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Abstract

This paper studies the implications of environmental pollution on the cross-section of

stock returns. A long-short portfolio constructed from firms with high versus low toxic

emission intensity within industry generates an average return of 5.52% per annum. To

explain this pollution premium, we develop a general equilibrium asset pricing model in

which firms’ cash flows face the uncertainty of policy regime shifts with respect to the

environmental regulations. High emission (“dirty”) firms are more exposed to policy

regime shift risks, and are therefore expected to earn higher average returns than those

of low emission (“clean”) firms.
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1 Introduction

Firms that produce goods and products to satisfy consumer needs necessarily produce

pollution as part of the industrial production process. Without the presence of environmental

regulations, firms that maximize shareholder values have little incentive to reduce their

environmental impacts. Presently, laws and regulations require firms to pay attention to

environmental issues and internalize the social costs of the pollution they generate. That

said, this emission regulation regime is significantly changing over time. For example, the

regulation of EU’s Emissions Trading Scheme (ETS) was initially free but changed to auctions

for carbon emission quotas.1 In this paper, we study the asset pricing implications of policy

regime shift risks of such environmental regulation, especially through the lens of the cross-

section of stock returns. We first establish a general equilibrium asset pricing model in

which high emission firms’ profitability and, therefore, stock prices are more exposed to

policy regime shift risks; as a result, our model rationalizes a pollution-return relation that

we call the pollution premium.

We first develop a general equilibrium asset pricing model in which firms’ cash flows face

the uncertainty of regime shifts with respect to environmental regulation. In our model,

government (i.e., social planer) learns about the welfare costs of toxic emissions under a

weak regulation regime in a Bayesian fashion by observing signals, and then actively makes

an optimal decision between a strong or weak emission regulation regime. Adopting a strong

regulation regime will lower emissions but negatively impact on all firms’ profitability, leading

to a stronger negative impact on firms with high emissions. The government maximizes

social welfare based on such a trade-off, as a social planner would do. In particular, we

find that government, if acting optimally, replaces a weak regulation regime with a strong

one if the environmental cost is perceived to be sufficiently high (i.e., the posterior mean of

the pollution cost is above a given endogenous threshold). On the one hand, this shift to

a strong regime is assumed to negatively affect the economy-wide average profitability, and

therefore cause a upward spike in the stochastic discount factor; on the other hand, since

high emission firms’ profitability is affected more than that of low emission firms, the former

display a larger decline in stock prices upon a regime shift and are more negatively exposed

to a regulation regime shift risk, which results in higher average excess returns ex-ante. This

theoretical prediction is consistent with our empirical findings.

Our model is largely, but not solely, based upon that of Pástor and Veronesi (2012, 2013):

we focus on the cross-sectional variation of expected stock returns, while they focus on the

1The ETS is undoubtedly the most important environmental regulation, and ETS features different stages
for enforcement. This ETS regulation begins with phase I and free carbon quotas for firms, and then ends
with Phase III in which firms must access carbon emission quotas via auctions from 2013 onwards.
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time-series fluctuation of the aggregate equity market value. Pástor and Veronesi (2012)

model the realized return on the aggregate equity market on the announcement of policy

changes, and Pástor and Veronesi (2013) study expected aggregate equity premium driven

by policy uncertainties.

To study the empirical relation between toxic emissions and expected stock returns at the

firm level, we construct a measure of emission intensity by using data from Environmental

Protection Agency (EPA) and data from Compustat. We measure a firm’s toxic emissions by

summing chemical emissions across all its plants that are listed in the EPA database. We then

assign firms to different portfolios based on their ratios of chemical emissions over book equity

relative to their industry peers, given that chemical emissions generally vary across industries.

Such portfolio sorting shows that firms producing more pollution are associated with higher

subsequent stock returns, and that the high-minus-low portfolio strategy based on simple

emissions (toxicity-adjusted emissions) yields statistically significant average returns of 5.52%

(5.87%) per annum. We also find significant alphas such that the high-minus-low portfolio

is literally unaffected by known return factors for other systematic risks. These findings

suggest a pollution-related risk premium driven by heterogeneous exposure to unspecified

risks.

To assess whether the cross-sectional return predictive power of emission intensity is ro-

bust to a wider set of controls, we perform Fama and MacBeth (1973) regressions that control

for industry effects and other known predictors, including size, book-to-market ratio, prof-

itability, book leverage, R&D intensity, organization capital, asset growth, and investment

intensity. We find that simple emissions and toxicity-adjusted emissions predict stock returns

with strong statistical significance. In addition, one-standard-deviation increase in firm-level

emission intensity increases future stock returns from 6.8% to 9.9% per year. Overall, we

find that the emission-return relation remains economically and statistically significant, ir-

respective of the control variables that we consider.

Additional empirical analyses provide the following supportive evidence for our model

assumptions and predictions. First, firm-level emissions negatively and significantly predict

future profitability. Second, when a policy regime is more likely to shift (measured by a

higher number of firms reporting emissions, higher temperatures, and more rainfalls), firms

with higher emissions experience additional declines in future profits. Third, we verify the

channel for the reduced profitability by showing that high emission firms are more likely

involved in future litigations related to environmental issues. Last and most importantly,

we show that high emission firms’ market values significantly decrease as the policy regimes

shift.

In summary, our work identifies a new source of risk for investors: a regime shift risk
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of emission regulation policy that impacts higher emission firms greater than low emission

firms. With perspective to investment, firms with heavy pollution pose a risk since their

profitability and stock prices are more negatively affected upon a regime shift from weak

to strong emission regulation policy, as investors require higher expected stock returns to

compensate for perceived risks. Hence, our pollution proxies, simple emissions and toxicity-

adjusted emissions, carry risk characteristics distinct from characteristics documented in the

literature.

This paper builds upon a growing literature stream that investigates between policy impli-

cations and environmental pollution. Most of these papers focus a great deal on the economic

consequence of global warming and climate change. Acemoglu (2002) shows that two major

forces bias the technological change: price effect and market size effect. Acemoglu, Aghion,

Bursztyn, and Hemous (2012) suggest policy interventions to direct innovation from dirty

technologies to clean ones, if two types of technologies are substitutable. If the dirty technol-

ogy is more advanced, Acemoglu, Akcigit, Hanley, and Kerr (2016) show that interventions,

including taxes and subsidies, promote transitions to clean technology. In their study of the

automobile industry, Aghion, Dechezleprêtre, Hemous, Martin, and van Reenen (2016) find

that cost-saving motivations encourage firms to develop clean technologies. These collective

studies are quite different from ours, as none of them analyze the asset pricing implications.

Unlike studies that consider carbon emissions, Currie, Davis, Greenstone, and Walker (2015)

investigate the impact of toxic emissions on housing value and infant health; in contrast, we

use toxic emissions data to study the implications of firms’ exposure to regulation regime

shifts with respect to asset prices and returns.

Our work is connected to the literature that explores the asset pricing implications of

social responsibility and climate change. Hong and Kacperczyk (2009) find that “sin” in-

dustries (i.e., alcohol, tobacco, and gaming) outperform non-“sin” industries since social

norm dissuade institutional investors from investing in “sin” industries, which causes fund-

ing constraints for the “sin” industries. In their study of climate change’s impact on financial

markets, Hong, Li, and Xu (2016) find evidence that food firms of drought-stricken countries

underperform those of countries that do not experience droughts. Also, from the perspective

of investment strategy, Andersson, Bolton, and Samama (2016) propose a hedging strategy

against climate risks. Chava (2014), meanwhile, studies the impact of social responsibility

on a firm’s cost of capital, and shows that firms with environmental concerns incur high

equity and debt financing costs. On the other hand, Bansal and Ochoa (2011) and Bansal,

Kiku, and Ochoa (2016) use climate change risks to embody long-run risks in dividends

and consumption dynamics, so they may examine the implications of asset prices and social

welfare. We differ from these papers in that our work concentrates on firms’ toxic emissions,
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studies cross-sectional asset pricing implications, and, more importantly, proposes a general

equilibrium model to explain that firms with high toxic emissions face more risk exposure

with respect to regulation regime shifts.

Our paper is also related to asset pricing implications with macroeconomic uncertainty, a

topic for which Pástor and Veronesi (2012, 2013) provide a comprehensive literature review.2

Brogaard and Detzel (2015) study asset pricing implications of the economic policy uncer-

tainty index constructed by Baker, Bloom, and Davis (2016). Similar findings from Bali,

Brown, and Tang (2017) suggest that uncertainty is priced in the cross-section by using

the alternative measure of the economic uncertainty index proposed by Jurado, Ludvigson,

and Ng (2015). From a theoretical perspective, Pástor and Veronesi (2012, 2013) show the

impact of government policy uncertainty on asset prices with Bayesian learning. In addition,

Liu, Shu, and Wei (2017) find direct evidence that stock prices of highly politically sensitive

firms respond more to political uncertainty than those of firms with lower levels of political

sensitivity. In contrast to these papers, our paper explores the financial effect of regulation

uncertainty on toxic emissions.

Moreover, our paper contributes to the literature that relates consumption or productivity

risk to aggregate- and firm- level risk premium by providing novel theoretical and empirical

analyses on the role of pollution.3

The rest of our paper is organized as follows. Section 2 presents the model. Section 3

introduces data construction and summary statistics. In Section 4, we present our empirical

analysis. We conclude this paper with Section 5. The Appendix contains additional empirical

2There is a large literature on theories of macroeconomic uncertainty, but we do not attempt to summarize
it here.

3 A large number of theoretical and empirical papers exist in the literature that relates consumption or
productivity risk to the equity risk premium. Ait-Sahalia, Parker, and Yogo (2004) and Lochstoer (2009)
show that luxury consumption can explain the equity premium. Yogo (2006) separates durable consumption
from non-durable consumption to study time-series asset pricing implications, while Gomes, Kogan, and
Yogo (2009) further show that durable good producers are riskier than non-durable good producers since the
demand for durable goods is more pro-cyclical. Moreover, Savov (2011) uses garbage release data to capture
volatile consumption, and Da, Yang, and Yun (2015) use electricity data to proxy for missing homemade
goods. In addition, Kroencke (2016) suggests the unfiltered consumption to explain for why garbage data
outperforms NIPA consumption data in matching the equity premium. These papers seek alternative proxies
for smooth consumption and attain successful calibrations by generating sizable equity premium with rea-
sonable risk aversion, and these papers even claim to explain cross-sectional stock returns (e.g., Fama-French
25 portfolios), as extensions. The literature also explores the asset pricing implications of production risk
referred to as production-based asset pricing, which builds a bridge between investment and stock returns.4

Zhang (2005) provides an investment-based explanation for the value premium. Eisfeldt and Papanikolaou
(2013) develop a model of organizational capital and expected returns. Kogan and Papanikolaou (2013, 2014)
study the relation between investment-specific technology shocks and stock returns, so they may propose
a fundamental explanation for the value premium. van Bingbergen (2016) documents the cross-sectional
return spread by sorting on producer prices. Finally, Loualiche (2016) studies the cross-sectional difference
in exposure to the globalization risk premium, and exemplifies such risk as an extension of the displacement
risk proposed by Gârleanu, Kogan, and Panageas (2012).
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evidence as well as our model solution.

2 A General Equilibrium Model

In this section, we build a general equilibrium asset pricing model that features risk

related to environmental policy regime shifts to explain the role of pollution with respect to

stock prices and expected returns. Our specification of policy regime shifts is similar to that

of Pástor and Veronesi (2012, 2013).

2.1 The Model Economy

We consider an economy with a finite horizon [0, T ] and a continuum of firms i ∈ [0, 1].

Let Bi
t denote firm i’s capital at time t. Debt financing is not taken into account, and firms

in our economy entirely rely on equity financing. Therefore, Bi
t can also be regarded as the

book value of equity. At time 0, all firms are endowed with the same amount of capital,

which we normalize to Bi
0 = 1. Firm i invests its capital in a linear production technology

with a stochastic rate of return denoted by dΠi
t. All profits are reinvested, so that firm i’s

capital dynamics denote dBi
t = Bi

tdΠi
t. Given that dΠi

t equals profits over book equity, we

refer to it as the profitability of firm i. For all t ∈ [0, T ], profitability then follows the process

dΠi
t = (µ+ ξig)dt+ σdZt + σIdZ

i
t , (1)

in which (µ, g, σ, σI) are observable and constant parameters, Zt is a Brownian motion, and

Zi
t is an independent Brownian motion that is specific to firm i. The parameter g denotes the

impact of different policy regime shifts (i.e., weak or strong environmental regulation) on the

mean of the profitability process among firms. When g = 0, the environmental policy regime

is “neutral” with a zero impact on firm i’s profitability. The impact of environmental policy

regime shifts, g, is constant while the same regime is in effect. At time τ (i.e., 0 < τ < T ),

the government makes an irreversible decision on whether or not to change its environmental

policy from a weak to strong regulation. As a result, g is a simple step function of time:

g =


gW for t ≤ τ

gW for t > τ if there is no policy regime shift

gS for t > τ if there is a policy regime shift,

(2)

in which gW denotes the impact of environmental policy under the weak regulation at the

beginning. An environmental policy change replaces the weak regulation, W, by the strong
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regulation, S, and hence introduces a permanent drop in average profitability across firms.

Such a policy decision is immediately effective when a regime shift occurs at time τ . We

assume that gW > 0 and gS < 0. This key assumption captures the idea that different envi-

ronmental policies generate strong yet opposite impacts on firms’ profitability. To illustrate

this point, the parameter ξi governs firm i’s exposure to environmental policy regime shifts.

We assume that ξis are determined by emission levels that ξis are drawn from a uniform

distribution on the interval [ξmin, ξmax] at time 0 and then remain unchanged. Without a

loss of generality, we then normalize the cross-sectional distribution of ξis with a mean equal

to 1. We assume that there are two firms: a high emission firm (i.e. ξH > 0) and a low

emission firm (i.e. ξL such that ξL < ξH). Owing to a lower abatement cost under the weak

regime, the high emission firm’s average profitability is higher than that of the low emission

firm by the magnitude of gW(i.e., ξH − ξL > 0). In stark contrast, because of gS < 0 under

the the strong regime, the high emission firm’s average profitability drops more than of the

low emission firm. As ξi is drawn from a uniform distribution with the mean normalized to

1, environmental policy regime shifts trigger an adverse effect on the average profitability in

the economy. In particular, the high emission firm’s profitability is more subject to regime

shifts. On the other hand, since ξi could be negative for the low emission firm, switching

from a weak to a strong regime positively impacts the low emission firm’s average profitabil-

ity when ξigS is positive. Taken together, the cross-sectional dispersion in firms’ exposures

to regime shifts, ξis, serves an important driving force to determine different risk premia in

equilibriums.

The firms are owned by a continuum of identical households who maximize expected

utility derived from terminal wealth.5 For all j ∈ [0, 1], investor j’s utility function is given

by

U(W j
T ) =

(W j
T )1−γ

1− γ
, (3)

for which W j
T is investor j’s wealth at time T , and γ > 1 is the coefficient of relative risk

aversion. At time 0, all investors are equally endowed with shares of firm stocks. Stocks pay

dividends at time T .6 Households observe whether regime shifts take place at time τ .

When making its policy decision at time τ , the government maximizes the same objec-

tive function as households, except that it also faces a environmental cost Φ(C) associated

with regime shifts. The government commits to a change in environmental regulation only

if households’ expected utilities under the strong regulation is higher than under weak reg-

5This setting is consistent in our empirical design of scaling emissions by book equity.
6No dividends are paid before time T because households’ preferences do not involve intermediate con-

sumption. Firms in our model reinvest all of their earnings, as mentioned earlier.
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ulation. Specifically, the government solves the optimization problem

max
τ>t

{
Eτ

[
Φ(C)W 1−γ

T

1− γ

∣∣∣∣W
]
,Eτ

[
W 1−γ
T

1− γ

∣∣∣∣S
]}

, (4)

in which WT = BT =
∫ 1

0
Bi
Tdi is the final value of aggregate capital, C is the environmental

cost (i.e., collateral damage) if the weak regulation is retained, and Φ(C) = 1 + C is the

corresponding cost function. We refer to Φ(C) = 1+C > 1 as a cost for households because,

given γ > 1 and the lognormal distribution assumption, a higher value of Φ(C) translates

into lower utility since W 1−γ
T /(1− γ) < 0. The value of C is randomly drawn at time τ from

a lognormal distribution centered at C = 1.

c ≡ log(C) ∼ Normal

(
− 1

2
σ2
c , σ

2
c

)
, (5)

in which c is independent of the Brownian motions in equation (1). As soon as the value of c

is revealed to all agents at time τ , the government uses this value to make its environmental

policy decisions. We refer to σc as regime shifts uncertainty. Regime shifts uncertainty

introduces an element of surprise into firms’ valuations.

2.2 Learning about Environmental Costs

At time t < τ , the government starts to learn about c by observing unbiased signals. We

model these signals as the true value of signal plus noise, which takes the following form in

continuous time:

dst = cdt+ ηdZc
t . (6)

The signal dst is independent to other shocks in the economy. We refer to these shocks

as environmental cost signals, and note that they capture the steady flow of news related

to environmental issues that are of deep concern to both the public media and regulation

authorities. Combining the signals in equation (6) with the prior distribution in equation

(5), we obtain the posterior distribution of c at any time t < τ :

c ∼ Normal(ĉt, σ̂
2
c,t), (7)

in which the posterior mean and variance evolve as

dĉt = σ̂2
c,tη
−1dẐc

t , (8)
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σ̂2
c,t =

1
1
σ2
c

+ t
η2

. (9)

Equation (8) shows that the government’s beliefs about c are driven by the Brownian motion

shocks dẐc
t , which reflect the differences between the cost signals dst and their expectations

(dẐc
t = η−1(dst−Et[dst])). Since the cost signals are independent of all fundamental shocks

in the economy (i.e., dZt and dZi
t), the innovations dẐc

t represent signal shocks to the true

value of environmental costs. These shocks shape the government’s beliefs about which

environmental policy is likely to be adopted in the future, above and beyond the effect of

fundamental economic shocks. Such a shift in belief alters the government’s decision-making,

which therefore changes the probability of policy regime shifts. Accordingly, we now refer

such signal shocks as policy regime shift shocks.

2.3 Optimal Regulation Regime Changes

After a period of learning about c, the government decides whether to implement policy

regime shifts at time τ . If the government opts for regime shifts, then the value of g changes

from gW to gS. According to equation (4), the government changes its policy regime if and

only if

Eτ

[
W 1−γ
T

1− γ

∣∣∣∣W
]
> Eτ

[
Φ(C)W 1−γ

T

1− γ

∣∣∣∣S
]
. (10)

Since regime shifts permanently affect future profitability, the two expectations in equation

(10) are determined by different stochastic processes for the aggregate capital BT =
∫ 1

0
Bi
Tdi.

We show the aggregate capital at time T in the following Lemma.

Lemma 1. The aggregate capital at time T , BT =
∫ 1

0
Bi
Tdi, is given by

BT = Bτe

(
µ+g− 1

2
σ2

)
(T−τ)+σ(ZT−Zτ )

, (11)

in which g ≡ gW when there is no policy regime shift, and g ≡ gS when there is a policy

regime shift.

Proof. See Lemma 1 in Appendix.

Plugging the aggregate capital in equation (11) into equation (10), the inequality can

be further simplified and provide a decision rule for policy regime shifts in the following

Proposition.

Proposition 1. The regulation regime changes occur at time τ if and only if

c(τ) < c (12)
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for which

c(τ) = log
{
e(γ−1)(g

W−gS)(T−τ) − 1
}
> 0. (13)

pτ denotes the probability of policy regime shifts at τ conditional on information at time τ

pτ = 1−Normal(c(τ); ĉτ , σ̂
2
c,τ ), (14)

for which N(x; ĉτ , σ̂
2
c,τ ) denotes the c.d.f. of a normal distribution with mean ĉτ and variance

σ̂2
c,τ .

Proof. See Proposition 1 in Appendix.

Corollary 1. pτ |t denotes the probability of policy regime shifts at τ conditional on infor-

mation at time t

pτ |t = 1−Normal(c(τ); ĉt, σ̂
2
c,t), (15)

for which N(x; ĉt, σ̂
2
c,t) denotes the c.d.f. of a normal distribution with mean ĉτ and variance

σ̂2
c,τ .

Proof. See Corollary 1 in Appendix.

The decision rule for policy regime shifts is characterized as follows. It causes a regu-

lation change if the perceived environmental cost exceeds a given threshold. Once the cost

is above the cutoff, the strong regulation is going to replace the weak regulation when the

government perceives the undesirable policy regime under the weak regulation. Given γ > 1,

a higher γ implies that households are more risk averse to strong regulation regimes with

negative gS. As a result, the threshold c(τ) becomes higher, suggesting a lower probability

of shifting to the strong regulation. Moreover, the threshold c(τ) depends on the difference

between gW and gS. A large difference indicates a costly transition from the weak to strong

regulation when the aggregate profitability undergoes a permanent drop. Such an unfa-

vorable economic consequence attenuates the government’s incentive to execute the strong

environmental regulation. Therefore, we expect a lower likelihood for environmental policy

regime shifts.

2.4 Asset Pricing Implications

In this subsection, we use the following steps to study the asset pricing implications of

policy regime shift shocks. First, we show the impact of policy regime shift shocks on the

state price of density. Second, we show that firms’ stock prices depend on fundamental

shocks and policy regime shift shocks. Finally, we dissect firms’ risk premia attributed to

fundamental shocks and policy regime shift shocks, respectively.
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Firm i’s stock represents a claim on firm i’s liquidating dividend at time T , which is equal

to Bi
T . Investors’ total wealth at time T is equal to BT =

∫ 1

0
Bi
Tdi. Stock prices adjust such

that households hold all of the firm’s stock. In addition to stocks, there is also a zero-coupon

bond in zero net supply, which yields a unit payoff at time T with certainty. We use this

risk-free bond as the numeraire.7 Under the assumption of market completeness, standard

arguments imply that the state price density is uniquely given by

πt =
1

κ
Et

[
B−γT

]
, (16)

for which κ is the Lagrange multiplier from the utility maximization problem of the repre-

sentative household. The market value of stock i is given by the present value of liquidated

value at T

M i
t = Et

[πT
πt
Bi
T

]
. (17)

2.4.1 State Price Density

Our main focus is on the response of stock prices before regime shift uncertainty is

resolved at time τ , for agents learn about the impact of the policy regime as well as the

environmental cost under the weak regulation. This learning generates stochastic variation

in the posterior mean of c, according to equation (8), and the posterior mean represents a

stochastic state variable that affects asset prices at time τ . On the other hand, the posterior

variance of c varies deterministically over time in equation (9). We first determine the state

price of density in the following proposition.

Proposition 2. Before the resolution of regime shifts, for t < τ , the state price density is

given by

πt = B−γt Ωt, (18)

for which

Ωt = e

(
−γµ+ 1

2
γ(γ+1)σ2

)
(T−t)−γgW(τ−t)

[
pτ |te

−γgS(T−τ) + (1− pτ |t)e−γg
W(T−τ)

]
(19)

Proof. See Proposition 2 in Appendix.

The dynamics of the state price of density πt are essential for understanding the source

of risks in this economy. An application of Ito’s Lemma to πt determines the stochastic

discount factor in Proposition 3.

7This assumption is equivalent to assuming a risk-free rate of zero. Such an assumption is innocuous
because, without intermediate consumption, there is no intertemporal consumption choice that would clearly
identify the interest rate. This modeling choice ensures that interest rate fluctuations do not drive our results.
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Proposition 3. The stochastic discount factor (SDF) follows the process

dπt
πt

= Et

[
dπt
πt

]
− λdZt + λc,tdẐ

c
t , (20)

for which the price of risk for fundamental shocks denotes

λ = γσ, (21)

and the price of risk for uncertainty shocks denotes

λc,t =
1

Ωt

∂Ωt

∂ĉt
σ̂2
c,tη
−1. (22)

Proof. See Proposition 3 in Appendix.

Equation (20) shows that the sensitivity of the pricing kernel to fundamental shocks λ,

and to policy regime shift shocks λc,t, determine the price of risks. Fundamental shocks are

represented by the Brownian motion dZt, which drives the aggregate fundamentals (prof-

itability) of the economy. The first term of SDF shows that the fundamental shocks affect

the SDF in the same way when all parameters are known. The second type of shocks, as

introduced from equation (8) to learn about the environmental cost, are unrelated to funda-

mental shocks (i.e. dZt · dẐc,t = 0). However, policy regime shift shocks affect the allocation

of aggregate wealth and, therefore, are priced. Equation (22) indicates that policy regime

shift shocks trigger a larger effect on the SDF when the sensitivity of marginal utility to

variation in ĉt is larger (i.e., ∂Ωt/∂ĉt is larger), when updated signals reveal that the envi-

ronmental cost is larger (i.e., σ̂c,t is larger), and when the accuracy of the uncertainty shocks

is larger (i.e., η−1 is larger). Above all, the sign of λc,t is negative. When policy regime

shift shocks occur, both the marginal value of wealth and the state price of density increase.

Therefore, households are dissuaded from switching to the strong regulation regime; hence,

policy regime shift shocks carry a negative price of risk. Overall, a policy regime shift to

strong regulation pulls down the aggregate profitability and is viewed as a transition to the

bad state in the economy.

2.4.2 Stock Prices and Risk Premia

In this subsection, we present analytical expressions for the level and the dynamics of

firm i’s stock prices, respectively.
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Proposition 4. In the benchmark model for t < τ , the stock price for firm i is given by

M i
t = Bi

tΘ
i
t, (23)

for which

Θi
t = e(µ−γσ

2)(T−t)+βigW(τ−t)
[
φτ |te

βigS(T−τ) + (1− φτ |t)eβ
igW(T−τ)

]
, (24)

and

φt ≡
pτ |t

pτ |t + (1− pτ |t)e−γ(gW−gS)(T−τ)
. (25)

Proof. See Proposition 4 in Appendix.

The dynamics of firm i’s stock prices are presented in the following proposition.

Proposition 5. Firm i’s realized stock returns at t < τ follow the process

dM i
t

M i
t

= Et

[
dM i

t

M i
t

]
+ σdZt + σIdZ

i
t + βiM,tdẐ

c
t , (26)

for which firm i’s risk exposure to fundamental and firm-specific shocks denotes σ and σI ,

respectively, and risk exposure to policy regime shift shocks denotes

βiM,t ≡
1

Θi
t

∂Θi
t

∂ĉt
σ̂2
c,tη
−1. (27)

Proof. See Proposition 5 in Appendix.

In equation (27), we show that firm i’s realized stock returns contain the risk exposure

to fundamental shocks, σ, firm-specific shocks, σI , and policy regime shift shocks, βiM,t. The

second term of firm i’s realized stock returns shows that all firms in the economy face the

same exposure σ to fundamental shocks when the parameter σ is known. The third term

in equation (27) determines firm i’s exposure to firm-specific shocks, and is homogeneous to

a constant σI . Most importantly, policy regime shift shocks affect firms’ profitability and

valuations differently, generating a cross-sectional difference in risk exposures. The last term

in equation (27) shows that policy regime shift shocks effect firm i’s realized stock returns

more strongly when the sensitivity of firm i’s valuation M i
t to variations in ĉt is larger (i.e.,

∂Θi
t/∂ĉt is larger), when updated signals reveal that the environmental cost is larger (i.e.,

σ̂c,t is larger), and when the information about policy regime shocks is more accurate (i.e.,

η−1 is larger). Therefore,

βiM,t < 0, (28)
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which reflects the negative response when policy regime shifts occur. Moreover, we present

the cross-sectional difference in risk exposures to such regime shift shocks in the following

Corollary.

Corollary 2. Firm i’s exposure to policy regime shift shocks depends on ξi, which is the

sensitivity of profitability to policy regime shifts.

∂βiM,t

∂ξi
< 0. (29)

In equation (29), we show that firm i with a higher ξis experiences a larger collapse

than does firm j with a lower ξi in realized stock returns. This underlying difference in ξi

plays an essential role in determining heterogenous responses to policy regime shifts and in

formalizing the cross-sectional difference in expected stock returns.

In equilibrium, risk premia are determined by the Euler equation that characterizes the

covariance of a firm’s returns with the stochastic discount factor and which is correlated

with fundamental shocks and policy regime shift shocks. The stochastic discount factor is

defined as the growth rate of the state price of density πt and reflects the marginal utility of

wealth. Assets with low payoffs when the state price is high are more undesirable and thus

command higher risk premia. To characterize the risk compensation for fundamental shocks

and policy regime shift shocks, we derive the expressions for the conditional risk premium.

In particular, firm i’s expected stock return equals its risk premia

Et

[
dM i

t

M i
t

]
= −Covt

(
dM i

t

M i
t

,
dπt
πt

)
= σλdt− βiM,tλc,tdt. (30)

In equation (30), we show that firm i’s risk premia are determined by the exposure to

fundamental shock and policy regime shifts shock. Furthermore, firm i’s risk premia can be

decomposed into the product of the price of risk times firm i’s risk exposure, as measured

by the covariance of firm i’s realized stock return with shocks. The price of risk of the

fundamental shock in the stochastic discount factor is constant and depends on the parameter

of risk aversion and the volatility with respect to the fundamental shock. As the price of

risk λ is positive, households demand a positive risk premium to invest in securities that are

positively correlated with the fundamental shock.

The risk premium of the policy regime shift shock is in the second term in equation

(30). The price of risk of the regime shift shock, which reflects households’ concerns about

their marginal wealth, is negative. A positive policy regime shift shock lowers aggregate
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wealth through an increase in the probability of regime shifts, which leads to a permanent

decrease in aggregate profitability. As a result, a positive uncertainty shock leads to a high

marginal utility of wealth states. We also note that the impact of uncertainty shocks helps

to explain the decline in asset valuations across firms, reflecting a prevailing expectations for

low, future cash flows under regimes with a strong regulation. In particular, high emission

(high ξis) firms’ stock prices drop more than those of low emission firms. Therefore, agents

have significant concerns about risk that permanently affects the economy in the future, and

they therefore demand positive compensation for exposure to such uncertainty.

We refer to this premium as the pollution risk premium, so we may emphasize its dif-

ference from risk premium that is driven by fundamental shocks. The cross-sectional asset

pricing implication is captured in the following proposition.

Proposition 6. Suppose that there are two firms in the economy: one is a high emission

firm, while the other is a low emission firm. According to equation (30), two firms’ expected

stock returns are denoted as

Et

[
dMH

t

MH
t

]
= σλdt− βHM,tλc,tdt, (31)

and

Et

[
dML

t

ML
t

]
= σλdt− βLM,tλc,tdt, (32)

respectively. The long-short portfolio of high versus low emission firms’ expected stock returns

denotes

Et

[
dMH

t

MH
t

− dML
t

ML
t

]
=

[
(−βHM,t)− (−βLM,t)

]
λc,tdt (33)

for which βHM,t < βLM,t < 0.

Proof. As discussed earlier, ξL < ξH and ∂βiM,t/∂ξ
i < 0.

We make several observations for the long-short portfolio in equation (33) as follows.

First, βHM,t and βLM,t are the risk exposures to uncertainty of the regime shift. When the

regulation regime changes, stock valuations for all firms with positive ξis fall, but the stock

valuation of firm H with high ξH (high emissions) drops more than does that of firm L (low

emissions). Therefore, high pollution firms face more exposure to uncertainty shocks. Given

the negative price of risk with respect to uncertainty shocks (λc,t > 0), investors demand

a positive premium to hold high emission firms H over low emission firms L. In sum, the

pollution risk premium compensates investors for uncertainty in terms of whether strong
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regulation would be implemented in the future.

2.5 Calibration and Quantitative Model Implications

In this subsection, we calibrate our model at the annual frequency and evaluate its ability

to replicate key moments of both real quantities and asset price at the aggregate level. More

importantly, we investigate its performance in terms of quantitatively accounting for the

pollution premium in the cross-section of expected stock returns. Real quantities refer to

the aggregate ROE and book-to-market ratio, while the aggregate asset price refers to the

equity premium.

In Table 1, we present a group of calibrated parameter values in our model. We adopt

the following calibration procedure to determine a set of sensible parameters. All parameters

are grouped into four categories. We determine parameters in the first category by following

the previous literature; in particular, we set the relative risk aversion γ to be 2 and the

volatility to firm-specific productivity shock σI to be 0.05. These parameters are in line

with those in Pástor and Veronesi (2012, 2013). We determine parameters in the second

category by matching a set of first and second moments of quantities to their empirical

counterparts. The terminal time T is calibrated to be 10, roughly matching an average

Compustat firm age of 10 years in our sample. The sample path can be split into two parts

when regime shifts occur at the middle τ = 5 between 0 and T , without loss of generality.

The volatility of the aggregate ROE is set to match 0.10, the second moment of the aggregate

ROE in our data.8 When we determine parameters in the third category, we do not follow

an exact one-to-one mapping to the first moment of a specific item in the data; instead,

we determine these particular parameters by jointly matching to identify moments in the

data: the average of the aggregate ROE, the average of the aggregate book-to-market ratio,

changes in ROE driven by regime shifts, and the average of current and future ROE across

five quintile portfolios sorted by emissions. Specifically, we estimate the changes in firm-

level ROE when firms experience litigation related to environmental issues. As we introduce

in the model, ξi measures a firm i’s vulnerability of profitability to regime shifts, so we

choose the distribution of ξi between 0 and T to match the current and future ROE in five

portfolios. Finally, we let the volatility of the environmental cost σc equal 0.85, such that

the unconditional probability pτ is equal to 0.43.9 The volatility of noise parameter η is

calibrated to be 0.60, approximately matching the equity premium 5.71% per annum. Last

8The aggregate ROE is the cross-sectional average of firm-level ROE in the data, so we can eliminate the
firm-specific part.

9We do not have the prior value for the probability to regime shifts. As a result, we safely set the
probability roughly to be 0.5.
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but not least, we do not use any information about the cross-sectional variation in portfolio

returns when we use in our calibration procedure. Instead, we compare the cross-sectional

portfolio returns between the data and our simulation to follow our model implication.

[Place Table 1 about here]

We also evaluate the quantitative performance of the model at the aggregate level. In

Table 2, we show that our model is broadly consistent with the key empirical features of

real quantities and asset price. With respect to real quantities and asset price, our model

produces comparable results to our data.

[Place Table 2 about here]

Next, we study the pollution premium at the cross-sectional level. For the purpose of

cross-sectional analysis, we make use of several data sources at the micro-level, including (1)

firm-level balance sheet data from the Compustat annual files and (2) monthly stock returns

from CRSP. In Section 3, we provide additional details regarding our data sources and

constructions. Specifically, we set the distribution of exposures ξi to regime shifts between

0 and 2, and then simulate 5, 000 firms.10 In Table 3, we report the average excess returns,

book-to-market ratios, current ROEs, and future ROEs across different βi, and then compare

them with our data.

[Place Table 3 about here]

We document several cross-sectional implications in terms of average returns and firm

characteristics in Table 3. First, our model can quantitatively replicate the pattern in the

data by generating the upward sloping current ROE but not the downward sloping future

ROE across five quintile portfolios sorted by emissions, although both the data and our

model feature a flat pattern of book-to-market ratios across portfolios. Second, we use

Table 3 to show that our model can generate a pollution premium (i.e., the return spread

in the high-minus-low portfolio) as sizable as 4.70%, which is comparable to the 5.52% we

obtain from our data in Section 4.1. To generate the pollution premium, we identify a key

mechanism: high emission firms’ cash flows are more vulnerable to regime shifts from weak to

strong regulations, so they face higher risk exposures to regime shift shocks. Hence, investors

demand higher expected returns to hold high emission firms’ stocks.

10The range of ξi implies that the cross-sectional mean is equal to 1.
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3 Construction of Emissions

3.1 The Data and Construction

We construct firm-level emissions of U.S. public companies by collecting plant-level chem-

ical pollutants data from the Toxic Release Inventory (TRI) database constructed by the

United States Environmental Protection Agency (EPA). The database contains the follow-

ing detailed information on all U.S. chemical emissions from 1986 to 2014: report year,

level of chemical pollutants (pounds), name of chemical categories, location fips code, and

company names. The TRI database is a publicly available database operated by EPA since

1986.11 In response to incomplete coverage and measurement errors in the early period, we

use the TRI data from 1990 to 2014.

Unlike accounting reports or corporate taxation, the pollutants we report are self-reported;

as a result, and importantly, this pollutant data lacks reasonable verifications from third par-

ties such as auditors and IRS. Hence, there is no mechanism of enforcement to inhibit firms

from intentionally under-reporting their pollutants, which could undermine the reliability of

chemical pollutant data. Therefore, the chemical pollutants that we obtain and report from

the database are inevitably subject to measurement errors.

Our sample consists of firms in the intersection of Compustat, CRSP (Center for Research

in Security Prices), the TRI database, and Capital IQ. We obtain accounting data from

Compustat and stock data from CRSP. Our sample firms include those with non-missing

TRI data and non-missing SIC codes, and those with domestic common shares (SHRCD

= 10 and 11) trading on NYSE, AMEX, and NASDAQ. We identify firms in our sample

that were involved in litigations from the Key Developments in Capital IQ. Following the

literature, we exclude finance firms that have four-digit standard industrial classification

(SIC) codes between 6000 and 6999 (e.g., finance, insurance, trusts, and real estate sectors)

and firms with negative book value of equity. To mitigate backfilling bias, we require firms

to be listed on Compustat for two years before we include them in our sample. All firm-level

variables, except emission measures, are from Compustat, unless otherwise noted. Moreover,

we use the life expectancy data of Wang, Schumacher, Levitz, Mokdad, and Murray (2013),

county-level unemployment rate and population data, and state-level personal income per

11The U.S. congress passed the Community Right to Know Act (EPCRA) in 1986 in response to public
concerns over the release of toxic chemicals from several environmental accidents, both in domestic and
overseas. EPCRA entitles residents in their respective neighborhoods to know the source of detrimental
chemicals, especially for their potential impacts on human health from routes of exposure. EPCRA requires
a compulsory disclosure from each firm on its chemical releases to the environment with emission that exceeds
the amounts of listed toxic substances. Following the EPCRA, EPA constructs TRI to track and supervise
certain classifications of toxic substances from chemical pollutants that endanger human health and the
environment.
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capita data from the Federal Reserve Economic Data (FRED), which is maintained by the

Federal Reserve in St. Louis.

Finally, we collect news about firms involved in litigations from Capital IQ. More specif-

ically, Capital IQ covers information with material impact on the market value of securities,

including executive changes, M&A rumors, changes in corporate guidance, delayed filings,

SEC inquiries, and litigations. We search these firms’ new coverage in capital IQ using the

following keyword phrases: ”lawsuit”, ”litigation”, ”penalty”, and ”settlement”. We then

manually identify those firms involved in litigations related to violations of environmental

regulations.

3.2 Measures of Emissions

As we mentioned in our introduction to the TRI database, the EPA reports levels of

chemical pollutants at the county level for each year. We sum the reported chemical pollu-

tants across all counties reported by a firm in a given year to measure firm-level chemical

pollutants in millions of pounds and then scale them by book equity in millions of dollars to

obtain our first empirical proxy for emission intensity: ”Simple Emissions.” However, using

simple summation of chemical pollutants over counties ignores the heterogeneous toxicities

of different chemical categories; in short, some chemical categories may be more lethal to

human health than others. Therefore, we use an approach to calculate the toxicity degrees

for each chemical category to obtain ”Toxicity-adjusted Emissions” by weighting emissions

with toxicity degrees. In particular, we run county-year panel regressions for each chemical

category at expanding windows: 12

∆Life Expit = a+ bj × Chemj
it + Xitb + θt + ci + εit, for j = 1, ..., J, (34)

for which ∆Life Expit is the change in life expectancy in county i in year t, Chemj
it is the

level of chemical pollutants for the category j, and Xit are control variables for economic

fundamentals, including county-level employment rates, population, and state-level personal

income per capita. We also control for county fixed effects ci and year fixed effects θt.

Standard errors are clustered at the county level. We proxy bj for the toxicity degree for

a given chemical category j. A lower estimate of bj suggests that the category j is more

12The first window is 1990 only and is used to estimate toxicity degrees for 1991. The second window
is 1990-1992, which we use to estimate toxicity degrees for 1992; we follow a similar procedure until 2010.
Given that we use the life expectancy data up to 2010, toxicity degrees from 2011 to 2014 are based on the
estimates that we obtain in 2010.
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hazardous to human beings.13

The estimation for bj may result in some outlier coefficients of very negative or very

positive numbers, which cannot be used to construct our toxicity-weighted emissions. Thus,

for each year, we sort all categories with no-missing and negative estimates into five groups

based on the estimated bj, and then assign a score of 6 to the lowest quintile, 5 to the

second-lowest quintile, 4 to the third quintile, 3 to the second-highest quintile, and 2 to the

highest quintile.14 All chemical pollutants are supposed to have negative impacts on human

health; however, owing to measurement errors and data limitations, we may have positive

coefficients for some bj, or too few observations to estimate bj. We thus assign a score of

1 to those categories. Such score assignment ensures that our weighting is less affected by

outliers. Finally, we calculate a firm’s “Toxicity-adjusted Emissions” as the weighted sum

by multiplying the level of pollutants produced by a firm in a category with the score of that

category.

In Panel A of Table IA.1 in the Internet Appendix, we report the summary statistics of

all chemical categories and the time-series average of assigned scores based on the estimated

coefficient from equation (34). Some chemical categories have higher scores than other cat-

egories. For example, ”BIS(TRIBUTYLTIN) OXIDE” is a substance highly concentrated

in liver and kidney, and remains unknown for its impact on human health. Meanwhile, ”3

3’-DIMETHOXYBENZIDINE” is confirmed to trigger cancer, based on evidence from ani-

mal experimentation. Moreover, physical contact (e.g., inhalation, ingestion) with ”TRIB-

UTYLTIN METHACRYLATE” causes severe injury or even death. In Panel B, we report

the companies in our sample with the most toxic chemical pollutants based on hazardous

score in Panel A. Products from these firms are mainly related to agriculture, chemical, en-

ergy, food, and steel and coal industries. Agrium, Inc, American Vanguard Corp, and Scotts

Mirable-gro Co, which all focus on garden and lawn care, produce chemical fertilizers. Also,

Akzo Nobel Nv produces products related to chemical paints and coatings. In addition,

Albemarle Corp is the leader in the lithium battery market. Finally, Dow Chemical and

DuPont, which are two giants in the chemicals industry, and both have significant presence

in the U.S.

13There are currently more than 650 chemicals categories reported in the TRI database; however, not all of
these categories exist at the commencement of the TRI program. Only 586 chemical categories are available
in our sample. Thus, the changes in chemicals categories could cause inconsistency when we estimate toxicity
weights across years. We use both simple emissions and toxicity-adjusted emissions in our empirical analysis
to ensure the robustness of our conclusion.

14In 1990, given no prior observations, we treat all chemical categories equally by assigning a score of 1 to
all categories.
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3.3 Summary Statistics

In addition to simple and toxicity-adjusted emissions, we consider the following variables:

market capitalization (i.e., size), the book-to-market ratio (B/M), investment rate (I/A),

asset growth (AG), return on equity (ROE), R&D intensity (R&D/AT), organization capital

ratio (OC/AT), and book leverage.

In Table 4, we report pooled summary statistics and correlation between emission mea-

sures in year t-1 and other characteristics that are known to the public at the end of June of

year t. ME is market capitalization (measured in millions USD) at the end of June of year t.

Book-to-market ratio (B/M) is the ratio of book equity of the fiscal year ending in year t-1

to market capitalization at the end of year t-1. Investment rate (I/A) is capital expenditure

in fiscal year t-1 divided by lagged total assets at the end of fiscal year t-2. Asset growth

(AG) is the change in total assets in fiscal year t-1 divided by lagged total assets. Return on

equity (ROE) is income before extraordinary items plus depreciation expenses in fiscal year

t-1 scaled by lagged book equity. R&D/AT is the R&D expenses capital15 divided by total

assets in fiscal year t-1. OC/AT is the organization capital divided by total assets in fiscal

year t. In Panel A, we report the pooled mean, median, standard deviation (Std), minimum

(Min), 25th percentile (P25), medium, 75th percentile (P75), and Maximum (Max). Obs de-

notes the valid number of observations for each variable. We have a total 158,344 firm-year

observations with non-missing simple and toxicity-adjusted emissions. The averages of sim-

ple emissions and toxicity-adjusted emissions are 0.031 and 0.049, respectively, suggesting

that one thousand dollars of book equity are associated with 12.96 to 16.94 million pounds

of emissions.

[Place Table 4 about here]

4 Empirical Analysis

In this section, we provide novel empirical evidence for the positive relation between toxic

emissions and the cross-section of stock returns. We first show that emissions positively

predict cross-sectional expected stock returns in portfolio sorts. We then provide testable

implications to support our model mechanisms. Furthermore, we perform a battery of asset

pricing factor tests to show that such a relation is literally unaffected by known return factors

for other systematic risks. Finally, we investigate the joint link between emissions and other

15We follow Chan, Lakonishok, and Sougiannis (2001) to accumulate R&D expenditures over the most
recent five fiscal years at a 20% depreciation rate.
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firm-level characteristics on one hand and future stock returns in the cross-section on the

other, using Fama and MacBeth (1973) regressions as a valid cross-check for the positive

relation between emissions and stock returns.

4.1 The Pollution Premium and Firm Characteristics

To investigate the link between simple (toxicity-adjusted) emissions and future stock

returns in the cross-section, we construct five portfolios sorted on a firms’s current simple

(toxicity-adjusted) emissions and report the portfolio’s post-formation average stock returns.

We construct the simple (toxicity-adjusted) emissions at an annual frequency as described in

Section 3. At the end of June of year t from 1992 to 2015, we rank firms by simple emissions

(toxicity-adjusted emissions) relative to their industry peers and construct portfolios as fol-

lows. At the end of each June from 1992 to 2015, we sort all NYSE16 firms with positive

simple (toxicity-adjusted) emissions in year t-1 into five groups from low to high within the

corresponding 48 industries, according to Fama and French (1997). As a result, we have

industry-specific, NYSE-based breaking points for quintile portfolios for each June. We then

assign all other non-NYSE firms with positive simple emissions (toxicity-adjusted emissions)

in year t-1 into these portfolios. Thus, the low (high) portfolio contains firms with the lowest

(highest) emissions in each industry. To examine the emission-return relation, we form a

high-minus-low portfolio that takes a long position in the high emission portfolio and a short

position in the low emission portfolio.

After forming the six portfolios (from low to high and high-minus-low), we calculate the

value-weighted monthly returns on these portfolios over the next twelve months (July in year

t to June in year t+1). In Panel A (Panel B) of Table 5, the top row presents the annualized

average excess stock returns (E[R]-Rf, in excess of the risk free-rate), standard deviations,

and Sharpe ratios of the five portfolios sorted on simple (toxicity-adjusted) emissions. With

Table 5, we show that, consistent with our model, a firm’s emissions forecast stock returns.

Firms with currently high emissions earn subsequently lower returns, on average, than firms

with currently high emissions. The difference in returns is economically large and statistically

significant.

In both Panels A and B, we find that the average excess returns on the first five portfo-

lios strictly increase with simple (toxicity-adjusted) emissions. From low to high quintiles,

the average excess returns are 7.31%, 7.82%, 7.99%, 8.46%, and 12.84%, respectively. In

16Unlike the Compustat-CRSP merged sample, more than one third of firms in our sample are NYSE-
listed firms because we require non-missing and non-zero emission data. Nevertheless, when we sort by
NYSE breaking points, we obtain results that reflect an evenly distributed number of firms in five portfolios
(see Table 5).
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addition, the average excess return on the high-minus-low portfolio is 5.52% with statistical

significance at the 1% level. In Panel B, the average excess return from the low portfolios to

the high portfolios are 6.90%, 8.31%, 7.99%, 7.89%, and 12.77%, respectively. The average

excess return on the high-minus-low portfolio is 5.87% with statistical significance at the 1%

level. The average return spread (i.e., the average return on the high-minus-low portfolio) is

more than 3 standard errors from zero. Across the two sets of average returns, the Sharpe

ratio of the portfolio of firms with high simple emissions (toxicity-adjusted emissions) is more

than 1.7 (1.8) times larger than the Sharpe ratio of the portfolio of firms with low simple

emissions (toxicity-adjusted emissions).

[Place Table 5 about here]

We then examine the time-series pattern of the returns on the high-minus-low portfolio,

which is our proxy for pollution premium. In Figure 1, we plot the cumulative returns of the

high-minus-low portfolio from July of 1992 to December of 2015. The portfolio’s cumulative

returns reveal a clear steady upward trend. While there are some drops in the cumulative

returns, they do not overlap with economic recessions (denoted by the shaded areas). As

a result, the positive emission-return relation that we find appears to be a fairly persistent

pattern.

A natural concern for the measure of simple (toxicity-adjusted) emissions is whether the

simple (toxicity-adjusted) emissions merely captured by other firm characteristics are known

to predict cross-sectional stock returns. In Table 6, we report firm characteristics across

quintile portfolios sorted on simple (toxicity-adjusted) emissions. There are small dispersions

for size, book-to-market, and investment rate. From low to high quintile portfolios, we

observe upward sloping patterns in profitability (ROE), R&D intensity, and leverage, but

downward sloping patterns in asset growth and organization capital ratio.

[Place Table 6 about here]

4.2 Further Tests for Model Assumptions and Implications

We provide direct empirical evidence to support our model assumption on firms’ prof-

itability, and we justify that firms with high emissions face high probabilities to trigger

litigations that negatively affect those firms’ profitability. Moreover, we show test results

consistent with our model predictions. Specifically, we measure the perceived possibility of

policy regime shift shocks using the log difference (i.e., the growth rate) of the total number
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of firms that report their toxic emissions, temperature, and rainfall.17 These three growth

rates reflect the perceived likelihood for changes in the government’s perceived environmental

cost that could reshape the government’s policy regime.

4.2.1 Future Profitability

In our model, firms’ profitability drops when regulation tightens, as we show in equation

(2). To test this model assumption, we focus on simple emissions and use three measures

of perceived probability of policy regime shifts ”Shocks.” We express our specification as

follows

ROEi,t+5 = a+b1×Emissionsi,t+b2×Shockst+b3×Emissionsi,t·Shockst+c×Controlsi,t+εi,t,
(35)

for which ROEi,t+5 is firm i’s ROE in t+ 5, Emissionsi,t denotes firm i’s simple or toxicity-

adjusted emissions in year t, and Shockst denotes one of the three measures for the perceived

probability of shocks in year t: ”Disclosure,” ”Temperature,” and ”Rainfall.” We control for

a firm’s fundamentals, including size, book-to-market ratio (B/M), investment rate (I/A),

asset growth (AG), return on equity (ROE), R&D intensity (R&D/AT), organization capital

ratio (OC/AT), and book leverage in year t and industry fixed effect. Standard errors are

clustered at the firm level.

[Place Table 7 about here]

We find that, consistent with our model, the estimated coefficients for the interaction

term b̂3 are negatively significant across different measures of signal shocks. On the other

hand, the estimated coefficients b̂1 and b̂2 are insignificantly different from zero when we

control for the interaction term. Our interpretation for this pattern is that all firms’ profits

are subject to negative exposure to policy regime shocks. However, different firms have

different exposure. The negatively significant coefficient b̂3 suggests that firms with higher

toxic emissions experience more profitability decline when policy regimes shift. Overall, we

obtain robust and consistent results that policy regime shifts hurt firms’ future profitability.

4.2.2 Future Litigations Related to Environmental Issues

In this subsection, we justify the finding in our previous subsection and show that high

emission firms are subject to more environmental litigation probabilities when a policy regime

17The use of temperature and rainfall is motivated by Bansal, Kiku, and Ochoa (2017). These data are
collected from The World Bank’s Climate Change Knowledge Portal.

24



shifts. We use firm-level litigation information, including a firm’s disclosure of material

information about legal authority and enforcement or lawsuits relevant to environmental

issues from Capital IQ, as a proxy of the consequences of policy regime shifts.18 We test this

prediction by estimating

Ni,t+5 = a+ b1 × Emissionsi,t + c× Controlsi,t + εi,t, (36)

for which Ni,t+5 refers to firm i’s future litigation status, which is defined as a binary variable

and reflects whether a firm is involved in litigations in the next five years or which is defined

as a count variable and reflects the total involved litigations in the next five years. Since the

first measure is binary we estimate equation (36) using a Probit regression; since the second

is a count variable, we estimate equation (36) using a Poisson count and negative binomial

regression, respectively. We report the estimated coefficients in Table 8.

[Place Table 8 about here]

We find that simple emissions in all predictive regressions are positively significant to

predict future litigations in the left panel of Table 8. We also show similar result are shown

from the predictive regressions by toxicity-adjusted emissions in the right panel of Table 8.

Therefore, our empirical evidence confirms that high emission firms will be involved in more

environmental litigations from strong regulation regimes when a policy regime shifts.

4.2.3 Realized Stock Returns

In this subsection, we show results consistent with Proposition 5 and Corollary 2. In

our model, realized stock returns decrease with policy regime shift shocks, as we show in

equation (27). More significant for our model implications, however, is that high emission

firms carry more negative exposure with respect to policy regime shift shocks. To support

these model implications, we explore the relation between realized stock returns and three

measures for the probability of regime shifts (“Shocks”) as defined earlier:

Ri,t−Rf,t = a+b1×Emissionsi,t+b2×Shockst+b3×Emissionsi,t·Shockst+c×Controlsi,t+εi,t,
(37)

for which Ri,t −Rf,t is firm i’s stock return in calendar year t, Emissionsi,t denotes firm i’s

simple or toxicity-adjusted emissions in year t, and Shockst denotes the perceived probability

of shocks in year t. We estimate this equation via the Fama-Macbeth regression and report

18In our model, the implied regime shift is irreversible and occurs only once. However, policy regime shifts
in reality might occur from time to time.

25



our estimated coefficients, along with Newey-West standard errors, in Table 9.

[Place Table 9 about here]

In Table 9, we show that the estimated coefficients of b̂3 are all negatively significant

across different specifications, consistent with Proposition 5 and Corollary 2. The negatively

significant coefficient b̂3 suggests that high emission firms’ market value decreases more than

low emission firms’ when the policy regime shifts. As a result, we observe drops in firms’

realized stock returns.

4.3 Asset Pricing Factor Tests

We also investigate the extent to which the variation in the average returns of the

emission-sorted portfolios can be explained by exposure to standard risk factors proposed by

the Fama and French (2015) five-factor model or the Hou, Xue, and Zhang (2015) q-factor

model. 19

To test the standard risk factor models, we preform time-series regressions of emissions

sorted portfolios’ excess returns on the Fama and French (2015) five-factor model (the market

factor-MKT, the size factor-SMB, the value factor-HML, the profitability factor-RMW, and

the investment factor-CMA) in Panel A and on the Hou, Xue, and Zhang (2015) q-factor

model (the market factor-MKT, the size factor-SMB, the investment factor-I/A, and the

profitability factor-ROE) in Panel B, respectively. Such time-series regressions enable us

to estimate the betas (i.e., risk exposures) of each portfolio’s excess return on various risk

factors and to estimate each portfolio’s risk-adjusted return (i.e., alphas in %). We annualize

the excess returns and alphas in Table 10.

[Place Table 10 about here]

As we show in Table 10, the risk-adjusted returns (intercepts) of the simple (toxicity-

adjusted) emissions sorted high-minus-low portfolio remain large and significant, ranging

from 5.25 (5.30)% for the Fama and French (2015) five-factor model in Panel A to 5.06

(5.15)% for the Hou, Xue, and Zhang (2015) q-factor model in Panel B, and these intercepts

are 3 standard errors above zero, which the t-statistics is far above 1% statistical significance

level. Second, the alpha implied by the Fama-French five-factor model is slightly higher than

the the simple (toxicity-adjusted) emissions spread (i.e., the return on the high-minus-low

19The Fama and French factors are downloaded from Kenneth French’s data library (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html). We thank Kewei Hou, Chen Xue, and
Lu Zhang for kindly sharing the Hou, Xue, and Zhang factors.
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portfolio) in the univariate sorting (Table 5), while the alpha implied by the HXZ q-factor

model remains comparable to the long-short portfolio sorted on simple (toxicity-adjusted)

emissions. Third, the return on the high-minus-low portfolio has insignificantly negative

betas with respect to both the Fama and French (2015) five-factor model and to the Hou, Xue,

and Zhang (2015) q-factor model. The high-minus-low portfolio based on simple emissions

presents negative loadings on market and size for the Fama-French five-factor model (Panel

A) and the HXZ q-factor model (Panel B). In summary, results from asset pricing tests

in Table 10 suggest that the cross-sectional return spread across portfolios sorted on simple

(toxicity-adjusted) emissions cannot be explained by either the Fama and French (2015) five-

factor model or the HXZ q-factor model (Hou, Xue, and Zhang (2015)). Hence, common

risk factors cannot explain the higher returns associated with pollution. In the next section,

we go beyond factor regressions and control for multiple characteristics simultaneously by

running cross-sectional regressions.

4.4 Cross-Sectional Return Predictability Regressions

For robustness, we also investigate the predictive ability of emissions for the cross-

sectional stock returns using Fama-MacBeth cross-sectional regressions (Fama and MacBeth

(1973)). This analysis allows us to control for an extensive list of firm characteristics that

predict stock returns and to verify whether the positive emission-return relation is driven

by other known predictors at the firm level. This approach is preferable to the portfolio

tests, as the latter requires the specific breaking points to sort firms into portfolios and also

requires us to select the number of portfolios. Also, it is difficult to include multiple sorting

variables with unique information about future stock returns by using a portfolio approach.

Thus, Fama-MacBeth cross-sectional regressions provide a reaonable cross-check.

We run standard firm-level, Fama-MacBeth cross-sectional regressions to predict stock

returns using lagged firm-level emissions after we control for other characteristics. The

specification of regression is as follows:

Ri,t+1 −Rf,t+1 = a+ b× Emissions i,t + γ × Controlsi,t + εit. (38)

Following Fama and French (1992), we take each month from July of year t to June of year

t+1, and we regress monthly returns of individual stock returns (annualized by multiplying

12) on emissions of year t-1, different sets of control variables that are known by the end of

June of year t, and industry fixed effects. Control variables include the natural logarithm

of market capitalization at the end of each June (Size), the natural logarithm of book-to-

market ratio (B/M), investment rate (I/A), asset growth (AG), return on equity (ROE),
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R&D intensity (R&D/AT), organization capital ratio (OC/AT), book leverage (Leverage),

and industry dummies based on Fama and French (1997) 48 industry classifications. All

independent variables are normalized to a zero mean and a one standard deviation after

winsorization at the 1th and 99th percentile to reduce the impact of outliers; we also adjust

all independent variables for standard errors by Newey-West adjustment.

[Place Table 11 about here]

In Table 11, we report the results from cross-sectional regressions performed at a monthly

frequency. The reported coefficient is the average slope from monthly regressions, and the

corresponding t-statistic is the average slope divided by its time-series standard error. We

annualize the slopes and standard errors in Table 11.

The results of Fama-Macbeth regression are consistent with the results of portfolio sorted

on emissions. In Specification 1 (3), simple (toxicity-adjusted) emissions significantly and

positively predict future stock returns with a slope coefficient of 7.18 (6.80), which is 2.55

(2.66) standard errors from zero. This finding implies that a one-standard-deviation increase

in emissions leads to a significant increase of 7.18 (6.80)% in the annualized stock return.

The difference in average simple (toxicity-adjusted) emissions between firms in the top and

bottom quintile is around 0.68 (0.69) standard deviations. The coefficient in Column 1

(3) implies a difference in the annualized return to 4.93 (4.72)%, which is slightly lower

than the high-minus-low portfolio return of 5.52 (5.87)% that we report in Table 5. The

Fama-Macbath regressions suggest that emissions positively predict average returns. Such

a regression weighs each observation equally, and thus places substantial weight on small

firm. However, our finding for the pollution premium is mainly based on value-weighted

rather than equal-weighted portfolios. Therefore, the difference between valued- and equal-

weighted portfolios reflects the discrepancy between the implied return from the Fama-

Macbath regression and the valued-weighted portfolio return.

From Specification 2 (4), simple (toxicity-adjusted) emissions positively predict stock

returns with statistically significant slope coefficients when we further control for size, book-

to-market ratio, investment rate, asset growth, ROE, R&D intensity, organizational capital

ratio, and leverage. Of note, the slope of simple (toxicity-adjusted) emissions remains positive

and significant for Specification 2 (4) after we include all the regressors. Overall, Table 11

suggests that the positive emission-return relation cannot be attributed to other known

predictors and that simple (toxicity-adjusted) emissions have an unique return predictive

power.
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5 Conclusion

The awareness of environmental protection has surged over the past several decades. This

paper investigates the implications of pollution on the cross-section of stock returns. We use

chemical emissions reported to the Environmental Protection Agency (EPA) to measure

firms’ annual toxic release. A long-short portfolio constructed from firms with high versus

low toxic emission intensity relative to their industry peers generates an average excess return

of around 5.52% per year. The return spread cannot be explained by existing risk factors,

including the Fama-French five-factor model (Fama and French (2015)) and the HXZ q-factor

model (Hou, Xue, and Zhang (2015)). Fama and MacBeth (1973) regressions provide a valid

cross-check for the positive relation between toxic emissions and stock returns. We also find

a negative relation between toxic emissions and future profitability as measured by ROE.

To explain our empirical finding of a pollution premium, we develop a general equilibrium

asset pricing model in which firms’ cash flows face the uncertainty of regime shifts in emission

regulation policy. In our model, a government (i.e., social planer) makes an optimal decision

between a strong or weak emission regulation regime by maximizing an investor’s welfare

based on such a trade-off, as a social planner would do. In particular, we find that the

government optimally replaces a weak regulation regime by a strong one if the pollution

cost is perceived to be sufficiently higher. Since high emission (”dirty”) firms’ profitability

is more negatively affected than that of low emission (”clean”) firms upon a regime shift

from weak to strong regulation, high emission (”dirty”) firms are more exposed to regulation

regime shift risks and, thus, earn higher average excess returns as risk premia.

Further empirical analyses provide supportive evidence to our model assumptions and

implications. First, all firms’ future profits decrease with the perceived probability of policy

regime shifts, and high emission firms suffer more. Second, we verify the channel for the

reduced profitability by showing that high emission firms are involved in more environmental

litigations when a policy regime shifts. Last and most importantly, we show that high

emission firms’ market value drops significantly when a policy regime shifts.
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Figure 1. Calendar-Time Cumulative Returns of the High-minus-Low Portfolios

Cumulative returns are computed for the high-minus-low portfolios sorted by simple and
toxicity-adjusted emissions. We plot the time-series of these cumulative returns. The shaded
bands are labeled as recession periods, according to NBER recession dates. The sample
period is July 1992-Dec 2015.
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Table 1. Parameter Choices

This table reports the parameter values used in the simulations. The parameters are: regime shifts uncer-
tainty σc in equation (5), volatility of noise η in equation (6), µ, σ, and σI from equation (1), final date T ,
time τ of the policy decision, and risk aversion γ. σc and η equate the real quantities and equity premium.
All variables except for γ are reported on an annual basis.

σc η µ σ σI T τ γ gW gS

0.95 0.60 0.20 0.10 0.05 10 5 2 0.02 -0.06
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Table 2. Aggregate Moments

This table reports aggregate quantities (Panel A) and asset price (Panel B) in the model and data. Aggregate
quantities refer to aggregate ROE and book-to-market ratio, and aggregate asset price refers to the equity
premium in annual frequency.

Data Model
Panel A: Real Quantities

ROE 0.23 0.22
B/M 0.38 0.40

Panel B: Asset Price
E[Rm]-Rf (%) 5.71 4.70
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Table 3. Portfolios, Firm Characteristics, and Model Comparison

This table reports time-series averages of the cross-sectional averages of firm characteristics across five
portfolios sorted on emissions. Panel A reports the five quintile portfolio sorted from the data, as mentioned
in Section 4.1. Panel B reports five quintile portfolios sorted from the simulation. All returns are annualized.

Variables L 2 3 4 H H-L
Panel A: Data

E[R]-Rf (%) 7.31 7.82 7.99 8.46 12.84 5.52
ROE 0.17 0.20 0.21 0.27 0.23
ROEt+5 0.35 0.19 0.25 0.20 0.17

Panel B: Model
E[R]-Rf (%) 2.51 3.57 4.68 5.90 7.21 4.70
ROE 0.20 0.21 0.22 0.23 0.24
ROEt+5 0.20 0.18 0.17 0.16 0.15
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Table 4: Summary Statistics

This table presents summary statistics for the firm-year-month sample. Simple emissions are measured as the simple summations of chemical pollutants
over counties in year t-1, and then divided by the book value of equity at the end of fiscal year t-1 at the firm-year level. Toxicity-adjusted emissions
are measured as the hazardous-weighted summation of chemical pollutants over counties in year t, and then divided by the book value of equity at
the end of fiscal year t-1 at the firm-year level. ME is market capitalization (millions $) at the end of June of year t. B/M is the ratio of the book
equity of fiscal year ending in year t-1 to market capitalization at the end of year t-1. I/A is capital expenditure (item CAPX) dividend by lagged
total assets at the end of fiscal year t-2. Asset growth (AG) is the change in total assets in year t-1 divided by lagged total assets. Return on equity
(ROE) is income before extraordinary items plus interest expenses in year t-1 scaled by lagged book equity. R&D/AT is the summation of R&D
expenses by inventory method over the previous five years divided by lagged total assets. OC/AT is the summation of general administrative expenses
by inventory method over the previous five fiscal years divided by lagged total assets. We report the pooled mean, median, standard deviation (Std),
minimum (Min), 25th percentile (P25), medium, 75th percentile (P75), and Maximum (Max). Obs denotes the valid number of observations in each
variable. The sample period is 1991-2014.

Summary Statistics
Simple Toxicity-adjusted

Emissions Emissions ME B/M I/A AG ROE R&D/AT OC/AT Leverage

Mean 12.96 16.94 98,146.06 0.38 0.06 1.11 0.23 0.10 0.49 0.36
Std 55.75 53.02 27,931.47 0.64 0.06 0.39 2.17 0.11 0.42 0.22
Min 0.00 0.00 0.44 0.00 0.00 0.16 -126.86 0.00 0.00 0.00
P25 0.00 0.00 309.85 0.33 0.03 0.99 0.05 0.00 0.23 0.20
Median 0.83 1.36 1,261.27 0.52 0.05 1.06 0.11 0.03 0.44 0.35
P75 4.60 7.72 4,820.41 0.8 0.08 1.15 0.17 0.08 0.71 0.50
Max 230.06 277.95 524,351.6 24.75 1.83 12.89 70.38 3.49 5.06 1.00
Obs 158,344 158,344 141,397 141,284 155,516 156,813 158,291 158,344 158,344 158,098
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Table 5: Portfolios Sorted on Emissions

This table shows average excess returns for five portfolios sorted on simple emissions portfolios (Panel A)
and on toxicity-adjusted emissions portfolios (Panel B) relative to their industry peers, for which we use
the Fama-French 48 industry classifications and rebalence portfolios at the end of every June. The results
reflect monthly data, for which the sample period is from July 1992 to December 2015 and excludes financial
industries. We report average excess returns over the risk-free rate E[R]-Rf, standard deviations Std, and
Sharpe ratios SR across five portfolios in Panel A and Panel B. Standard errors are estimated by using the
Newey-West correction. We include t-statistics in parentheses and annualize portfolio returns multiplying by
12. All portfolios returns correspond to value-weighted returns by firm market capitalization. All returns,
standard deviations, and Sharpe ratios have been annualized.

Variables L 2 3 4 H H-L
Panel A: Simple Emissions

E[R]-Rf (%) 7.31 7.82 7.99 8.46 12.84 5.52
[t] 2.46 2.29 2.72 2.51 4.13 3.18
Std (%) 14.17 15.97 13.55 15.29 14.48 9.73
SR 0.52 0.49 0.59 0.55 0.89 0.57

Panel B: Toxicity-adjusted Emissions
E[R]-Rf (%) 6.90 8.31 7.99 7.89 12.77 5.87
[t] 2.34 2.44 2.73 2.43 4.10 3.24
Std (%) 14.16 15.97 13.71 15.01 14.49 9.23
SR 0.49 0.52 0.58 0.53 0.88 0.64
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Table 6. Firm Characteristics

This table reports summary statistics for five simple emissions portfolios (Panel A) and five toxicity-adjusted
emissions portfolios (Panel B). Simple emissions (Emissions) are measured as the simple summations of
chemical pollutants over counties, and then divided by the book value of equity at the end of fiscal year t-1
at the firm-year level. Toxicity-adjusted emissions (Emissions adj) are measured as the hazardous-weighted
summation of chemical pollutants over counties, and then divided by book value of equity at the end of fiscal
year t-1 at firm-year level. Variables of portfolio characteristics are described in Table 4. The sample period
is July 1992-Dec 2015.

Simple Emissions Toxicity-adjusted Emissions
Variables L 2 3 4 H L 2 3 4 H
Emissions 0.06 0.43 1.54 5.85 37.80 0.06 0.42 1.69 5.87 36.84
Log ME 10.99 11.58 11.72 10.76 10.77 11.00 11.55 11.72 10.73 10.76
B/M 0.40 0.37 0.36 0.39 0.39 0.41 0.38 0.35 0.39 0.39
I/A 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06
AG 1.13 1.11 1.11 1.10 1.09 1.13 1.11 1.11 1.10 1.09
ROE 0.17 0.20 0.21 0.27 0.23 0.17 0.20 0.21 0.26 0.24
R&D/AT 0.10 0.10 0.09 0.12 0.12 0.10 0.09 0.09 0.12 0.12
O/AT 0.56 0.50 0.48 0.56 0.52 0.56 0.50 0.46 0.59 0.51
Leverage 0.37 0.37 0.34 0.33 0.40 0.36 0.37 0.34 0.34 0.40
Numbers 112 100 99 100 92 113 99 99 100 92
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Table 7: Predicative Regressions - Future Profitability

This table reports panel regressions of future profitability on their emissions, perceived probability of shocks,
and their interactions, together with other firm characteristics. The sample period is from 1992 to 2014
and excludes financial industries. We control for industry fixed effects based on Fama-French 48 industry
classifications. We measure the perceived possibility of policy regime shift shocks (”Shocks”) using the log
difference (i.e., the growth rate) of the total number of firms that report their toxic emissions (”Disclosure”),
temperatures, and rainfall. All independent variables are normalized to a zero mean and a one standard
deviation after winsorization at the 1th and 99th percentile of their empirical distribution. t-statistics
clustered by firms with ***, **, * indicate statistical significance at the 1, 5, and 10% levels.

Variables Disclosure Temperature Rainfall

Emissions -0.11*** 0.01 -0.01
[t] -5.53 0.59 -0.91
Shocks -0.00 0.02 0.05***
[t] -0.06 1.37 3.78
Emissions x Shocks -0.12*** -0.10*** -0.03***
[t] -6.25 -5.59 -2.68
Log ME 0.17*** 0.17*** 0.17***
[t] 10.34 10.39 10.38
Log B/M -0.06*** -0.05*** -0.05***
[t] -3.44 -2.86 -2.83
I/K -0.04*** -0.04*** -0.04***
[t] -2.84 -2.97 -2.71
AG -0.05*** -0.04*** -0.04***
[t] -3.35 -3.18 -3.19
ROE 0.13*** 0.12*** 0.12***
[t] 8.50 8.04 8.05
R&D / AT -0.05*** -0.04*** -0.04***
[t] -3.19 -2.69 -2.72
O / AT 0.18*** 0.17*** 0.17***
[t] 10.71 10.17 10.14
Leverage 0.04*** 0.04*** 0.04***
[t] 3.04 2.83 2.99

Observations 6,845 6,762 6,762
Industry FE Yes Yes Yes
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Table 8: Predicative Regressions - Future Litigations

This table reports the predictive relation between future litigations and simple (toxicity-adjusted) emissions.
The sample period is from 2003 to 2014 and excludes financial industries. We report coefficients estimated
from Probit, Poinsson count, and negative binomial regression. We also control for time fixed effects and
industry fixed effects based on Fama-French 48 industry classifications. All independent variables are nor-
malized to a zero mean and one standard deviation after winsorization at the 1th and 99th percentile of their
empirical distribution. t-statistics based on standard errors are clustered by firms, and ***, **, * indicate
statistical significance at the 1, 5, and 10% levels.

Simple Emissions Toxicity-adjusted Emissions
Variables Probit NB Poisson Probit NB Poisson

Emissions 0.19*** 0.51*** 0.34*** 0.18*** 0.47*** 0.32***
[t] 3.92 2.89 4.12 4.02 2.72 3.81
Log ME 0.80*** 2.56*** 2.42*** 0.80*** 2.56*** 2.40***
[t] 9.03 10.97 6.94 9.01 11.07 6.86
Log B/M 0.15** 0.46** 0.42** 0.15** 0.46** 0.40**
[t] 2.30 2.31 2.08 2.27 2.29 2.02
I/K -0.08 -0.42* -0.20 -0.08 -0.44* -0.20
[t] -1.28 -1.76 -1.04 -1.30 -1.81 -0.99
AG -0.12** -0.22* -0.29* -0.12** -0.22* -0.29*
[t] -2.21 -1.83 -1.83 -2.20 -1.85 -1.87
ROE 0.01 0.37* 0.20 0.02 0.38* 0.19*
[t] 0.24 1.91 1.61 0.30 1.92 1.65
R&D/AT -0.00 -0.39 0.12 -0.00 -0.40 0.12
[t] -0.00 -0.92 0.25 -0.01 -0.95 0.25
OC/AT -0.01 -0.16 0.08 -0.01 -0.16 0.08
[t] -0.07 -0.54 0.25 -0.09 -0.57 0.23
Leverage -0.08 -0.38 -0.17 -0.09 -0.37 -0.15
[t] -1.19 -1.39 -0.67 -1.23 -1.36 -0.60

Observations 5,058 5,978 5,978 5,058 5,978 5,978
Industry FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
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Table 9: Return Sensitivities to Perceived Probability of Shocks

This table reports panel regressions of individual stock excess returns on their emissions and other firm
characteristics. The sample period is 1993 to 2015 and excludes financial industries. For each month
from January of year t to December of year t, we compound monthly excess returns and then regress
compounded excess returns of individual stock on simple emissions, perceived probability of shocks, and
their interaction, together with different sets of variables that are known by the end of December of year
t-1; we also control for industry fixed effects based on Fama-French 48 industry classifications. We present
the time-series average and heteroscedasticity-robust t-statistics of the slopes (i.e., coefficients) estimated
from the annual cross-sectional regressions for different model specifications. All independent variables are
normalized to a zero mean and a one standard deviation after winsorization at the 1th and 99th percentile of
their empirical distribution. We measure the perceived possibility of policy regime shift shocks (”Shocks”)
using the log difference (i.e., the growth rate) of the total number of firms that report their toxic emissions
(”Disclosure”), temperature, and rainfall. Returns are annualized. t-statistics are estimated using the
Newey-West correction, and ***, **, * indicate statistical significance at the 1, 5, and 10% levels.

Variables Disclosure Temperature Rainfalls

Emissions 0.17 0.48*** 0.38**
[t] 0.98 2.89 2.42
Shocks -0.98*** -0.09 -0.27**
[t] -7.71 -0.72 -2.16
Emissions x Shocks -2.12** -0.42** -0.25*
[t] -2.28 -2.47 -1.87
Log ME 0.04 0.03 0.05
[t] 0.26 0.17 0.29
Log B/M 1.25*** 1.28*** 1.30***
[t] 7.47 7.56 7.67
I/K -0.09 -0.16 -0.16
[t] -0.67 -1.12 -1.12
AG -0.56*** -0.60*** -0.61***
[t] -3.84 -4.04 -4.10
ROE -0.20 -0.18 -0.17
[t] -1.29 -1.23 -1.19
R&D/AT 0.16 0.22 0.22
[t] 0.95 1.30 1.29
OC/AT 0.56*** 0.55*** 0.55***
[t] 3.22 3.15 3.13
Leverage 0.46*** 0.46*** 0.46***
[t] 3.28 3.28 3.33

Observations 9,851 9,669 9,669
Industry FE Yes Yes Yes
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Table 10: Asset Pricing Factor Tests

This table shows asset pricing factor tests for five portfolios sorted on emissions relative to their industry peers, for which we use the Fama-French
48 industry classifications and rebalence portfolios at the end of every June. The results use monthly data, where the sample period is from July
1992 to December 2015 and excludes financial industries. In Panel A, we report the portfolio alphas and betas by the Fama-French five-factor model,
including MKT, SMB, HML, RMW, and CMA factors. In panel B, we report portfolio alphas and betas by the HXZ q-factor model, including MKT,
SMB, I/A, and ROE factors. Data on the Fama-French five-factor model are from Kenneth French’s website. Data on the I/A and ROE factor are
provided by Kewei Hou, Chen Xue, and Lu Zhang. Standard errors are estimated using the Newey-West correction with ***, **, and * indicate
statistical significance at the 1, 5, and 10% levels. We include t-statistics and annualize the portfolio alphas multiplying by 12. All portfolios returns
correspond to value-weighted returns by firm market capitalization. The sample period is July 1992-Dec 2015.

Simple Emissions Sorted Portfolios Toxicity-adjusted Emissions Sorted Portfolios
Variables L 2 3 4 H H-L L 2 3 4 H H-L

Panel A: Fama-French Five-factor Model

αFF5 -1.36 0.15 1.11 -2.29 3.89** 5.25*** -1.54 0.48 0.42 -1.97 3.75** 5.30***
[t] -0.88 0.10 0.76 -1.45 2.27 3.11 -0.98 0.31 0.32 -1.36 2.21 3.09
MKT Rf 0.94*** 1.00*** 0.85*** 1.06*** 0.90*** -0.04 0.94*** 1.00*** 0.88*** 1.02*** 0.90*** -0.03
[t] 25.01 32.60 27.55 25.96 21.45 -0.71 25.65 29.93 28.26 30.62 22.08 -0.63
SMB -0.07 -0.13** -0.23*** -0.09* -0.09 -0.02 -0.09** -0.12** -0.23*** -0.11* -0.08 0.01
[t] -1.44 -2.55 -4.80 -1.77 -1.49 -0.27 -2.01 -2.34 -4.72 -1.79 -1.27 0.20
HML -0.04 0.06 -0.02 -0.04 0.03 0.06 -0.02 0.03 -0.01 -0.05 0.04 0.06
[t] -0.66 1.09 -0.25 -0.86 0.34 0.82 -0.36 0.49 -0.21 -1.02 0.46 0.75
RMW 0.17* 0.05 0.13** 0.33*** 0.24*** 0.07 0.16** 0.07 0.17*** 0.23** 0.24*** 0.09
[t] 1.95 0.75 2.12 3.33 3.20 0.81 2.16 0.83 3.06 2.51 3.31 1.15
CMA 0.36*** 0.02 0.17** 0.55*** 0.42*** 0.06 0.31*** 0.07 0.24*** 0.50*** 0.41*** 0.10
[t] 2.74 0.21 2.16 4.46 4.47 0.51 2.65 0.64 3.09 4.53 4.43 0.95

Panel B: HXZ q-factor Model

αHXZ -1.06 1.05 0.43 -1.98 4.00** 5.06*** -1.31 1.54 -0.36 -1.66 3.84** 5.15***
[t] -0.70 0.69 0.31 -1.27 2.22 3.06 -0.82 0.99 -0.30 -1.10 2.15 3.10
MKT Rf 0.92*** 0.98*** 0.88*** 1.03*** 0.89*** -0.04 0.92*** 0.97*** 0.91*** 1.00*** 0.89*** -0.03
[t] 24.21 29.05 22.70 27.41 19.82 -0.61 24.86 27.17 24.82 28.82 20.03 -0.59
SMB -0.07 -0.18*** -0.22*** -0.09* -0.10* -0.02 -0.10** -0.17*** -0.21*** -0.10 -0.09 0.01
[t] -1.59 -4.09 -4.50 -1.77 -1.83 -0.38 -2.24 -3.71 -4.53 -1.43 -1.58 0.19
I/A 0.33*** 0.04 0.19*** 0.48*** 0.46*** 0.13 0.31*** 0.04 0.27*** 0.42*** 0.46*** 0.14
[t] 2.94 0.57 2.70 4.38 4.71 1.29 3.00 0.54 3.57 3.94 4.70 1.61
ROE 0.13* -0.00 0.22*** 0.27*** 0.20*** 0.07 0.12* 0.00 0.27*** 0.19*** 0.20*** 0.08
[t] 1.73 -0.02 4.04 3.26 2.69 0.79 1.78 0.05 5.60 2.60 2.82 1.05
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Table 11: Fama-Macbeth Regressions

This table reports Fama-Macbeth regressions of individual stock excess returns on their emissions and other
firm characteristics. The sample period is July 1992 to December 2015 and excludes financial industries. For
each month from July of year t to June of year t+1, we regress monthly excess returns of individual stock on
simple emissions and toxicity-adjusted emissions, respectively, with different sets of variables that are known
by the end of June of year t; we also control for industry fixed effects based on Fama-French 48 industry
classifications. We present the time-series average and heteroscedasticity-robust t-statistics of the slopes
(i.e., coefficients) estimated from the monthly cross-sectional regressions for different model specifications.
All independent variables are normalized to a zero mean and a one standard deviation after winsorization at
the 1th and 99th percentile of their empirical distribution. We include t-statistics and annualize individual
stock excess returns by multiplying 12. Standard errors are estimated using the Newey-West correction, and
***, **, * indicate statistical significance at the 1, 5, and 10% levels.

Simple Emissions Toxicity-adjusted Emissions
Variables (1) (2) (3) (4)

Emissions 7.18** 9.85*** 6.80*** 9.48***
[t] 2.55 2.65 2.66 2.83
Log ME -3.60*** -3.56***
[t] -4.88 -4.75
Log B/M 0.13 0.15
[t] 0.12 0.14
I/A -1.33* -1.33*
[t] -1.96 -1.96
AG 2.12 2.12
[t] 0.90 0.89
ROE 0.34 0.40
[t] 0.48 0.56
R&D/AT 3.21*** 3.22***
[t] 3.42 3.43
OC/AT 0.38 0.37
[t] 0.74 0.72
Leverage -0.45 -0.43
[t] -0.44 -0.42

Observations 157,131 138,898 157,131 138,898
Industry FE Yes Yes Yes Yes
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Table 12. Simple Emissions across Fama-French 48 Industries

This table reports summary statistics of the firm-year observations of non-missing emissions (per millions
of pounds) across industries, including the pooled mean (Mean), standard deviation (Std), minimum (Min),
25th percentile (Perc25), median (Perc50), 75th percentile (Perc75), and maximum (Max). The emissions
are measured as the simple summations of chemical pollutants over counties at the firm-year level. Obs
denotes the average number of firms with non-missing emissions in each industry. Industries are based
on Fama-French 48 industry classifications (FF48), excluding financial industries. The sample period is
1991-2014.

FF48 Industry Name Obs Mean Std Min Perc25 Medium Perc75 Max
1 Agriculture 34 0.292 0.476 0.003 0.015 0.176 0.286 2.611
2 Food 686 2.800 14.574 0 0.004 0.142 0.892 250.298
3 Soda 118 0.353 0.566 0 0 0.133 0.258 2.446
4 Beer 120 1.068 1.822 0 0 0.064 1.049 6.078
5 Tobacco 88 1.430 2.049 0 0.032 0.338 2.153 8.534
6 Recreation 153 0.204 0.605 0 0.001 0.013 0.082 3.672
8 Books 82 0.403 0.671 0 0 0.020 0.799 2.301
9 Household 790 8.536 25.299 0 0.047 0.529 5.182 261.204
10 Apparel 86 0.197 0.301 0 0.029 0.092 0.221 1.438
11 Healthcare 36 0.145 0.122 0 0.004 0.16 0.252 0.312
12 Medical Equipment 526 0.539 1.286 0 0.003 0.069 0.361 6.775
13 Drugs 493 7.273 18.983 0 0.026 0.131 3.327 122.074
14 Chemicals 1290 38.941 176.595 0 0.071 1.311 11.221 4433.010
15 Rubber&Plastic Products 365 1.043 1.970 0 0.018 0.109 1.147 15.129
16 Textiles 256 0.370 0.625 0 0.004 0.044 0.571 4.774
17 Construction Materials 1270 7.613 23.917 0 0.021 0.295 3.139 195.889
18 Construction 248 2.463 14.850 0 0.013 0.160 0.706 142.007
19 Steel 1091 13.285 28.648 0 0.108 0.886 9.048 281.487
20 Fabricated Products 200 0.732 1.215 0 0.114 0.252 0.711 6.639
21 Machinery 1427 1.814 6.017 0 0.037 0.227 1.374 95.231
22 Electrical Equipment 644 17.591 55.976 0 0.007 0.113 2.396 341.146
23 Automobiles 987 2.463 7.199 0 0.050 0.240 1.393 78.680
24 Aircraft 354 24.422 94.970 0 0.023 0.138 3.274 620.793
25 Ships 140 1.126 1.288 0 0.091 0.565 1.865 5.544
26 Defense 73 0.814 1.506 0 0.041 0.180 0.497 5.634
27 Precious Metals 66 6.436 18.298 0 0 0.032 0.500 81.536
28 Mines 182 20.996 98.761 0 0 0.102 1.227 719.222
29 Coal 99 0.072 0.191 0 0 0 0.021 1.115
30 Oil 635 37.615 86.372 0 0.017 1.227 31.361 738.604
31 Utilities 975 20.170 45.063 0 0.106 2.967 15.237 413.651
32 Communication 106 2.792 6.486 0 0.041 0.120 1.010 33.286
34 Business Services 414 14.892 51.695 0 0.016 0.076 0.849 294.351
35 Computers 243 0.574 0.986 0 0.01 0.096 0.683 5.749
36 Chips 1463 2.353 14.246 0 0.014 0.139 0.797 221.451
37 Measuring&Control Equipment 372 3.694 13.255 0 0.012 0.086 0.620 89.921
38 Business Supplies 770 21.326 56.912 0 0.048 0.649 19.308 515.35
39 Shipping Containers 321 13.46 30.205 0 0.043 0.806 6.411 145.161
40 Transportation 169 2.254 5.392 0 0.002 0.017 0.591 22.869
41 Wholesale 653 3.299 17.155 0 0.005 0.048 1.206 261.351
42 Retail 294 2.303 8.278 0 0.008 0.044 0.300 76.887
43 Meals 85 7.257 16.357 0 0 0.032 11.31 79.198
48 Other 130 33.379 69.766 0 0.112 1.946 10.224 347.037
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Table 13. Transition Matrix: Persistence of Simple and Toxicity-adjusted Emis-
sions

This table presents transition frequency (%) across simple emissions quintiles in Panel A (and, respectively,
toxicity-adjusted emissions quintiles in Panel B) from year t to t+1 (column 1 to column 6) and from year
t to t+5 (column 7 to column 12). Simple emissions are measured as the simple summations of chemical
pollutants of a firm in year t-1, and then divided by the book value of equity at the end of fiscal year t-1.
Toxicity-adjusted emissions are measured as the hazardous-weighted summation of chemical pollutants of a
firm in year t-1, and then divided by the book value of equity at the end of fiscal year t-1 at the firm-year
level. The sample period is July 1992-Dec 2015.

Panel A: Transition across Quintiles of Simple Emissions
from year t to year t+1 from year t to year t+5

L(t+1) 2(t+1) 3(t+1) 4(t+1) H(t+1) L(t+5) 2(t+5) 3(t+5) 4(t+5) H(t+5)
L(t) 86.32 12.10 1.03 0.50 0.05 L(t) 70.79 22.07 4.24 1.95 0.80
2(t) 14.70 72.16 11.66 1.23 0.25 2(t) 26.30 52.02 16.00 4.90 0.78
3(t) 1.71 15.26 70.18 12.04 0.81 3(t) 9.15 26.64 45.87 15.78 2.56
4(t) 0.83 1.66 16.51 73.47 7.52 4(t) 3.14 6.99 28.99 49.56 11.32
H(t) 0.32 0.31 1.04 10.80 87.53 H(t) 1.68 2.15 5.59 20.44 70.14

Panel B: Transition across Quintiles of Toxicity-adjusted Emissions
from year t to year t+1 from year t to year t+5

L(t+1) 2(t+1) 3(t+1) 4(t+1) H(t+1) L(t+5) 2(t+5) 3(t+5) 4(t+5) H(t+5)
L(t) 85.87 12.35 1.30 0.43 0.05 L(t) 70.45 22.15 4.59 1.96 0.85
2(t) 15.25 70.96 12.39 1.21 0.20 2(t) 26.96 50.18 16.81 5.03 1.02
3(t) 1.68 16.13 68.59 12.72 0.88 3(t) 9.76 26.61 44.57 16.53 2.53
4(t) 0.83 1.90 16.71 71.65 8.90 4(t) 3.07 7.84 29.04 47.93 12.12
H(t) 0.34 0.27 1.14 12.01 86.25 H(t) 1.72 2.28 5.56 21.58 68.87
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A Additional Empirical Evidence

In this section, we provide additional empirical evidence on the pollution premium.

A.1 Summary Statistics across Industries

In Table 12, we report the summary statistics of the simple emissions of firms in each

industry according to the Fama and French (1997) 48 (FF48) industry classifications. Some

industries have more firms reporting to the TRI database, such as the Chemicals industry

and the Steel industry. There are comparatively large cross-industry variations in chemical

emissions. Specifically, the standard deviation ranges from 176.595 for the Chemicals indus-

try to 0.122 for the Health Care industry. Therefore, to make sure our results are not driven

by any particular industry, we control for industry effects as detailed later.

[Place Table 12 about here]

A.2 Transition Matrix

Whether firms’ emission intensity is persistent or not is important for our analysis of the

emission-return relation. To check the persistence, we sort firms by quintiles of emission

measures each year and examine the transition across quintiles over time. We present this

analysis in Table 13. The left side of Panel A shows the transition from year t to year

t+1, while the right side shows the transition from year t to year t+5. Firms in the top or

bottom quintiles of the distribution of simple emissions, the probability of staying in the same

quintile in the next year (five years later) is above 85% (70%). Persistence is comparable

when we consider toxicity-adjusted emissions in Panel B, where the probability of staying

in the same quintile in the next year (five years later) is almost the same as reported in

Panel A. The persistent emission intensity is intuitive because firms cannot easily adjust

their production designs and processes. More importantly, such persistence has important

asset pricing implications: if there is any emission-return relation, it should be attributed to

long-lasting fundamental issues rather than transitory effects such as market sentiment or

mispricing.

[Place Table 13 about here]

48



B Model Solution

Timeline

We consider an economy with a finite horizon [0, T ]. Regime shifts occur at time τ , where

τ ∈ (0, T ), and τ+ denotes the timing of right after regime shifts.

Proof of Lemma 1

From the capital growth equation dBi
t = Bi

tdΠi
t, where the stochastic process of dΠi

t is given

by equation (1), we obtain the following expression for firm i’s capital at time T :

Bi
T = Bi

τe

(
µ+ξig− 1

2
σ2− 1

2
σ2
1

)
(T−τ)+σ(ZT−Zτ )+σ1(ZiT−Z

i
τ )
, (B1)

where g ≡ gW when there is a weak regulation change and g ≡ gS is there is a strong

regulation change. Aggregating across firms, we obtain

BT =

∫ 1

0

Bi
Tdi = e

(
µ− 1

2
σ2− 1

2
σ2
1

)
(T−τ)+σ(ZT−Zτ )

∫ 1

0

Bi
τe
ξig(T−τ)+σ1(ZiT−Z

i
τ )di. (B2)

The Law of large numbers implies that∫ 1

0

Bi
τe
ξig(T−τ)+σ1(ZiT−Z

i
τ )di → Ei

[
Bi
τe
g(T−τ)+σ1(ZiT−Z

i
τ )
]

= eg(T−τ)Ei
[
Bi
τ

]
Ei
[
eσ1(Z

i
T−Z

i
τ )
]

= Bτe
g(T−τ)+ 1

2
σ2
1(T−τ), (B3)

where Ei is the operator of cross-sectional expectation. The second equality of equation

(B3) presents the independence of Bi
τn and Zi

T − Zi
τ . In the last step, the cross-sectional

expectation of Bi
τ denotes

Ei
[
Bi
τ

]
=

∫ 1

0

Bi
τdi = Bτ , (B4)

and the expectation of Ei
[
eσ1(Z

i
T−Z

i
τ )
]

implies the mean of lognormal distribution.

Proof of Proposition 1

Using the market clearing condition WT = BT , we can use equation (11) to compute the

expected utility at time T conditional on a strict or weak regulation. The expectation

is conditional on the government’s information set, which includes the realization of the
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environmental cost.

Eτ

[
W 1−γ
T

1− γ

∣∣∣∣S
]

=
B1−γ
τ

1− γ
e(1−γ)

(
µ+gS− 1

2
σ2
)
(T−τ)+ 1

2
(1−γ)2σ2(T−τ) (B5)

Eτ

[
W 1−γ
T

1− γ

∣∣∣∣W
]

=
Φ(C)B1−γ

τ

1− γ
e(1−γ)

(
µ+gW− 1

2
σ2
)
(T−τ)+ 1

2
(1−γ)2σ2(T−τ). (B6)

The claim of the proposition follows immediately from the optimality condition

Eτ

[
W 1−γ
T

1− γ

∣∣∣∣S
]
> Eτ

[
Φ(C)W 1−γ

T

1− γ

∣∣∣∣W
]
. (B7)

Therefore,

B1−γ
τ

1− γ
e(1−γ)

(
µ+gS− 1

2
σ2
)
(T−τ)+ 1

2
(1−γ)2σ2(T−τ) >

Φ(C)B1−γ
τ

1− γ
e(1−γ)

(
µ+gW− 1

2
σ2
)
(T−τ)+ 1

2
(1−γ)2σ2(T−τ).

(B8)

We specify the functional form of Φ(C) as 1 +C, and further rearrange the inequality above

to obtain

e(1−γ)g
S(T−τ) < Φ(C)e(1−γ)g

W(T−τ) = (1 + ec)e(1−γ)g
W(T−τ) (B9)

e(γ−1)(g
W−gS)(T−τ) − 1 < ec

log
{
e(γ−1)(g

W−gS)(T−τ) − 1
}

< c. (B10)

The threshold for policy regime shifts denotes

c(τ) ≡ log
{
e(γ−1)(g

W−gS)(T−τ) − 1
}
. (B11)

Proof of Corollary 1

We define n(c; a, b) as the p.d.f of a normal distribution with mean a and variance b. The

p.d.f conditional on information at time t is given by

n(c; ĉt, σ̂
2
t ) =

∫ ∞
−∞

n(c; ĉτ , σ̂
2
τ )n(ĉτ ; ĉt, σ̂

2
t − σ̂2

τ )dĉτ . (B12)
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This follows from general properties of the normal distribution. The proof is to note that

c = c− ĉτ + ĉτ , (B13)

c− ĉτ ∼ Normal(0, σ̂2
τ ), (B14)

ĉτ ∼ Normal(ĉt, σ̂
2
t − σ̂2

τ ), (B15)

where ĉτ follows a normal distribution conditional on information at time t. According to

the dynamics of posterior mean in equation (8), the recursive expression is given by

ĉτ = ĉt +

∫ τ

t

σ̂2
sη
−1dZc

s . (B16)

Therefore, the conditional expectation based on information at time t denotes

Et[ĉτ ] = ĉt. (B17)

The variance denotes

Et[(ĉτ − ĉt)2] =

∫ τ

t

(
σ̂2
sη
−1
)2
ds

=
1

1
σ2
c

+ s
η2

∣∣∣∣τ
t

= σ̂2
t − σ̂2

τ . (B18)

Given the linearity of expectation operator,

Et[c] = Et[(c− ĉτ ) + ĉτ ] = Et[(c− ĉτ )] + Et[ĉτ ]

= Et

[
Eτ [(c− ĉτ )]

]
+ Et[ĉτ ]

= 0 + ĉt

= ĉt. (B19)

We can also show that c− ĉτ and ĉτ are independent when two random variables are uncor-

related. The covariance is defined as

Covt[(c− ĉτ ), ĉτ ] = Et[(c− ĉτ )ĉτ ]− Et[(c− ĉτ )]Et[ĉτ ]. (B20)

51



By using the law of iterated expectation, the first term in the RHS of equation (B20) denotes

Et[(c− ĉτ )ĉτ ] = Et

[
Eτ [(c− ĉτ )ĉτ ]

]
= Et

[
Eτ [(c− ĉτ )]ĉτ

]
= 0, (B21)

and the second term shows zero. Therefore, we verify the independence implies Covt[(c −
ĉτ ), ĉτ ] = 0. As a result, the variance based on information at time t denotes

Vart[c] = Vart[(c− ĉτ ) + ĉτ ] = Vart[c− ĉτ ] + Vart[ĉτ ] + 2 Covt[(c− ĉτ ), ĉτ ]

= σ̂2
τ + (σ̂2

t − σ̂2
τ ) + 0

= σ̂2
t . (B22)

Therefore, c follows a normal distribution condition on information at time t

c ∼ Normal(ĉt, σ̂
2
t ), (B23)

and the probability of regime shifts at τ

pτ |t = 1−N(c(τ); ĉt, σ̂
2
t ). (B24)

Proof of Proposition 2

Before the proof of Proposition 2, we need to prove the Lemma below.

Lemma 2. When policy regime shifts occur at time τ , the market value of each firm i takes

one of two values

M i
τ+ =

M
S,i
τ+ = Bi

τe
(µ−γσ2+ξigS)(T−τ) if regime shifts

MW,i
τ+ = Bi

τe
(µ−γσ2+ξigW)(T−τ) if regime does not shift,

(B25)

where τ+ is the timing right after regime shifts. Unconditionally, firm i’s market value

denotes

M i
τ = Eτ [M

i
τ+] = pτM

S,i
τ+ + (1− pτ )MW,i

τ+ . (B26)

Proof of Lemma 2

The state price density is πt = 1
κ
Et

[
B−γT

]
. Its value, when regime shifts occur at time τ , is
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given by

πτ+ = κ−1B−γτ Eτ+

[
e−γ(µ+g−

1
2
σ2)(T−τ)−γσ(ZT−Zτ )

]
=

κ
−1B−γτ Eτ+

[
e−γ(µ+g

S− 1
2
σ2)(T−τ)−γσ(ZT−Zτ )

]
if regime shifts

κ−1B−γτ Eτ+

[
e−γ(µ+g

W− 1
2
σ2)(T−τ)−γσ(ZT−Zτ )

]
if regime does not shift

=

πS
τ+ = κ−1B−γτ e

{
−γ(µ+gS)+ 1

2
γ(γ+1)σ2

}
(T−τ) if regime shifts

πW
τ+ = κ−1B−γτ e

{
−γ(µ+gW)+ 1

2
γ(γ+1)σ2

}
(T−τ) if regime does not shift

(B27)

where we use the definition of equation (11). We can infer the state price density at time τ

πτ = Eτ [πτ+] = pτπ
S
τ+ + (1− pτ )πW

τ+, (B28)

where pτ is the probability of a policy change from the perspective of investor. The market

value of stock i is given by

M i
t = Et

[
πT
πt
Bi
T

]
. (B29)

After policy regime shifts at time τ , using the results of equation (33), we obtain

Eτ+[πTB
i
T | S] = κ−1Eτ+[B−γT Bi

T | S]

= κ−1B−γτ Bi
τEτ+

[
e(1−γ)(µ−

1
2
σ2)(T−τ)+(ξi−γ)gS(T−τ)+(1−γ)σ(ZT−Zτ ) | S

]
×Eτ+

[
e−

1
2
σ2
I (T−τ)+σI(Z

i
T−Z

i
τ )
]

= κ−1B−γτ Bi
τEτ+

[
e(1−γ)(µ−

1
2
σ2)(T−τ)+(ξi−γ)gS(T−τ)+(1−γ)σ(ZT−Zτ ) | S

]
= κ−1B−γτ Bi

τEτ+

[
e(1−γ)(µ−

1
2
σ2)(T−τ)+(ξi−γ)gS(T−τ)+(1−γ)σ(ZT−Zτ )

]
= κ−1B−γτ Bi

τe
(1−γ)(µ− 1

2
σ2)(T−τ)+(ξi−γ)gS(T−τ)+ 1

2
(1−γ)2σ2(T−τ). (B30)

Eτ+[πTB
i
T | S] = κ−1B−γτ Bi

τe
(1−γ)(µ− 1

2
σ2)(T−τ)+(ξi−γ)gW(T−τ)+ 1

2
(1−γ)2σ2(T−τ), (B31)

where the derivations of Eτ+[πTB
i
T | S] are analogous to those of Eτ+[πTB

i
T | S]. We can

obtain firm i’s stock price after policy regime shifts

MS,i
τ+ = Eτ+

[
πT
πS
τ+

Bi
T

∣∣∣∣S
]

=
Eτ+[πTB

i
T | S]

πS
τ+

= Bi
τ+e

(µ−γσ2+ξigS)(T−τ) (B32)

53



and

MW,i
τ+ = Eτ+

[
πT
πW
τ+

Bi
T

∣∣∣∣W
]

=
Eτ+[πTB

i
T |W]

πW
τ+

= Bi
τ+e

(µ−γσ2+ξigW)(T−τ). (B33)

Finally, the stock price at time τ when the policy regime change is equal to

M i
τ = Eτ

[
πT
πτ
Bi
T

]
=

1

πτ
Eτ [Eτ+[κ−1B−γT Bi

T ]]

=
pτEτ+[κ−1B−γT Bi

T | S] + (1− pτ )Eτ+[κ−1B−γT Bi
T |W]

πτ

=
pτπ

S
τ+M

S,i
τ+ + (1− pτ )πW

τ+M
W,i
τ+

pτπS
τ+ + (1− pτ )πW

τ+

= φτM
S,i
τ+ + (1− φτ )MW,i

τ+ , (B34)

where

φτ ≡
pτπ

S
τ+

pτπS
τ+ + (1− pτ )πW

τ+

=
pτ

pτ + (1− pτ )
πW
τ+

πS
τ+

=
pτ

pτ + (1− pτ )e−γ(gW−gS)(T−τ)
(B35)

and

Gi
τ ≡

MW,i
τ+

MS,i
τ+

= eβ
i(gW−gS)(T−τ). (B36)

Proof of Proposition 2

The state price density the expected value of whether environmental policy regime shifts or

not,

πt = Et[πτ+]

= Et[pτπ
S
τ+ + (1− pτ )πW

τ+]

= Et[pτ ]Et

[
πS
τ+

]
+ Et[(1− pτ )]Et

[
πW
τ+

]
= pτ |tπ

S
t + (1− pτ |t)πW

t , (B37)
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where

πS
t = Et

[
πS
τ+

]
, (B38)

πW
t = Et

[
πW
τ+

]
, (B39)

and pτ |t refers to Corollary 1. We can show that

Et[pτ ] = Et

[∫ ∞
c(τ)

n(c; ĉτ , σ̂
2
τ )dc

]

=

∫ ∞
−∞

[∫ ∞
c(τ)

n(c; ĉτ , σ̂
2
τ )dc

]
n(ĉτ ; ĉt, σ̂

2
t − σ̂2

τ )dĉτ

=

∫ ∞
c(τ)

[∫ ∞
−∞

n(c; ĉτ , σ̂
2
τ )n(ĉτ ; ĉt, σ̂

2
t − σ̂2

τ )dĉτ

]
dc

=

∫ ∞
c(τ)

n(c; ĉt, σ̂
2
t )dc

= 1−N(c(τ); ĉt, σ̂
2
t )

= pτ |t. (B40)

Recalling that equation (B27) the state price density after the government decides whether to

change its environmental regulation or not, its value conditional on time t ≤ τ is characterized

as follows.

πS
t = Et

[
πS
τ+

]
= Et

[
κ−1B−γτ+e

{
−γ(µ+gS)+ 1

2
γ(γ+1)σ2

}
(T−τ)

]
= e

{
−γ(µ+gS)+ 1

2
γ(γ+1)σ2

}
(T−τ)Et

[
B−γτ+

]
= e

{
−γ(µ+gS)+ 1

2
γ(γ+1)σ2

}
(T−τ) ×B−γt e

{
−γ(µ+gW)+ 1

2
γ(γ+1)σ2

}
(τ−t)

= B−γt e

{
−γµ+ 1

2
γ(γ+1)σ2

}
(T−t)−γgW(τ−t)−γgS(T−τ), (B41)

where the capital at time t denotes

Bτ = Bte
µ(τ−t)+gW(τ−t)− 1

2
σ2(τ−t)+σ(Zτ−Zt).

given that the economy starts from the weal regulation, according to equation (1). We solve

the expectation problem by substituting the recursive expression of Bτ into the expectation.

On the other hand, we can immediately obtain the state price density at time t, given that
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there is no regulation regime change.

πW
t = Et

[
πW
τ+

]
= B−γt e

{
−γ(µ+gW)+ 1

2
γ(γ+1)σ2

}
(T−t). (B42)

Finally, we obtain the state price of density at time t conditional on the government changes

the regulation. The unconditional state price of density denotes

πt = pτ |tπ
S
t + (1− pτ |t)πW

t

= pτ |tB
−γ
t e

(
−γµ+ 1

2
γ(γ+1)σ2

)
(T−t)−γgW(τ−t)−γgS(T−τ) + (1− pτ |t)B−γt e

(
−γ(µ+gW)+ 1

2
γ(γ+1)σ2

)
(T−t)

= B−γt e

(
−γµ+ 1

2
γ(γ+1)σ2

)
(T−t)−γgW(τ−t)

[
pτ |te

−γgS(T−τ) + (1− pτ |t)e−γg
W(T−τ)

]
= B−γt Ωt. (B43)

where

Ωt = e

(
−γµ+ 1

2
γ(γ+1)σ2

)
(T−t)−γgW(τ−t)

[
pτ |te

−γgS(T−τ) + (1− pτ |t)e−γg
W(T−τ)

]
. (B44)

Proof of Proposition 3

The SDF dynamics stem from an application of Ito’s Lemma to equation (18).

dπt
πt

= Et

[
dπt
πt

]
− λdZt + λc,tdẐ

c
t . (B45)

Trivially, the price of risk of fundamental shocks denotes

λ = γσ, (B46)

The price of risk of uncertainty shocks denotes

λc,t =
1

Ωt

∂Ωt

∂pτ |t

∂pτ |t
∂ĉt

σ̂2
c,tη
−1

=
e

(
−γµ+ 1

2
γ(γ+1)σ2

)
(T−t)−γgW(τ−t)

[
e−γg

S(T−τ) − e−γgW(T−τ)
]

e

(
−γµ+ 1

2
γ(γ+1)σ2

)
(T−t)−γgW(τ−t)

[
pτ |te−γg

S(T−τ) + (1− pτ |t)e−γgW(T−τ)
] × n(c(τ); ĉt, σ̂

2
c,t)× σ̂2

c,tη
−1

=

[
(1− pτ |t)(1− Fτ )
pτ |t + (1− pτ |t)Fτ

]
n(c(τ); ĉt, σ̂

2
c,t)σ̂

2
c,tη
−1, (B47)
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where

Fτ =
e−γ

W(T−τ)

e−γS(T−τ)

= e−γ(g
W−gS)(T−τ). (B48)

Proof of Proposition 4

The proof is a continuation of the Proposition 3. For t < τ , market value satisfies M i
t =

Et

[
πT
πt
M i

T

]
. Firm i’s stock price denotes

MS,i
t =

Et

[
πS
τ+M

S,i
τ+

]
πS
t

= Bi
te

(µ−γσ2)(T−t)+ξigW(τ−t)+ξigS(T−τ), (B49)

when regime shifts at time τ , and denotes

MW,i
t =

Et

[
πW
τ+M

W,i
τ+

]
πW
t

= Bi
te

(µ−γσ2+ξigW)(T−t), (B50)
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when regime does not shift at time τ . Following Proposition 3, firm i’s stock price is deter-

mined by using law of iterated expectation.

M i
t = Et

[
πT
πt
Bi
T

]
=

1

πt
Et[Eτ [κ

−1B−γT Bi
T ]]

=
Et

[
pτEτ+[κ−1B−γT Bi

T | S] + (1− pτ )Eτ+[κ−1B−γT Bi
T |W]

]
πt

=
pτ |tEt

[
κ−1B−γτ e

(
−γ(µ+gS)+ 1

2
γ(γ+1)σ2

)
(T−τ)Bi

τe
(µ−γσ2+ξigS)(T−τ)

]
πt

+
(1− pτ |t)Et

[
κ−1B−γτ e

(
−γ(µ+gW)+ 1

2
γ(γ+1)σ2

)
(T−τ)Bi

τe
(µ−γσ2+ξigW)(T−τ)

]
πt

=
κ−1B−γt Bi

te
(1−γ)µ(T−t)+ 1

2
γ(γ−1)σ2(T−t)+(ξi−γ)gW(τ−t)

[
pτ |te

(ξi−γ)gS(T−τ) + (1− pτ |t)e(ξ
i−γ)gW(T−τ)

]
κ−1B−γt e

(
−γ+ 1

2
γ(γ−1)σ2

)
(T−t)−γgS(τ−t)

[
pτ |te−γg

S(T−τ) + (1− pτ |t)e−γgW(T−τ)
]

=
pτ |te

−γgS(T−τ)Bi
te

(µ−γσ2)(T−t)+ξigW(τ−t)+ξigS(T−τ) + (1− pτ |t)e−γg
W(T−τ)Bi

te
(µ−γσ2+ξigW)(T−t)

pτ |te−γg
S(T−τ) + (1− pτ |t)e−γgW(T−τ)

=
pτ |te

−γgS(T−τ)MS,i
t + (1− pτ |t)e−γg

W(T−τ)MW,i
t

pτ |te−γg
S(T−τ) + (1− pτ |t)e−γgW(T−τ)

=
pτ |tM

S,i
t + (1− pτ |t)

(
e−γg

W(T−τ)

e−γgS(T−τ)

)
MW,i

t

pτ |t + (1− pτ |t)
(
e−γgW(T−τ)

e−γgS(T−τ)

)
=

pτ |tM
S,i
t + (1− pτ |t)e−γ(g

W−gS)(T−τ)MW,i
t

pτ |t + (1− pτ |t)e−γ(gW−gS)(T−τ)

= φtM
S,i
t + (1− φt)MW,i

t , (B51)

where

φt ≡
pτ |t

pτ |t + (1− pτ |t)e−γ(gW−gS)(T−τ)
. (B52)

We can obtain firm i’s market valuation unconditionally by substituting equation (B49) and

(B50) into the last equity in equation (B52)

M i
t = φtM

S,i
t + (1− φt)MW,i

t

= Bi
te

(µ−γσ2)(T−t)+ξigW(τ−t)
[
φte

ξigS(T−τ) + (1− φt)eξ
igW(T−τ)

]
= Bi

tΘ
i
t, (B53)
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where

Θi
t = e(µ−γσ

2)(T−t)+ξigW(τ−t)
[
φte

ξigS(T−τ) + (1− φt)eξ
igW(T−τ)

]
. (B54)

Proof of Proposition 5

An application of Ito’s Lemma to equation (B26) characterizes the return dynamics as fol-

lows.
dM i

t

M i
t

= Et

[
dM i

t

M i
t

]
+ σdZt + σIdZ

i
t + βiM,tdẐ

c
t , (B55)

where σic,t is the risk exposure to uncertainty shocks. The derivations of σic,t are as follows

βiM,t =
1

Θi
t

∂Θi
t

∂φt

∂φt
∂pτ |t

∂pτ |t
∂ĉt

σ̂2
c,tη
−1

=
e(µ−γσ

2)(T−t)+ξigW(τ−t)
[
eξ
igS(T−τ) − eξigW(T−τ)

]
e(µ−γσ2)(T−t)+ξigW(τ−t)

[
φteξ

igS(T−τ) + (1− φt)eξigW(T−τ)
] ×

[
pτ |t + (1− pτ |t)e−γ(g

W−gS)(T−τ)]− pτ |t(1− e−γ(gW−gS)(T−τ))[
pτ |t + (1− pτ |t)e−γ(gW−gS)(T−τ)

]2 n(c(τ); ĉt, σ̂
2
c,t)σ̂

2
c,tη
−1

=

[
1− eξi(gW−gS)(T−τ)

φt + (1− φt)eξi(gW−gS)(T−τ)

][
e−γ(g

W−gS)(T−τ)(
pτ |t + (1− pτ |t)e−γ(gW−gS)(T−τ)

)2
]
×

n(c(τ); ĉt, σ̂
2
c,t), σ̂

2
c,tη
−1

=

[
1−Gi

τ

φt + (1− φt)Gi
τ

][
Fτ(

pτ |t + (1− pτ |t)Fτ
)2
]
n(c(τ); ĉt, σ̂

2
c,t), σ̂

2
c,tη
−1. (B56)

Proof of Corollary 2

We present the partial derivative of σic,t to its dependence on βi.

∂βiM,t

∂ξi
=

∂

∂ξi

{[
1−Gi

τ

φt + (1− φt)Gi
τ

][
Fτ(

pτ |t + (1− pτ |t)Fτ
)2
]
n(c(τ); ĉt, σ̂

2
c,t), σ̂

2
c,tη
−1

}

=

[
Fτ(

pτ |t + (1− pτ |t)Fτ
)2
]
n(c(τ); ĉt, σ̂

2
c,t), σ̂

2
c,tη
−1 × ∂

∂ξi

{[
1−Gi

τ

φt + (1− φt)Gi
τ

]}
(B57)

Since only Gi
τ depends on ξi, our analysis focuses on terms related to Gi

τ .

∂

∂ξi

{[
1−Gi

τ

φt + (1− φt)Gi
τ

]}
=
−∂Giτ

∂ξi
[φt + (1− φt)Gi

τ ]−
(
− φt ∂G

i
τ

∂ξi

)
(1−Gi

τ )[
φt + (1− φt)Gi

τ

]2 < 0, (B58)

59



where Gi
τ > 1 and ∂Gi

τ/∂ξ
i > 0.
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