 4.58 6.46

4 0.01 0.08 0.12 0.18 0.30 033 216 262 3.66 5.51

Big -0.01  0.05 0.10 0.14 0.24 -0.37  1.82 3.10 4.26 5.58
PC2 loading t-statistic

Small -0.23  -0.36 -0.41 -0.47 -0.49 -2.37 -2.58 -2.43 -2.36 -2.25

2 -0.19 -0.28 -0.37 -0.44 -0.58 -2.22  -2.22 -281 -2.71 -3.56

3 -0.06 -0.15 -0.18 -0.28 -0.47 -0.77  -1.24 -1.39 -1.91 -3.02

4 0.09 0.03 0.00 -0.07 -0.29 1.05  0.30 -0.02 -0.57 -2.04

Big 0.19 0.14 0.13 0.03 -0.04 290 204 171 031 -0.33
PC3 loading t-statistic

Small -0.01  0.02 0.09 0.21 0.42 -0.13  0.21 092 2.03 4.31

2 -0.02  0.00 -0.01 0.07 0.31 -0.37  0.00 -0.09 0.85 3.65

3 -0.06 -0.04 0.00 0.07 0.27 -1.17  -0.52  0.02 0.97 3.72

4 -0.09 -0.06 -0.02 0.04 0.31 -1.87 -0.96 -0.27  0.58 4.48

Big -0.06 -0.06 -0.05 0.04 0.27 -1.85 -1.82 -1.06 1.02 5.32
PC4 loading t-statistic

Small 0.06 0.06 0.07 0.10 0.17 .51 116 1.22  1.51 2.53

2 0.04 0.04 0.02 0.01 0.07 .13 0.79 037 0.16 1.17

3 0.03 0.01 0.00 -0.01 0.02 092 0.24 0.08 -0.19 0.32

4 0.03 -0.01 -0.02 -0.02 0.00 092 -0.19 -0.40 -0.32 0.07

Big 0.00 -0.02 -0.01 -0.02 -0.03 0.15 -0.53 -0.18 -0.53 -0.75
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PC5 loading

t-statistic

Small 095 1.27 1.31 1.28 1.10 4.67 5.10 4.59 3.95 2.97
2 1.11 136 148 1.60 1.61 6.04 6.02 596 6.07 6.04

3 1.07 130 1.37 1.53 1.55 6.43 6.37 6.06 6.52 6.80

4 1.03 1.18 1.31 140 1.48 6.66 6.89 6.75 6.76  6.81

Big 1.13 129 134 135 1.30 10.61 9.21 9.24 7.76  6.60

PC6 loading t-statistic

Small 0.31 046 0.59 0.77 0.98 323 4.04 457 544 7.13
2 032 041 050 0.63 1.03 3.64 3.79 447 4.78 891

3 032 042 045 0.54 0.94 4.16 4.40 4.18 4.96 10.19

4 0.34 040 048 0.57 0.93 4.77 511 5.21 5.70 10.22

Big 042 0.49 0.56 0.65 0.86 855 945 836 7.91 10.75

R? se

Small 0.18 0.21 0.24 0.32 0.42 3.79 498 5.63 6.24 6.86
2 022 0.22 023 027 0.44 3.64 4.70 5.22 5.81 6.37

3 023 024 024 0.29 043 3.39 4.26 4.79 524 5.85

4 0.26 0.27 0.28 0.30 0.46 334 392 446 4.86 5.53

Big 048 0.47 0.43 043 0.52 2.70 3.10 3.52 3.90 4.53
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Table C6. Alternative test assets: Fama-French 30 industry portfolios

This table reports the intercepts («, in % per month) and factor loadings from the full-sample time-series
regressions of Fama-French 30 industry portfolios. Factors include six productivity factors. The Newey-West
t-statistics (t-stat) with six months lags are provided. The sample period is from January 1972 to December
2015. R? and standard errors of residuals (s(e), %) are reported.

Agric Food  Soda Beer Smoke Toys Fun Books Hshld Clths

a  0.08 0.13 0.19 0.10 0.72 -0.19 0.59  -0.08 0.02 0.06
t-stat  0.24 0.51 0.52 0.38 2.05 -0.49 1.30  -0.24 0.11 0.16
Brct 0.13 -0.02 -0.01 -0.02 -0.07 0.13 0.17 0.11 -0.01 0.16
t-stat  3.72 -0.68  -0.17 -0.77 198 242 4.06 3.22  -0.34 3.73
Bpca  0.42 0.19 0.23 0.21 -0.01  0.28 0.27 0.17 0.12 0.20
t-stat  3.91 2.03 1.76 2.12 -0.10 1.71 1.82 1.65 1.42 1.31
Bpcs  0.03 -0.04  -0.03 -0.05 -0.04  0.05 0.07 0.03 -0.03 0.04
t-stat 1.74 -2.70 -1.49 -2.01 -2.57 1.55 2.31 1.59  -2.49 1.25
Bpca -0.14 -0.05  -0.12 -0.10 -0.16  -0.18 -026 -0.12 -0.18 -0.18
t-stat  -2.15 -1.22 -1.64 -1.91 -2.61  -2.07 -3.66 -2.11  -3.80  -2.47
Bprcs  0.64 0.64 0.56 0.64 0.35 0.58 0.44 0.65 0.42 0.69
t-stat  3.04 4.50 2.35 4.16 1.78 243 1.84 3.55 3.05 3.29
Bpce  -0.53 -0.57  -0.65 -0.66 -0.48  -0.66 -0.82  -0.68 -0.65 -0.52
t-stat  -5.12 -742  -5.33 -7.60 -3.54  -4.80 -5.89  -7.14 848  -3.93
R?  0.06 0.00 -0.08 -0.16 -0.41  -0.09 -0.01 0.04 -0.31 0.03
s(e)  0.33 -0.02  -0.39 -1.19 -2.36 -0.37 -0.03 0.26  -2.38 0.18
Hlth MedEq Drugs Chems Rubbr Txtls BldMt Custr  Steel FabPr

a -0.16 0.33 0.55 0.08 -0.02  0.07 -0.07  -0.16 0.13 0.00
t-stat  -0.37 1.41 2.57 0.25 -0.04  0.15 -0.19  -0.42 0.36 0.00
Bpc1 0.13 0.08 0.00 0.10 0.12 0.11 0.10 0.19 0.19 0.20
t-stat  2.23 238 -0.05 2.53 3.27  2.38 2.86 4.15 4.53 5.24
Bpc2 042 0.24 0.18 0.03 035 0.15 0.14 0.25 -0.02 0.26
t-stat  2.47 3.42 2.51 0.31 3.07  1.02 1.11 2.00 -0.11 1.94
Bpcs  0.04 0.01  -0.05 0.00 0.06  0.06 0.02 0.04 0.10 0.08
t-stat  1.03 0.50 -3.33 0.08 311  1.75 0.82 1.75 4.63 3.07
Bpca  -0.15 -0.29  -0.30 -0.16 -0.09  -0.03 -0.13  -0.22 -0.19 -0.24
t-stat  -1.68 -5.31  -5.40 -2.39 -1.44  -0.36 -1.94  -3.05 -2.57  -3.07
Bpcs 091 0.27 0.18 0.54 0.74  0.63 0.65 0.66 0.29 0.26
t-stat  3.70 1.98 1.45 3.00 3.78 218 3.19 2.98 1.34 1.12
Bpce  -0.54 -0.70  -0.79 -0.67  -0.64 -0.52 -0.69 -0.71 -0.78  -0.48
t-stat  -4.69 -7.89 -10.77 -6.97  -5.11 -3.00 -5.82 574 -711  -3.62
R?  0.03 -0.35  -0.42 -0.04 0.06 0.11 -0.08  -0.04 -0.02 -0.05
s(e)  0.14 -3.10  -3.68 -0.20 040  0.44 -0.45 -0.23 -0.10 -0.27
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Mach ElcEq Autos Aero Ships Guns Gold Mines Coal Oil

a 0.35 0.18 0.09 0.23 -0.10 0.20 1.07 0.50 0.32 0.11
t-stat  1.09 0.65 0.21 0.63 -0.24 057 229 1.26  0.51 041
Bpc1  0.17 0.16 0.09 0.08 0.15 0.08 0.08 0.12 0.14 0.05
t-stat  4.90 4.82 238 169 280 1.52 1.04 228 1.76 1.28
Bpc2 0.13 0.17 -0.02 0.18 0.22 0.12 -0.41 -0.08 0.12 0.08
t-stat  1.09 1.65 -0.13 131 1.72 0.95 -2.22 -0.57 0.55 0.69
Bpcs  0.06 0.03 0.03 0.01 0.01 0.01 0.06 0.04 0.06 -0.03
t-stat  2.68 1.41 1.15 025 033 058 1.90 1.46 143 -1.78
Bpcs -0.30 -0.26 -0.11 -0.15 -0.18 -0.09 -0.37 -0.24 -0.25 -0.08
t-stat  -4.41 -4.64 -1.56 -254 -236 -1.20 -2.89 -2.89 -1.73 -1.19
Bpcs  0.26 0.55 0.37 0.64 0.65 0.70 -0.76 0.08 0.18 0.51
t-stat 1.39 3.31 1.51  3.23 2.68 3.36  -2.40 0.32 051 2.71
Bpce -0.70 -0.90 -0.62 -0.69 -0.64 -0.35 -0.03 -0.51 -0.71 -0.66
t-stat  -5.82 -10.92 -4.08 -6.00 -4.73 -2.76 -0.20 -4.25 -4.05 -6.60
R?> -0.17 -0.11 0.01 -0.05 -0.07 -0.05 -0.93 -0.31 -0.21 0.08
s(e)  -1.03  -0.75 0.07 -0.30 -0.36 -0.26 -3.21 -1.42 -0.59 0.50
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