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Abstract

Suppose that n players want to elect a random leader and they communicate by posting
messages to a common broadcast channel. This problem is called leader election, and it is
fundamental to the distributed systems and cryptography literature. Recently, it has attracted
renewed interests due to its promised applications in decentralized environments.

In a game theoretically fair leader election protocol, roughly speaking, we want that even
majority coalitions cannot increase its own chance of getting elected, nor hurt the chance of any
honest individual. The folklore tournament-tree protocol, which completes in logarithmically
many rounds, can easily be shown to satisfy game theoretic security. To the best of our knowledge,
no sub-logarithmic round protocol was known in the setting that we consider.

We show that by adopting an appropriate notion of approximate game-theoretic fairness, and
under standard cryptographic assumption, we can achieve (1− 1/2Θ(r))-fairness in r rounds for
Θ(log logn) ≤ r ≤ Θ(log n), where n denotes the number of players. In particular, this means
that we can approximately match the fairness of the tournament tree protocol using as few as
O(log log n) rounds. We also prove a lower bound showing that logarithmically many rounds
is necessary if we restrict ourselves to “perfect” game-theoretic fairness and protocols that are
“very similar in structure” to the tournament-tree protocol.

Although leader election is a well-studied problem in other contexts in distributed computing,
our work is the first exploration of the round complexity of game-theoretically fair leader election
in the presence of a possibly majority coalition. As a by-product of our exploration, we suggest
a new, approximate game-theoretic fairness notion, called “approximate sequential fairness”,
which provides a more desirable solution concept than some previously studied approximate
fairness notions.

∗Author ordering is randomized.
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1 Introduction

Leader election or lottery is a fundamental problem in distributed computing and cryptography,
and it aims to solve the following problem. Imagine that n players want to elect a random leader
among themselves, and they communicate by posting messages to a common broadcast channel.
Every round, all players read new messages received from the broadcast channel, perform some
local computation, and then post new messages. At the end of the protocol, a public, deterministic
function is applied to the collection of all messages posted to the broadcast channel to output the
elected leader. Without loss of generality, we may assume that the elected leader obtains unit reward
(or equivalently, an arbitrary a-priori fixed amount of reward) and everyone else receives nothing.
Under the unit reward formulation, everyone’s expected utility is essentially its winning probability.
Throughout the paper, we shall assume that the broadcast channel authenticates the sender, i.e., it
is not possible to spoof others’ messages (in practice, this can be accomplished by having players
sign their messages). Further, there is no additional setup assumption, and we allow standard
cryptographic assumptions.

Typically, we want a leader election protocol to be fair to every player, even when a subset of
the players can misbehave. The strongest type of fairness one can hope for is unbiasability [Cle86],
that is, even if a coalition deviates arbitrarily from the prescribed protocol, the honest players will
nonetheless output an unbiased coin. If we are willing to assume honest majority, it is long known
that using standard multi-party computation (MPC) techniques [DI05,BMR90], we can achieve
unbiasable leader election in constant number of rounds. However, as mentioned in Section 1.2, honest
majority is not a reasonable assumption in emerging decentralized applications where pseudonyms
are cheap to make up. Therefore, the interesting question is whether we can achieve a meaningful
notion of fairness under majority coalitions.

We consider leader election protocols with game-theoretic fairness, that is, no coalition even
majority in size should be able to increase its own chances of winning, or decrease the chance of
any honest individual. Game-theoretic fairness is motivated by the philosophy of having incentive
compatible protocols. In other words, the honest protocol is an equilibrium; and no coalition
or individual should be incentivized to deviate from this equilibrium, no matter whether the
coalition/individual is greedy and profit-seeking, malicious and aiming to harm others, or paranoid
and aiming to defend itself in the worst-possible scenario. In Section 1.2, we give some motivating
applications for game-theoretically fair leader election.

A folklore approach for leader election is called the tournament-tree protocol [MB17,BZ17]:

• Each pair of players duels with each other to select a winner [Blu83]: in a round, the players each
post a commitment of a bit to a blockchain; then, in the next round, they open their respective
commitments and use the xor of the two bits to elect a winner. Aborting (or opening the
commitment incorrectly) is treated as forfeiting; and if both players forfeit the lexicographically
smaller one is the default winner.

• Now the n
2 winners of the previous iteration form pairs and run the same protocol to elect n

4
winners.

• After logarithmically many rounds, the final winner is called the leader.

The tournament-tree protocol does not satisfy unbiasability — in fact anyone can abort and
bias the outcome in a direction that harms itself. However, one can show that it satisfies the
aforementioned game theoretic fairness, intuitively, because any deviation (i.e., aborting) would
simply harm the player itself and benefit its opponent.
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We initiate the exploration of the round complexity of game-theoretically fair leader election
protocols, even when in the presence of a possibly majority coalition. We ask the following natural
question:

Can we (approximately) match the fairness of the tournament tree protocol in sub-logarithmically
many rounds?

1.1 Our Results and Contributions

New upper bounds and novel techniques. We will first describe our new upper bound result
and techniques informally, and then explain what our approximate fairness notion means. The
informal theorem below states upper bound result where roughly speaking, 1-fairness means perfect
fairness and 0-fairness means no fairness:

Theorem 1.1 (Informal: round-efficient, game theoretically fair leader election). In the plain
model assuming standard cryptographic assumptions, there is an O(log logn)-round leader election
protocol that achieve (1− o(1))-approximate-fairness in the presence of a coalition of size at most
(1− o(1)) · n.

More generally, we also prove a parametrized version of the above result: for r ∈ [C0 log logn,C1 log n]

where C0 and C1 are suitable constants, r-round protocols exist that achieve
(

1− 1
2Θ(r)

)
-approximate

fairness in the presence of a coalition of size at most
(

1− 1
2Θ(r)

)
· n.

Note that the above approximation bound cannot be attained by using ε-unbiasability (called
ε-fairness in some literature) as an intermediate stepping stone, since Cleve proved that any r round
protocol cannot toss a random coin with only O(1/r) bias if half of the players are corrupt [Cle86].
Furthermore, there is no known multi-party coin toss protocol that can achieve bias that has
sublinear dependence on n.

The techniques for achieving our upper bound are intriguing and somewhat surprising at first
sight. We describe a novel approach that combines combinatorial techniques such as extractors,
as well as cryptographic multiparty computation (MPC). Intriguingly, we show that for designing
game theoretically secure protocols, some of our classical insights in the standard MPC literature
do not apply. Several aspects of our protocol design are counter-intuitive at first sight. For
example, jumping ahead, we defend against “a large coalition benefitting itself” using (non-trivial)
combinatorial techniques; but these combinatorial techniques provide no meaningful defense against
a small coalition benefitting itself — it is initially surprising that small coalitions turn out to
be more challenging to defend against. To defend against a small coalition, we employ a special
honest-majority MPC protocol as part of our final construction. The fact that an honest-majority
MPC can provide meaningful guarantees in a corrupt majority setting is initially surprising too.
Of course, weaving together the combinatorial and the cryptographic techniques also has various
subtleties as we elaborate on in subsequent sections. In summary, our protocol design paradigm is
new and departs from works in the classical MPC literature.

New definition of approximate fairness. We consider a notion of approximate fairness called
(1 − ε)-fairness, where ε ∈ (0, 1). The most natural (but somewhat flawed) way to define it is to
require that even a majority coalition cannot increase its own chances by more than an ε factor, or
reduce an honest individual’s chance by more than ε. Throughout the paper, we allow the coalition’s
action space to include arbitrary deviations from the prescribed protocol, as long as the coalition
is subject to probabilistic polynomial-time (p.p.t.) computations. We consider a multiplicative
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notion of error, i.e., we want that a coalition A’s expected utility is at most |A|
(1−ε)·n where |A|n is

the coalition’s fair share had it played honestly; moreover, we want that any honest individual’s
expected utility is at least (1− ε)/n where 1/n is its utility if everyone participated honestly. We
prefer a multiplicative notion to an additive notion, because in practical settings, the game may be
repeated many times and the absolute value of the utility may not be as informative or meaningful.
The relative gain or loss often matters more.

Indeed, some earlier works considered such a notion of approximate fairness — for example, Pass
and Shi [PS17] considered such a notion in the context of consensus protocols; they want that a
(minority) coalition cannot act selfishly to increase its own gains by more than ε1. As a by-product
of our exploration, however, we realize that such an approximate notion is in fact somewhat flawed
and may fail to rule out some undesirable protocols. Specifically, consider a protocol in which some
bad event happens with small but non-negligible probability, and if the bad event happens, it makes
sense for the coalition to deviate. For example, consider a contrived example.

Example. Suppose that Alice and Bob run Blum’s coin toss except that with ε probability, Bob
sends all his random coins for the commitment to Alice in the first round. If this small-probability
bad event happens, Alice should choose a coin that lets her win. This is not a desirable protocol
because with small but non-negligible probability, it strongly incentivizes Alice to deviate.

However, the above protocol is not ruled out by the aforementioned notion of approximate fairness:
since the probability of the bad event is small, the a-priori motivation for Alice or Bob to deviate is
indeed small.

We propose a new approximate fairness notion called sequential approximate fairness that avoids
this drawback, and characterizes a more desirable space of solution concepts. At a very high level,
our new notion requires that except with negligible probability, at no point during the protocol
execution should a coalition have noticeable (i.e., ε) incentive to deviate, even after having observed
the history of the execution so far.

Remark 1.2. In Appendix B.2, we show that the non-sequential approximate fairness notion is
in fact equivalent to a multiplicative approximate variant of the Rational Protocol Design (RPD)
notion proposed by Garay et al. [GKM+13,GKTZ15,GTZ15]. However, as mentioned, we believe
that our new sequential approximate notion provides a better solution concept.

Lower bound. The tournament-tree protocol achieves perfect fairness (i.e., ε = 0) in an ideal
“commit-and-immediately-open” model. That is, the protocol proceeds in log n iterations where each
iteration consists of a commitment and a subsequent opening for every player. In Section 8, we
prove a lower bound showing that in the operational model of the tournament-tree protocol, i.e.,
if we insist on perfect fairness (assuming idealized commitments) as well as immediate opening of
committed values, unfortunately Θ(log n) rounds is optimal. This lower bound provides a useful
sanity check and guideline for protocol design. In comparison, our protocol achieves sub-logarithmic
round complexity by introducing the approximate fairness relaxation and general cryptographic
techniques. It is an open direction to precisely characterize the minimal conditions/assumptions
under which sub-logarithmic rounds become possible.

Theorem 1.3 (Informal: some relaxations in our design are necessary). Assume the ideal commit-
ment model. If commitments must be opened immediately in the next round and perfect fairness is
required, then Ω(log n) rounds is necessary.

1Pass and Shi [PS17] do not consider the threat of a coalition targeting an individual.
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1.2 Motivating Applications and Scope of Our Work

Our work should be viewed as an initial theoretical exploration of the round complexity of game-
theoretically fair leader-election. We do not claim practicality; however, it is indeed an exciting
future direction to design practical variants of our ideas.

Having said this, interestingly, the original inspiration that led the formulation of this problem
as well as our game theoretic notions comes from emerging decentralized applications [MB17,BZ17,
BK14,ADMM16]. In a decentralized environment, often pseudonyms or public keys are cheap to
create, and thus it may well be that many pseudonyms are controlled by the same entity, i.e., the
classical honest majority assumption is not reasonable.

A line of work [MB17,BZ17,BK14,ADMM16] first considered how to realize “financially fair”
n-party lottery over cryptocurrencies such as Bitcoin and Ethereum. The financial fairness notion
suggested has a similar flavor as one aspect of our game theoretic notion, that is, coalitions
are rational and would act selfishly to increase their gains. The very early works in this space
relied on collateral and penalty mechanisms to achieve financial fairness, i.e., players must place
additional collateral besides their bets. In comparison, our work considers a classical protocol
execution model without relying on collateral to achieve game theoretic fairness. In fact, some
earlier works [MB17,BZ17] also suggested the use of the folklore tournament-tree protocol to obviate
the additional collateral, and they argued that having collateral is undesirable in some applications.

Leader election is also needed in decentralized smart contracts where one may want to select a
service provider among a pool to provide some service, e.g., act as the block proposer, generate a
verifiable random beacon, or verifiably perform some computational task, in exchange for rewards.
In this case, providers may wish to get elected to earn a profit. A coalition may also wish to
monopolize the eco-system by harming and driving away smaller players (potentially even at the
cost of near-term loss). Conversely, a small player may be concerned about protecting itself in
worst-possible scenarios. Our game-theoretic notion guarantees that no matter which of objectives
a player or coalition has, it has no noticeable incentive to deviate from the honest protocol. Note
that in such blockchain settings, typically the blockchain itself can serve as a broadcast channel,
and a round can be a confirmation delay of the blockchain.

2 Technical Overview

In this section, we will go through a few stepping stones to derive an O(log logn)-round protocol
achieving (1− o(1))-approximate fairness. We defer the fully parametrized version to the subsequent
formal sections.

2.1 Non-Sequential Approximate Fairness

For simplicity, we will first present an overview of our upper bound techniques using the non-
sequential notion of approximate fairness. However, in subsequent formal sections, we will actually
define a better solution concept called sequential approximate fairness, and prove our protocols
secure under this better solution concept. The motivation of this stronger solution concept was
mentioned in Section 1.

Chung et al. [CGL+18] considered game theoretic fairness in a setting where n parties wish to
toss a binary coin. They considered perfect fairness notions and coined them cooperative-strategy-
proofness and maximin fairness, respectively. Below we give the natural approximate versions of
these notions:
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• CSP-fairness: we say that a leader election protocol achieves (1 − ε)-cooperative-strategy-
proofness against a (non-uniform p.p.t.) coalition A ⊂ [n], iff no matter what (non-uniform p.p.t.)

strategy A adopts, its expected utility is at most |A|
(1−ε)n . We often write CSP-fairness in place of

“cooperative strategy proofness” for short.

• Maximin fairness: we say that a leader election protocol achieves (1− ε)-maximin-fairness against
a (non-uniform p.p.t.) coalition A ⊂ [n], iff no matter what (non-uniform p.p.t.) strategy A
adopts, any honest individual’s expected utility is at least (1− ε)/n.

Note that even though leader-election is a constant-sum game, the above two approximate
notions are not equivalent and that is why we need both. For example, a protocol where a 99%
coalition A can surely exclude a specific individual Bob from winning (while not affecting any other
honest individual’s expected utility) can potentially be (1− o(1))-CSP-fair, because the 1/n utility
transferred from Bob to the coalition A is relatively small w.r.t. A’s default chance of winning (had
A played honestly), that is, |A|/n = 99%. On the flip side, a protocol can be (1− ε)-maximin-fair
against a small coalition A containing O(1) players for some tiny constant ε ∈ (0, 1), but since A
may be able to steal ε/n utility from everyone else, it may be able to significantly increase its own
gains by a Θ(n) factor.

Remark 2.1 (Choice of ε). In our formal results later, we will use ε = o(1) — in fact, our result
will be parametrized. For simplicity, in the informal roadmap, it helps to think of ε = 1%.

2.2 A Strawman Scheme

Although in our final scheme we do NOT use random oracles (RO), it is instructive to think about
a strawman scheme with an RO. Interestingly, this approach is inspired by recent proof-of-stake
consensus protocols [DPS19,KRDO17].

Strawman scheme: RO-based committee election + tournament tree

1. Every player i ∈ [n] broadcasts a bit xi ∈ {0, 1}, and we use RO(x1, . . . , xn) to elect
committee of size log9 n. If a player i fails to post a bit, we treat xi := 0.

2. The committee runs the tournament-tree protocol to elect a final leader.

One can easily show that this approach achieves (1− ε)-CSP-fairness against any coalition A
containing at least ε/2 fraction of the players — we call a coalition at least ε/2 fraction in size
a large coalition. The argument is as follows. Since the second step, i.e., tournament tree, is in
some sense “ideal”, to increase its expected utility, the coalition A ⊂ [n] must include as many of
its own members in the committee as possible. Suppose that ε = 1%. For a fixed RO query, the
probability that it selects a bad committee, i.e., one with more than |A|

(1−ε)·n fraction of coalition
players, is negligibly small by the Chernoff bound. Since the coalition is computationally bounded
and can make at most polynomially many queries to RO, by the union bound, except with negligible
probability, all of its RO queries select a good committee.

Unfortunately, this scheme suffers from a couple serious flaws:

• Drawback 1: NOT approximately maximin-fair: a coalition A can harm an individual i /∈ A as
follows: wait till everyone not in A broadcasts their bits, and then try different combinations of
bits for those in A to find a combination that excludes the player i from the committee. This
attack can succeed with 1− o(1) probability if |A| = Θ(log n).
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• Drawback 2: NOT approximately CSP-fair against a small coalition: a profit-seeking individual i
is incentivized to deviate in the following manner: i can wait for everyone else to post bits before
posting its own bit denoted xi — in this way it can increase its advantage roughly by a factor of
2 since it can try two choices of xi. This attack can be extended to work for small coalitions too.

The second drawback is somewhat surprising at first sight, since we proved the strawman scheme
to be CSP-fair against large coalitions (i.e., at least ε/2 fraction in size). The reason is because
the Chernoff bound proof gives only statistical guarantees about a population, but does not give
meaningful guarantees about an individual or a very small group of players.

Remark 2.2. In the above strawman, one can also replace the committee election with a single
iteration of Feige’s lightest bin protocol [Fei99]. The resulting protocol would still be (1−ε)-CSP-fair,
although it suffers from exactly the same drawbacks as the RO-based strawman. The upgrade
techniques described in Section 2.3, however, is compatible only with the RO-based approach —
and this is why we start with the RO-based approach. However, intriguingly, we will indeed make
use of the lightest bin protocol later in Section 2.4 where we show how to get rid of the RO.

2.3 Warmup: A Game Theoretically Fair, Random-Oracle-Based Protocol

We now discuss how to fix the two drawbacks in the previous strawman scheme. We will still have
an RO in the resulting warmup scheme; however, in the immediate next subsection, we will discuss
techniques for removing the RO, and obtain our final construction.

The first drawback is due to a potentially large coalition A choosing its coins (after examining
honest coins) to exclude some individual i /∈ A from the committee. The second drawback is due to a
small coalition A containing less than ε fraction of the players choosing its coins to help its members
get included. To tackle these drawbacks, our idea is to introduce virtual identities henceforth called
v-ids for short. Basically, we will use the RO to select a committee consisting of v-ids. When the
RO’s inputs are being jointly selected, we make sure that 1) a potentially large coalition A has no
idea what each honest individual’s v-id is and thus A has no idea which v-id to target; and 2) a
small coalition has no idea its own v-ids are, and thus it has no idea which v-ids to help.

To achieve this, each player i’s final v-id will be the xor of two shares: a share chosen by
the player itself henceforth called the unmasked v-id, and a share jointly chosen by a special,
honest-majority protocol, henceforth called the mask. In the beginning, the player itself commits to
its own unmasked v-id, and the MPC protocol jointly commits to each player’s mask. Next, the
players jointly choose the inputs to the RO. Finally, each player reveals its own unmasked v-id, and
then the MPC protocol reconstructs all players’ masks.

Special honest-majority MPC. Instantiating these ideas correctly, however, turns out to be
rather subtle. Generic honest-majority MPC protocol does not guarantee anything when there is a
large coalition. In our case, when the coalition is large, it can fully control the mask value. However,
we do need that even with (1− ε)-sized coalitions, the mask value must be uniquely determined
at the end of the sharing phase, and reconstruction is guaranteed. More specifically, we want our
special, honest-majority MPC to satisfy the following properties for some small η ∈ (0, 1) (think of
η = ε/2):

• If |A| ≤ ηn, we want that at the end of this sharing phase, A has no idea what its own masks are;

• As long as |A| < (1− 2η)n, at the end of the sharing phase, the mask value to be reconstructed
is uniquely determined, and moreover, reconstruction is guaranteed to be successful.
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The following Fηmpc ideal functionality describes what we need from the honest-majority MPC.
For simplicity, in our informal overview, we will describe our protocols assuming the existence of
this Fηmpc ideal functionality. Later in Section 5.2, we will instantiate it with an actual, constant-
round cryptographic protocol using bounded concurrent MPC techniques [Pas04]. Technically, the
real-world cryptographic instantiation does not securely emulate Fmpc by a standard simulation-
based notion; nonetheless, we prove in Section 7 that the fairness properties we care about in the
ideal-world protocol (using idealized cryptography) extend to the real-world protocol (using actual
cryptography).

Fηmpc: special, honest-majority MPC functionality

Sharing phase. Upon receiving share from all honest players, choose a random string coins.
If the coalition size |A| ≥ ηn, the adversary is asked to overwrite the the variable coins to any
value of its choice. Send ok to all honest players.

Reconstruction phase. Upon receiving recons from all honest players: if |A| ≥ (1− 2η)n,
the adversary may, at this point, overwrite the string coins to its choice. Afterwards, in any
case, send coins to all honest players.

Our warmup RO-based protocol. At this moment, it helps to describe our protocol first, then
we can explain the additional subtleties. We describe our warmup protocol using an idealized
commitment scheme, as well as the Fmpc functionality described earlier.

Our warmup RO-based protocol

1. Every player i ∈ [n] commits to a randomly selected unmasked v-id yi ∈ {0, 1}v where
2v = n · poly log n.

2. Send share to F ε/2mpc and receive ok from Fmpc.

3. Every player i ∈ [n] broadcasts a bit xi. Let x be the concatenation of all of {xi}i∈[n] in
increasing order of the players’ indices — here for any player j who has aborted, its xj is
treated as 0.

4. Every player i ∈ [n] now opens its committed unmasked v-id yi ∈ {0, 1}v.

5. All honest players send recons to F ε/2mpc, and they each receive a mask vector z from F ε/2mpc.

6. Parse z := (z1, . . . , zn) where each zj ∈ {0, 1}v for j ∈ [n]. We now view yi⊕ zi player i’s final
v-id. A player i is a member of the committee C iff 1) it correctly committed and opened its
unmasked v-id yi; 2) its final v-id yi ⊕ zi is chosen by the RO; and 3) its final v-id yi ⊕ zi
does not collide with anyone else’s final v-id— we may assume that anyone who aborted has
the final v-id ⊥.

7. The committe C runs the tournament-tree protocol to elect a leader.

Additional subtleties. At this moment, it helps to point out a few additional subtleties.

1. Unique reconstruction even under a majority coalition. First, recall that even in the presence of
a (1− ε)-coalition, we wanted our Fmpc to guarantee uniqueness of the reconstructed mask z at
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the end of the sharing phase. This is important because we do not want the coalition to see the
RO’s outputs and then choose the mask vector z a-posteriori to exclude some honest individual
from the final committee or to include all of the coalition members.

2. The need for collision detection. Second, notice that the protocol prevents colliding final v-ids
from being elected into the final committee. Such a collision detection mechanism is necessary
since otherwise, the following attack would be possible2: a 99% coalition can make all of its
members choose the same final v-id— it can do that because it controls its members’ unmasked
v-ids as well as the mask value. Now, the 99% coalition can choose its input bits to the RO to
help this particular final v-id. In this way, with high probability, all coalition members can be
elected into the final committee.

3. Proving sequential approximate fairness. Last but not the least, so far we have only focused
on the non-sequential notion of fairness, and it turns out that proving the sequential notion is
much more subtle. In our formal proofs later (see Sections 6 and 7), we will do a round-by-round
argument to show that except with negligible probability, in no round of the protocol would the
coalition have noticeable incentive to deviate.

Since this warmup construction is not our final scheme, we will not formally prove the warmup
construction. Instead, we now explain how to get rid of the RO to get our final scheme.

2.4 Final Construction: Removing the Random Oracle

To remove the RO, our idea is to replace the committee election with a two-phase approach, where
the first phase uses a single iteration of Feige’s lightest-bin protocol [Fei99] and the second phase
uses a combinatorial object called a sampler [Vad12] in place of the RO. We briefly describe the
intuition below. The actual scheme, calculations, and proofs are more involved especially for getting
the more general, parametrized result, and we defer the full description to the subsequent formal
sections.

Background. We will rely on a combinatorial object called a sampler which is known to be
equivalent to a seeded extractor [Vad12]3.

A sampler, denoted as Samp, is a combinatorial object with the following syntax and properties:
given an input x ∈ {0, 1}u, Samp(x) returns d sample points z1, . . . , zd ∈ {0, 1}v from its output space.
A sampler is supposed to have good, random-sampling-like properties. Consider a predicate function
f : {0, 1}v → {0, 1}. The population mean of f over its inputs is defined as is 1

2v
∑

z∈{0,1}v f(z). The

d sample points define a sample mean 1
d

∑d
j=1 f(zj), which ideally should be close to the population

mean. An (εs, δs)-averaging sampler Samp guarantees that for any f , at least a 1− δs fraction of the
inputs will lead to a sample mean that differs from the population mean by at most εs additively.

Intuition. A flawed idea is to directly replace the RO in the warmup scheme with a sampler. To
do so, the nature of our proof for this specific step will have to change: in the warmup scheme,
we relied on the fact that the coalition can make only polynomially many queries to RO in our
fairness proof. With a sampler, however, we must make a combinatorial argument here that does
not depend on the adversary’s computional bounds (although to reason about other parts of the
scheme involving the commitment and the MPC, we still need to make computational assumptions

2We describe this attack for illustration purposes to help understanding. Of course, we will later prove our final
construction secure against all possible p.p.t. coalition strategies.

3We stress that our construction does not need a common reference string as the seed.

8



on the adversarial coalition). More specifically, we want to argue that no matter which subset of
players form a coalition, as long as the coalition’s size is, say, between 0.01n and 0.99n, then almost
all honest inputs xH resist even the worst-case attack, in the sense that there does not exist a xA
such that x = (xH , xA) would form a bad input to Samp4. Here x is said to be a bad input to Samp
if Samp(x) selects a committee in which the fraction of coalition players is noticeably higher than
the overall coalition representation |A|/n.

Suppose that we want to select a log9 n-sized committee, and the final v-id space is of size
n log3 n. In this case, we would need the sampler to select roughly d = log12 n output points. A
calculation using the probabilistic method suggests that in this case, we cannot start with n players
who jointly select the input to the sampler — if so, there would simply be too many combinations
the adversarial coalition could try for its own input bits; and the number of bad inputs to the
sampler simply is not sparse enough to defeat so many adversarial combinations.

The parameters would work out, however, if we start out with, say, log3 n players who jointly
choose the input to the sampler. In our subsequent formal sections, we will select parameters that
work with the best known explicit sampler construction [RVW00,Vad12,GUV09].

Our idea. Given the above intuition, our idea is to adopt a two-phase committee election approach.
We first down-select to a preliminary committee of size log3 n, and then the preliminary committee
jointly choose input bits to a sampler to select a final committee among all players, and the final
committee runs the tournament tree protocol to elect a leader among the final committee. We
sketch the protocol below while deferring a more formal description to Section 5:

• Commitment phase. As before, players commit to their unmasked v-ids and use an honest-
majority MPC to jointly commit to a mask first.

• Preliminary committee election. First, we elect a log3 n-sized preliminary committee such that
the fraction of honest players on the preliminary committee approximately matches the fraction
of honest players in the overall population. Here we do not care about the threat where a
potentially large coalition seek to exclude a specific individual or a small coalition or individual
try to include itself. It turns out that this can be accomplished by running a single iteration of
Feige’s elegant lightest bin protocol [Fei99] in the plain model.

• Final committee election. Next, the preliminary committee jointly selects an input to the sampler,
which is used to select log9 n final v-ids among the space of all possible v-ids— these final v-ids
would form the final committee. At this moment, the players open their unmasked v-ids, and
reconstruct the mask that was secret shared earlier by the MPC. The players’ final v-ids are now
revealed, and the final committee determined.

• Leader election. Finally, the elected, poly-logarithmically sized final committee runs the
tournament-tree protocol to elect a final leader.

Roadmap of our formal results. We present a formal description of the final construction to
Section 5, including how to instantiate the idealize cryptography. As mentioned, we actually prove
our final construction secure under a better solution concept called sequential approximate fairness,
which we define formally in Section 3 (and the motivation for this stronger solution concept was
explained earlier in Section 1). The full proofs will be presented in Sections 6 and 7, respectively.

4Throughout the paper, for S ⊆ [n], we use xS := {xi}i∈S to denote the coordinates of the vector x corresponding
to all players in S.
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2.5 Additional Related Work

Leader election in other models. Leader election has also been considered in other incomparable
computation models and these results do not directly lend to solving the problem phrased in this
paper. Leader election was considered in the full information model [RSZ99,RZ98,Fei99,Dod06],
culminating in the famous work of Feige who showed how to design an O(log∗ n)-round protocol
that elects an honest leader with some small constant probability, assuming that the majority of the
players are honest [Fei99]. Their notion is much weaker than the game theoretic notion considered
in our work, which may be suitable in some distributed computing applications [BPV06], but not in
the type of decentralized applications that supplied the original motivation of our work. Moreover,
in the full-information model, leader election is impossible with a majority coalition even under their
weak notion of security [Fei99]. Interestingly, our work benefitted from the techniques from this line
of work: we used one iteration of Feige’s lightest bin protocol [Fei99] to elect a polylogarithmically
sized preliminary committee.

Alistarh et al. [AGV15] showed an O(log∗ n)-round protocol in an asynchronous message passing
model tolerating minority crash faults. A sequence of works [AA11,GW12,AAG+10] showed how to
construct a sub-logarithmic-round protocol that tolerates crash faults in an asynchronous shared
memory model. Various works [GHS83,KKM85] have also considered distributed algorithms for
leader election where processes communicate over some graph structure but these works did not model
faulty behavior and tolerated adversaries that can arbitrarily deviate from the protocol. As mentioned
earlier, leader election has also been studied in a full information model [Fei99,Zuc96,RZ98,Dod06]
achieving a much weaker notion which we call resilience, under honest majority. Abraham et
al. [ADH19] studied an incomparable game theoretic notion for leader election: in their formulation,
all users prefer to have a leader than not having a leader, and users may have different preferences
regarding who the leader is. Their work considered the ex post Nash equilibrium notion which
concerns only about a single player deviating but not coalitions that jointly deviate.

Game theory meets cryptography. We review some related work at the intersection of game
theory and cryptography. We recap some literature review from the recent work [CGL+18].
Historically, game theory [Nas51,J.A74] and multi-party computation [GMW87,Yao82] have been
investigated by separate communities. Some recent efforts have investigated the marriage of game
theory and cryptography (see the excellent surveys by Katz [Kat08] and by Dodis and Rabin [DR07]).
This line of work has focused on two broad types of questions.

First, a line of works [HT04,KN08,ADGH06,OPRV09,AL11,ACH11] investigated how to define
game-theoretic notions of security (as opposed to cryptography-style security notions) for multi-party
computation tasks such as secret sharing and secure function evaluation. Existing works have
considered a fundamentally different notion of utility than us: specifically, these works have made
(a subset to all of) the following assumptions about players’ utility: players prefer to compute
the function correctly; furthermore, they prefer to learn secrets, and prefer that other players
do not learn secrets. These works then investigated how to design protocols such that rational
players will be incentivized to follow the honest protocol. Inspired by this line of work, Garay et al.
propose a new paradigm called Rational Protocol Design (RPD) [GKM+13], and this paradigm was
developed further in several subsequent works [GKTZ15,GTZ15]. We show that the non-sequential
approximate fairness notions are equivalent to some approximate RPD-inspired interpretation in
Appendix B.2.

Second, a line of work has asked how cryptography can help traditional game theory. Particularly,
many classical works in game theory [Nas51,J.A74] assumed the existence of a trusted mediator

— and recent works considered how to realize this trusted mediator using cryptography [DHR00,
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IML05,GK12,BGKO11].

Gradwohl et al. [GLR10] also proposed a notion of sequential rationality for cryptographic
protocols. Their notion is incomparable and cannot be applied to leader election. They defined a
notion of sequential equilibrium over extensive games in which computationally bounded players
take turns making moves. Their notion captures a notion of games just like in the game theory
literature with the additional twist that players now may be computationally bounded. Their
definitions are not applicable to protocols where players can make moves in the same round. In
fact, their paper hints that defining a sequential notion of equilibrium for a protocol-like setting is
an open problem. A few recent works [PS17, CGL+18], also inspired by blockchain applications,
considered a similar notion of “cooperative-strategy-proofness” in multi-party protocols such as
consensus [PS17] and coin toss [CGL+18]. Our notion of maximin fairness is also inspired by Chung
et al. [CGL+18]. These earlier works did not consider sequential rationality in their formulation;
moreover, their upper bound results do not directly lend to solving the leader election problem.

Other related works. In decentralized blockchains, it has also been suggested to use Verifiable
Delay Functions (VDFs) [BBBF18,BBF18] to generate an unpredictable public random beacon;
however, known VDF constructions rely on trusted setup and non-standard assumptions.

3 Defining Sequential Approximate Fairness

3.1 Leader Election Protocol

A leader election protocol (also called lottery) involves n players which exchange messages over a
common broadcast channel. The protocol execution proceeds in synchronous rounds: in every round,
players first read messages from all previous rounds from the broadcast channel, they then perform
some local computation and post new messages to the broadcast channel. At the end of the final
round, everyone can apply an a-priori fixed function f over all messages on the broadcast channel to
determine a unique leader from [n]. For correctness, we require that in an honest execution where
all players faithfully follow the protocol, the elected leader be chosen uniformly at random from [n].

A subset of the players (often called a coalition) may decide to deviate from the honest strategy.
Such a coalition can perform a rushing attack: during a round, players in the coalition can wait till
all other players post messages to the blockchain, and then post messages that are dependent on
what others have posted in the same round.

Throughout the paper, we assume that an execution of the protocol is parametrized with a
security parameter κ, since the protocol may adopt cryptographic primitives. We assume that the
number of players n is a polynomially bounded function in κ; without loss of generality we assume
that n ≥ κ.

3.2 Sequential Approximate Fairness

The non-sequential fairness notions mentioned in Section 2.1 does not rule out some undesirable
protocols that may offer incentives for a coalition to deviate with non-negligible probability. Recall
the example given in Section 1 where two parties run Blum’s coin toss except that with some
small ε probability, Bob broadcasts all its private coins in the first round. If the small (but non-
negligible) probability bad event happens, Alice should deviate and choose her coins to definitively
win. However, a-priori Alice does not have much incentive to deviate: since the bad event happens
with only ε probability, her a-priori probability if winning is at most ε · 1 + (1− ε) · 1

2 = (1 + ε) · 1
2 ,
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and this is only an ε fraction more than her fair share. Nonetheless, we do want to rule out such
bad protocols since such a protocol has a non-negligible probability ε of creating incentives for Alice
to deviate.

We propose a better solution concept called sequential approximate fairness. Roughly speaking,
we require that even if the coalition is allowed to re-evaluate whether to deviate at the beginning of
every round in the protocol, except with negligible probability, no p.p.t. coalition (of size at most
(1− ε)n) should have ε incentive to deviate at any time.

When we try to formalize this notion of sequential rationality, we encounter another subtlety:
since our protocols will rely on cryptographic commitment schemes, our definitions should capture
the fact that the coalition is polynomially bounded. For example, it could be that there exists a
set of execution prefixes that account for non-negligible probability mass, such that if A deviated
conditioned on having observed those prefixes, it would have gained noticeably. However, it might be
that these prefixes are computationally infeasible to recognize, since recognizing them might involve,
say, breaking cryptographic commitments. As a result, our definitions actually stipulate that, for
any polynomially bounded coalition strategy that wants to deviate with non-negligible probability at
some point in the execution, deviating will not conditionally improve the coalition’s utility by more
than a noticeable amount.

To formally define our sequentially approximately fair notions, we first introduce some probability
notations.

Probability notation. In this paper, we use the acronym p.p.t. to mean expected probabilistic
polynomial-time. Let Π denote the original honest protocol. However, a non-uniform p.p.t. coalition
A ⊂ [n] might deviate from the original protocol and we use S to denote the strategy of A. As
a special case, we use the notation A(Π) to mean that the coalition A simply follows the honest
protocol and does not deviate. Let κ be the security parameter. We use the notation tr ← ExecA(S)

to denote a random sample of the protocol execution, where the honest players [n]\A, interact
with the coalition A which adopts the strategy S. The random experiment ExecA(S) produces an
execution trace tr (also called a trace for short), which consists of all the messages and the internal
states of all players throughout the entire execution. Once the coalition A’s strategy S is fixed, all
players’ internal states and messages in all rounds would be uniquely determined by all players’
randomness in all rounds — thus one can also equivalently think of tr as the sequence of all players’
random coins in all rounds.

An event Evt(tr) is identified with its indicator function that takes a trace tr and returns either
1 (meaning the event happens) or 0. For example, we use WA(tr) = 1 to indicate that one player in
A is elected as the leader in the end.

We use Pr[ExecA(S)(1κ) : Evt] := Pr[tr ← ExecΠ,A(S)(1κ) : Evt(tr)] to denote the probability
that when the coalition A adopts strategy S, the event Evt happens. Similarly, given events Evt1
and Evt2, we use Pr[ExecA(S)(1κ) : Evt1 | Evt2] to denote the conditional probability that when the
coalition A adopts strategy S and conditioning on the event Evt2, event Evt1 also happens. The
same notation extends to expectation E[·].

Deviation event. Given a strategy S of the coalition A, we define the deviation event DevA(S)(tr)
as follows:

• for each round r = 1, 2, . . .: replay the trace tr (which contains all players’ random coins) till the
beginning of round r, immedately after the coalition A has observed all honest nodes’ round-r
messages; at this moment, check whether the strategy S adopted by A would deviate from the
honest protocol Π in round r (i.e., whether S would send a message that differs from what the
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honest strategy would have sent, suppose that the random coins of S have been fixed by the
trace tr); if yes, return 1;

• return 0 if the strategy S adopted by A does not actually deviate from Π till the end.

Intuitively, we say that a protocol satisfies sequential CSP-fairness against the coalition A iff
either A never wants to deviate except with negligible probability (condition 1 in Definition 3.1); or
conditioned on deviating, A does not do noticeably better (condition 2 in Definition 3.1).

Definition 3.1 (Sequential CSP-fairness). Let ε ∈ (0, 1). We say that a leader election protocol Π
achieves (1− ε)-sequential-CSP-fairness against a (non-uniform p.p.t.) coalition A ⊆ [n] iff for any
strategy S by A, there exist a negligible function negl(·), such that and for all κ, at least one of the
following holds — recall that WA is the event that one of the coalition members in A is elected
leader:

1. Pr
[
ExecA(S)(1κ) : DevA(S)

]
≤ negl(κ),

2. Pr
[
ExecA(S)(1κ) : WA

∣∣ DevA(S)
]
≤ 1

1−ε · Pr
[
ExecA(Π)(1κ) : WA

∣∣ DevA(S)
]

+ negl(κ).

In the above, the left-hand-side expression Pr
[
ExecA(S)(1κ) : WA

∣∣ DevA(S)
]

means the condi-

tional probability that A(S), i.e., a coalition A adopting strategy S, is elected leader, conditioned
on DevA(S), i.e., that A(S) decided to deviate from honest behavior. The right-hand-side expression

Pr
[
ExecA(Π)(1κ) : WA

∣∣ DevA(S)
]

means the conditional probability for A to win, had A continued

to adopt the honest strategy throughout, even though A(S) had wanted to deviate at some point in
the protocol — and the conditional probability here is calculated when conditioning on traces where
A(S) would have deviated5. Therefore, intuitively, Condition 2 above says that conditioned on the
strategy S deciding to deviate, the coalition A cannot benefit itself noticeably in comparison with
just executing honestly to the end.

We can define the sequentially rational counterpart of maximin fairness in a similar manner.

Definition 3.2 (Sequential maximin fairness). Let ε ∈ (0, 1). We say that a leader election protocol
Π achieves (1− ε)-sequential-maximin-fairness against a (non-uniform p.p.t.) coalition A ⊆ [n] iff
for any strategy S by A, there exist a negligible function negl(·), such that for all κ, at least one of
the following holds:

1. Pr
[
ExecA(S)(1κ) : DevA(S)

]
≤ negl(κ),

2. for any i /∈ A, let W i be the event that player i is elected as the leader, it holds that

Pr
[
ExecA(S)(1κ) : W i

∣∣ DevA(S)
]
≥ (1− ε) · Pr

[
ExecA(Π)(1κ) : W i

∣∣ DevA(S)
]
− negl(κ).

The following fact says that the sequentially rational notions implies the corresponding non-
sequential counterparts defined earlier in Section 2.1.

5We note that the event DevA(S)(tr) is well-defined, even if tr is sampled from ExecA(Π), i.e., an execution in which
A adopts the honest strategy. In this case, DevA(S)(tr) means the following: had A instead adopted the strategy S
rather than the honest strategy Π, is there a round in which S would have started to deviate from the honest protocol,
given that all players’ randomness in all rounds is fixed by tr .
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Fact 3.3 (Sequential notions are stronger). Let ε(n, κ) ∈ (0, 1) be a non-negligible function. If
a leader election protocol satisfies (1− ε)-sequential-CSP-fairness (or (1− ε)-sequential-maximin-
fairness resp.) against the coalition A ⊆ [n], then for ε′(n, κ) = ε(n, κ) + negl(κ) where negl(·) is
some negligible function, then, the same protocol also satisfies non-sequential (1− ε′)-CSP-fairness
(or non-sequential (1− ε′)-maximin-fairness resp.) against A.

Proof. Deferred to Section B.3 in the appendices.

We show that if the slack ε is constrained to being negligibly small, then in fact the non-sequential
notions imply the sequential notions too. However, this direction is not true when the slack ε may
be non-negligible.

Fact 3.4. If a protocol Π satisfies (1− negl(κ))-CSP-fairness (or (1− negl(κ))-maximin-fairness
resp.) against the coalition A ⊂ [n] for some negligible function negl(·), then Π satisfies (1−negl′(κ))-
sequential-CSP-fairness (or (1 − negl(κ))-sequential-maximin-fairness resp.) against A for some
negligible function negl′(·).

Proof. Deferred to Section B.3 in the appendices.

3.3 Fairness of the Tournament Tree Protocol

Instantiated with a suitable cryptographic commitment protocol (described in Section A in the
appendices), the folklore tournament-tree protocol satisfies (1− negl(κ))-sequential-CSP-fairness
and (1− negl(κ))-sequential-maximin-fairness against coalitions of arbitrarily sizes, as stated below:

Theorem 3.5 (Game theoretic characterization of the tournament-tree protocol). Suppose that
n is the number of players and κ is the security parameter. Then, the tournament-tree protocol,
when instantiated with a suitable publicly verifiable, non-malleable commitment scheme as defined
in Section A in the appendices, satisfies (1 − negl(κ))-sequential-CSP-fairness and (1 − negl(κ))-
sequential-maximin-fairness against coalitions of arbitrarily sizes. Moreover, the number of rounds
is O(log n).

Proof. Deferred to Section C in the appendices.

4 Preliminaries

4.1 Averaging Sampler

Our protocol uses the following combinatorial construction.

Definition 4.1 (Averaging sampler). Let Samp : {0, 1}u → {{0, 1}v}d be a deterministic algorithm
which on input a u-bit string, outputs a sequence of d sample points from {0, 1}v. We say that
Samp is an (εs, δs)-averaging sampler iff for any function f : {0, 1}v → {0, 1}, the following holds:

Pr
x

$←{0,1}u

[∣∣∣∣∣1d
d∑
i=1

f(Sampi(x))−Ef

∣∣∣∣∣ ≥ εs
]
≤ δs,

where Sampi(x) ∈ {0, 1}v denotes the i-th output of the sampler Samp, and Ef denotes the
expectation of f(z) if z is sampled at random from {0, 1}v. We say that Samp is explicit if given
x ∈ {0, 1}u and i ∈ [d], Sampi(x) can be computed in time poly(u, log d).
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It is known that one could construct averaging samplers from seeded extractors [Vad12]. Therefore,
using known seeded extractor constructions [RVW00,GUV09], we have the following theorem:

Theorem 4.2 (Explicit averaging sampler [RVW00,Vad12,GUV09]). Let c > 1 and c̃ > 1 be suitable
universal constants. For any v, δs, εs > 0, as long as the input length u ≥ log 1

δs
+ c ·v, and number of

sample points d ≥
(
u
εs

)c̃
, there is an explicit (εs, δs)-averaging sampler Samp : {0, 1}u → {{0, 1}v}d.

4.2 Constant-Round, Bounded Concurrent Secure Computation

Jumping ahead, we will first describe our protocol using idealized cryptography. When replacing the
idealized cryptography with real-life instantiations, we will need to use a special type of constant-
round zero-knowledge proofs that provide concurrent zero-knowledge and simulation soundness
as long as there is an a-priori bound on the number of concurrent invocations [Pas04]. We use a
paradigm suggested by Pass [Pas04], that is, first, design the protocol in the IdealZK-hybrid world
and prove it secure, and then, replace the IdealZK with the special zero-knowledge proofs they
construct. The resulting real-world protocol asymptotically preserves the round complexity, and
moreover can be proven to securely emulate the original IdealZK-hybrid protocol. We provide the
necessary preliminaries below.

IdealZK functionality. The IdealZKRi,j functionality, parametrized with the prover’s identity
i ∈ [n], and the verifier’s identity j ∈ [n], and the relations R corresponding to an NP language, is
defined as follows:

Upon receiving (x,w) from the prover i, send (x,R(x,w)) to the verifier j and the adversary.

When the NP relation R is obvious from the context, we often write IdealZKi,j for simplicity.

Bounded concurrent secure computation. In an n-party IdealZK-hybrid protocol, the
players can invoke IdealZKRi,j between any prover i ∈ [n] and any verifier j ∈ [n], and for arbitrary
NP relations R. Without loss of generality, in every round, there can be at most n2 concurrent
invocations of IdealZK. Given an IdealZK-hybrid-world, n-player protocol, we can instantiate
the IdealZK with actual cryptography using the elegant techniques suggested by Pass [Pas04].

Theorem 4.3 (Constant-round, bounded concurrent secure computation [Pas04]). Assume the
existence of enhanced trapdoor permutations, and collision-resistant hash functions. Then, given an
IdealZK-hybrid n-player protocol Πhyb, there exists a real-world protocol Πreal (instantiated with
actual cryptography) such that the following hold:

• Simulatability: For every real-world non-uniform p.p.t. adversary A controlling an arbitrary
subset of up to n− 1 players in Πreal, there exists a non-uniform probabilistic expected polynomial-
time adversary Ã in the protocol Πhyb, such that for any input (x1, . . . , xn), every auxiliary string
z ∈ {0, 1}∗,

ExecΠreal,A(1κ, x1, . . . , xn, z) ≡c ExecΠhyb,Ã(1κ, x1, . . . , xn, z).

In the above, the notation ExecΠreal,A (or ExecΠhyb,Ã) outputs each honest players’ outputs as
well as the corrupt players’ (arbitrary) outputs, and ≡c means computational indistinguishability.

• Round efficiency: The round complexity of Πreal is at most a constant factor worse than that
of Πhyb.
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5 Formal Description of Our Scheme

5.1 Description of Our Scheme Assuming Idealized Cryptography

We will first describe our scheme assuming idealized commitments Fcomm and an ideal MPC
functionality Fmpc described earlier in Section 2.3. Later in Section 5.2, we will instantiate the ideal
cryptographic primitives with actual cryptography. In the scheme below, committing to a value
is performed by sending it to Fcomm, and opening is performed by instructing Fcomm to send the
opening to everyone.

Our leader election protocol (assuming idealized cryptography)

Parameters. For some r := r(n), suppose that we would like to achieve round complexity
O(r) satisfying C0 log log n < r(n) < C1 log n, where C0 and C1 are suitable constants. We set
the parameters in the above protocol as follows:

• We choose B := n
29r such that the expected number of players in a bin (when everyone

behaves honestly) is n
B = 29r during the preliminary committee election.

• The parameters of the sampler are chosen as below: v is chosen such that 2v

n = 20.5r. Let

εs := 2−6r, and δs := 2−(1−ψ
2

)|U|, where ψ denotes a lower bound on the fraction of honest
players, we shall assume ψ ≥ 1

2Θ(r) , which means that |A| ≤ (1− 1
2Θ(r) )n. Let d = (|U|/εs)c̃,

where c̃ is the universal constant of Theorem 4.2.

• Let η := 1/20.2r.

Our protocol.

1. Elect the preliminary committee U using lightest bin. Everyone i ∈ [n] broadcasts a random
index βi ∈ [B] indicating its choice of bin where B denotes the number of bins. The bin with
the lightest load is selected as the preliminary committee U . Break ties with lexicographically
the smallest bin.

2. Elect the final committee C. Let Samp : {0, 1}|U| → {{0, 1}v}d denote an explicit (εs, δs)-
averaging sampler. If it is not the case that |U| ≥ log 1

δs
+ c · v (see the condition required

by Theorem 4.2), simply abort with the exception param error and output player 1 as the
leader.

(a) Every player sends share to Fηmpc, and receives ok from Fηmpc.

(b) Every player i ∈ [n] commits to a randomly selected unmasked v-id henceforth denoted
yi ∈ {0, 1}v.

(c) Every player in the preliminary committee i ∈ U broadcasts a bit xi. Let x be the
concatenation of all of {xi}i∈U in increasing order of the players’ indices — here for any
player j who has aborted, its xj is treated as 0.

(d) Every player i ∈ [n] now opens the committed string yi ∈ {0, 1}v.
(e) Input recons to Fηmpc, and receive a mask vector z from Fηmpc.

(f) Parse z := (z1, . . . , zn) where each zj ∈ {0, 1}v for j ∈ [n]. We now view yi⊕zi as player i’s
finalized v-id, which corresponds to a point in the output range of the sampler Samp. The
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final committee C is defined as a multiset constructed as follows: for j ∈ [d], if there is
exactly one player i ∈ [n] who opened yi and whose final v-id yi ⊕ zi = Sampj(x), then
add i to C.

3. Elect leader among final committee. The final committee run the tournament-tree protocol
to elect a final leader.a In case the final committee is empty, simply output player 1 as the
leader.
aWhen the ideal Fcomm and Fηmpc are instantiated with actual cryptography later in Section 5.2, the

opening/reconstruction messages will be posted to the broadcast channel such that the elected leader can be
determined from the collection of messages posted to the broadcast channel.

5.2 Instantiating the Scheme with Real-World Cryptography

We will first instantiate the ideal commitment and Fmpc using a protocol in the IdealZK-hybrid
world, and then we use the elegant techniques of Pass [Pas04] to instantiate the protocol with actual
cryptography with only O(1) round blowup, while allowing bounded concurrent composition without
any common reference string or trusted setup. In our case, the total number of concurrent sessions
of the cryptographic protocols is a-priori known given n.

Instantiating the ideal commitments with non-malleable commitments. We will instan-
tiate the ideal commitments using a publicly verifiable, non-malleable commitment (NMC) scheme
which is defined in Appendix A. Basically, to commit to a string, a player invokes n instances of
NMC, one for each of the n recipients. To open a previously committed string, post the openings
corresponding to all n instances, and the opening is successful iff all n instances open to the same
string. We may assume that messages are posted to the broadcast channel and it can be publicly
checked what a commitment opens to. An honest committer’s commitment will always successfully
open even when the receiver is malicious.

Instantiating the Fmpc with bounded concurrent zero-knowledge proofs. To instantiate
Fmpc with actual cryptography, we first instantiate it in IdealZK-hybrid world. Then, we use the
bounded concurrent zero-knowledge proofs of Pass [Pas04] to replace the IdealZK instances with
actual zero-knowledge proofs.

Therefore, it suffices to describe how to replace Fmpc with a protocol Πmpc in the IdealZK-
hybrid world. This protocol actually does not realize Fmpc with full simulation security6. Yet, we
can later prove that when we replace Fmpc with this protocol, the game theoretic fairness properties
we care about extend to the real-world protocol.

Πmpc: instantiating Fηmpc in the IdealZK-hybrid world

Let comm be a perfectly binding and computationally hiding (non-interactive) commitment
scheme. We assume that committing to a string is accomplished by committing to each
individual bit. Let η ∈ (0, 1) be a parameter.

Sharing phase.

1. Every player i chooses a random string coinsi ∈ {0, 1}vn. It splits coinsi into a dη ·ne-out-of-n

6The reason we do not fully simulate Fmpc is due to technicalities arising from the requirement that the outcome
of the leader election be publicly computable from all the messages posted to the broadcast channel.
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Shamir secret shares, and let coinsi,j be the j-th share. Next, for each j ∈ [n], player
i computes the commitment coinsi,j := comm(coinsi,j , ρi,j) where ρi,j denotes some fresh
randomess consumed by the commitment scheme, and it posts the commitment message
{coinsi,j}j∈[n] to the broadcast channel.

2. Player i does the following for each j ∈ [n]:

• invokes an IdealZK instance denoted IdealZKi,j to prove that the commitment message
{coinsi,k}k∈[n] it has posted is computed correctly, by supplying to IdealZKi,j 1) the

statement {coinsi,k}k∈[n] and 2) all the random coins used in computing the commitment
message. IdealZKi,j checks the following NP relation: all the commitments are computed
correctly, and moreover, the openings form a valid dηne-out-of-n secret sharing.

• gives player j the opening (coinsi,j , ρi,j).

3. A player i ∈ [n] does the following: for every j ∈ [n], if player i

• has seen a message {coinsj,k}k∈[n] posted by j;

• has received the message ({coinsj,k}k∈[n], 1) from IdealZKj,i where the statement must
match the message one posted by j; and

• has received a correct opening (coinsj,i, ρj,i) w.r.t. the i-th coordinate of j’s posted
message {coinsj,k}k∈[n], that is, coinsj,i.

then, it posts the tuple (ok, j) to the broadcast channel.

4. Every player i does the following: for every j ∈ [n] who has obtained an approval message
ok from at least (1− η)n players, add j to the set S. If |S| ≥ ηn, then let succ := 1; else let
succ := 0. Output ok.

Reconstruction phase. If succ = 0, simply output the 0 vector. Else continue with the
following.

1. For every player j ∈ S, if the current player i posted (ok, j) during the sharing phase,
then let (coinsj,i, ρj,i) be the correct opening received from j during the sharing phase, post
(j, coinsj,i, ρj,i) to the broadcast channel.

2. For every tuple (j, coinsj,k, ρj,k) received from some player k ∈ [n], if j ∈ S and (coinsj,k, ρj,k)
is a valid opening w.r.t. the k-th coordinate of j’s commitment message posted during the
sharing phase, then accept this share (k, coinsj,k) of coinsj .

For every j ∈ S, use all accepted shares to reconstruct coinsj . Output z := ⊕j∈Scoinsj if the
reconstruction of every coinsj for j ∈ S is successful; else output the vector 0.

Theorem 5.1 (Main theorem). Assume the existence of enhanced trapdoor permutations and
collision resistant hash functions. Then, there exists an O(r)-round leader election protocol that
achieves (1− 2−Θ(r))-sequential-maximin-fairness against a non-uniform p.p.t. coalition of size at
most (1− 2−Θ(r)) ·n, and (1− 2−Θ(r))-sequential-CSP-fairness against a non-uniform p.p.t. coalition
of arbitrary size.

Proof. The theorem results from the construction presented in this section, and the detailed proofs
will be presented in Sections 6 and 7.
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6 Proofs for the Ideal-World Protocol

6.1 Bounding the Preliminary Committee’s Size

Since the preliminary committee U is chosen from a lightest bin, it is immediate that |U| ≤
⌊
n
B

⌋
.

The next lemma states that there is a sufficient number of honest players in U with high probability.

Lemma 6.1 (Sufficient honest players in the preliminary committee). Suppose for some ψ ∈ (0, 0.5),
there are at least ψ ·n honest players. Let |UH | denote the number of honest players in the preliminary
committee U . Then, for γ ∈ (0, 1), the following holds:

Pr

[
|UH | ≤ (1− γ) · ψn

B

]
≤ B · exp

(
−γ2 · ψn

2B

)
.

In particular, if n
B = 29r and C0 log log n ≤ r ≤ C1 log log n for appropriate constants C0 and C1,

and ψ ≥ 2−r, then the number of honest players in the preliminary committee is at least 0.9ψn/B,
except with exp(−27r) probability.

Proof. By the Chernoff bound, except with probability exp
(
−γ2 · ψn2B

)
, the number of honest players

in any particular bin is greater than (1− γ) · ψnB . The union bound over all the B bins gives the
required result.

The following fact makes sure that the sampler needed by our protocol exists except with
doubly-exponentially small in r probability as long as at least a ψ(n) ≥ 1/2r fraction of the players
are honest.

Fact 6.2. Suppose that the honest fraction ψ ≥ 1
2r and that our protocol uses the aforementioned

parameters. We have that |U| ≥ log(1/δs) + c · v except with exp(−Ω(27r)) probability.

Proof. Since we choose δs := 2−(1−ψ
2

)|U|, the expression to verify can be rewritten as |U| ≥ (1 −
ψ/2)|U|+ c · v, which is equivalent to:

0.5ψ · |U| ≥ c · v = c · (log n+ 0.5r).

Due to Lemma 6.1, the size of the preliminary committee is at least 0.9ψn
B , except exp(−Ω(27r))

probability. Therefore, it suffices to show that

0.5ψ · 0.9ψn/B ≥ 0.45 · 2−2r · 29r ≥ c · (log n+ 0.5r),

where the last inequality holds as long as r ≥ C0 log log n for a sufficiently large constant C0.

6.2 Terminology and Notations

We first present proofs for our protocol in Section 5 assuming idealized Fcomm and Fmpc. However,
we shall assume that the tournament-tree protocol is instantiated with real cryptography as explained
in Section C, since we will use the tournament-tree protocol’s fairness properties as a blackbox in our
proofs. Later in Section 7, we prove that the relevant security properties extend to the real-world
protocol when the idealized cryptographic primitives are instantiated with actual cryptography.

Recall that A denotes the coalition; we often refer to players in A as corrupt and players outside
A as honest. Further, we often use the notation H := [n]\A to denote the set of honest players. For
S ⊆ [n], we use the notation xS := {xi}i∈S and yS is also similarly defined.
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6.3 Composition of the Final Committee

Lemma 6.3 (Final committee composition). Suppose that the honest fraction ψ ≥ 2η = 2 · 1
20.2r

and that our protocol uses the aforementioned parameters. Fix N to be an arbitrary set of (distinct)
final v-ids in the sampler’s output range {0, 1}v where |N | ≤ n. Let CN be the (multi-)set of final
v-ids in N chosen by Samp(x). Let7 ε0 = εs · 2v

|N | .

Then, conditioned on no param error and |UH | ≥ 0.9ψ · n/B, with probability at least 1 −
exp(−Ω(27r)) over the choice of xH , CN has size in the range [1− ε0, 1 + ε0] · d · |N |2v .

Alternatively, suppose there is some upper bound |N | ≤ N , and we set ε0 = εs · 2v

N . Then, with
conditional probability at least 1− exp(−Ω(27r)) under the events, CN has size at most (1 + ε0) ·d · N2v .

Proof. Let the final committee CN be the multi-set of v-ids in N chosen by the Samp(x). We shall
show that, using Theorem 4.2, except with probability p := exp(−Ω(26r)) over the choice of xH ,

|CN | ∈ [1− ε0, 1 + ε0] · d · |N |
2v

. (1)

Observing that εs = ε0 · |N |2v , by the property of the (εs, δs)-averaging sampler, except for at most

2|U| · δs = 20.5ψ|U| number of bad inputs to the sampler, the size of CN satisfies (1).
We say that some choice of xH∩U is bad if there exists a corrupt choice of xA∩U such that the

combination of xH∩U and xA∩U (arranged in the right order) will lead to CN such that (1) is violated.
Otherwise, we say that xH∩U is good. Note that if xH∩U is good, it means that no matter how the
adversary chooses xA∩U , it cannot make CN violate (1).

Since honest players choose their xH∩U at random, we next claim that the fraction of bad xH∩U
is bounded by 2−0.3ψ|U| ≤ 2−0.27ψ2·n/B ≤ 2−Ω(27r). The claim is true; otherwise, the number of bad
inputs to the sampler is at least 2−0.3ψ|U| ·20.9ψ|U| = 20.6ψ|U| and thus we have reached a contradiction.
Finally, a union bound over all the above bad events shows that except with probability at most
exp(−Ω(27r)), CN respects the range in (1).

The alternative case when there is an upper bound |N | ≤ N uses essentially the same argument,
but we just need one direction of the inequality from the sampler.

The above Lemma 6.3 immediately implies the following bound on the final committee size.

Lemma 6.4 (Final committee not too large). Suppose that the honest fraction ψ > 2η = 2 · 1
20.2r

and that our protocol uses the aforementioned parameters. Let ε0 = εs · 2v

n = 2−5.5r.
Then, with probability at least 1 − exp(−Ω(26r)), the final committee C has size at most (1 +

ε0) · d · n2v ≤ 2O(r), and the protocol does not throw param error.
In particular, with probability at least 1− exp(−Ω(26r)), the protocol has round complexity at

most O(r).

Proof. Due to Lemma 6.1, except with exp(−Ω(27r)) probability, |UH | ≥ 0.9ψ · n/B ≥ 0.9ψ · |U|.
Further, due to Fact 6.2, param error does not happen except with exp(−Ω(27r)) probability.
Conditioned on these bad events not happening, we now use Lemma 6.3. In this case, the n
players can choose at most n final v-ids, i.e., |N | ≤ n. The range in (1) implies that except with
exp(−Ω(26r)) over the choice of xH , the final committee C has size at most:

d(
n

2v
+εs) = (1+ε0)·d· n

2v
≤ d·(2−0.5r+2−6r) = (1+2−5.5r)·(|U|/εs)c̃·2−0.5r ≤ (1+2−5.5r)·215rc̃·2−0.5r.

7Note that ε0 would be very large if N is too tiny, but our usage later will guarantee that N is not too tiny.
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We shall consider the following bad events in our proofs. Recall that conditioned on any coin
used in the lightest-bin protocol for the preliminary committee election, the protocol still has
independent randomness x chosen by the preliminary committee as input for the averaging sampler,
the unmasked v-ids y chosen by all players, as well as the mask vector z.

• Event param error. Recall that this happens when the preliminary comittee selected does not have
the desirable properties; by Lemma 6.1 and Fact 6.2, this bad event happens with probability at
most exp(−Ω(27r)).

• Event bad1: out of the d samples from the (εs, δs)-sampler, at least (1 + ε0) ·d · n2v number of them
correspond to corrupt players’ final v-ids, where ε0 := 2−6r · 20.5r is defined as in Lemma 6.4.
Assuming the honest fraction ψ ≥ 2η, by Lemma 6.4, Pr[bad1] ≤ exp(−Ω(26r)). Moreover,
observe that bad1 is determined by x, yA, and zA, and is independent of yH and zH .

• Event bad2: the final committee C has size greater than (1 + ε0) · d · n2v . Again assuming ψ ≥ 2η,
Lemma 6.4 implies that Pr[bad2] ≤ exp(−Ω(26r)). Observe that bad2 depends on x, y, and z.

Lemma 6.5 (Influence of an honest player in the final committee). Suppose that |A| < (1− 2η)n,
i.e., h

n = ψ > 2η ≥ 1
2r . For an honest player i /∈ A, let Mi be its multiplicity in the final committee

C. Define a random variable Υi that equals Mi
|C| , if none of the bad events bad events param error or

bad1 or bad2 happens; otherwise, Υi equals 0.
Then, E[Υi] ≥ 1

n

(
1− 2−0.48r

)
, where the expectation is taken over the randomness used in the

entire execution.

Proof. For ease of notation, the rest of the proof conditions on the event that during the prelimi-
nary committee election, param error does not happen; observe that this bad event happens with
probability at most exp(−Ω(27r)), by Lemma 6.1 and Fact 6.2. Hence, at the end, we just need to
multiply any conditional expectation by a factor of 1− exp(−Ω(27r)). Recall that we identify an
event with its {0, 1}-indicator random variable.

We next give a lower bound on E[Mi|bad1]. Since yH is opened in the last but second step and
as long as |A| < (1− 2η)n, the reconstruction of z is fully determined before selecting input to the
sampler, we may equivalently imagine that yH is chosen at the end, independently of x, yA, and z.
Since the event bad1 does not happen, there are at least d− (1 + ε0) · d · n2v = d(1− (1 + ε0) n2v ) ≥
d(1− 2−0.49r) available slots for the honest players’ final v-ids, where the inequality follows from
1 + ε0 ≤ 20.01r.

For each such slot, player i can get it if it chooses this slot and none of the other honest players
choose it; this happens with probability 1

2v · (1−
1
2v )h−1 ≥ 1

2v (1− n
2v ) = 1

2v (1− 2−0.5r). Therefore,
conditioned on any choice of x, yA, z, by just using the randomness of yH , we can conclude that
EyH [Mi|bad1] ≥ d

2v · (1− 2−0.49r)(1− 2−0.5r) ≥ d
2v (1− 2−0.485r), where the last inequality holds for

large enough r = Ω(1).
Since this holds conditioned any any choice of x, yA, z, we have the desired lower bound on

E[Mi|bad1].
We next give a lower bound for the following quantity:

E[Mi ·bad1 ·bad2] = E[Mi|bad1]·Pr[bad1]−E[Mi ·bad1 ·bad2] ≥ d

2v
(1−2−0.485r)·Pr[bad1]−dPr[bad2]

We use E[Mi ·bad1 ·bad2] ≤ dPr[bad2] ≤ d·Pr[bad2] ≤ d·exp(−Ω(26r)) ≤ d
2v ·exp(−Ω(25r)) where

the last inequality holds because 2v = n · 20.5r and we assume that r ≥ C0 log log n for some suitably
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large constant C0. Therefore, we have E[Mi · bad1 · bad2] ≥ d
2v

(
1− 2−0.485r

)
·
(
1− exp(−Ω(26r))

)
−

d
2v · exp(−Ω(25r)) ≥ d

2v (1− 2−0.483r). Finally, we have

E[Υi|bad1 · bad2] = E

[
Mi

|C|
|bad1 · bad2

]
≥ E[Mi|bad1 · bad2]

(1 + ε0) · d · n2v

≥ 1

n
(1− 2−0.483r)(1− ε0) · Pr[bad1 · bad2]−1

≥ 1

n
(1− 2−0.481r) · Pr[bad1 · bad2]−1.

Hence, we have the lower bound E[Υi] ≥ E[Υi · bad1 · bad2] ≥ 1
n(1− 2−0.481r).

Finally, recalling so far we have assume that param error does not happen. Therefore, multiplying
the above by (1 − Pr[param error]) = 1 − exp(−Ω(27r)) gives the desired lower bound for the
expectation of Υi.

Lemma 6.6 (Sufficient honest players without collision). Suppose n = g + t < V . There are V
bins, of which t bins are bad and the rest are good. Suppose each of g balls is thrown into a bin
uniformly at random independently. Let Z be the number of good bins containing exactly one ball.
For any 0 < α < 1, except with probability exp(−Θ(α2g(1− n

V ))), we have Z ≥ g(1− 2n
V − 2α).

Proof. Consider throwing the g balls one by one independently into the bins. For 1 ≤ i ≤ g, let
Xi ∈ {0, 1} be the indicator random variable for the event that when the i-th ball is thrown, it
goes to an empty good bin. Observe that no matter what happens to the first i− 1 balls, the event
Xi = 1 happens with probability at least 1− n

V . Hence, S :=
∑g

i=1Xi stochastically dominates the
binomial distribution Binom(g, 1− n

V ) with g trials and success rate 1− n
V .

By stochastic dominance and the Chernoff Bound on binomial distribution, we have the following:

Pr
[
S ≤ (1− α) · g(1− n

V
)
]
≤ exp

(
−Θ(α2g(1− n

V
))
)

Hence, except with probability exp(−Θ(α2g(1 − n
V ))), we have that S ≥ (1 − α) · g(1 − n

V ) ≥
g(1− n

V − α).
Finally, observe what happens to the number Z of good bins having exactly one ball as the

g balls are thrown one by one. When Xi = 1, Z increases by 1; when Xi = 0, Z either remains
the same or decreases by 1. Hence, at the end, the number Z of good bins having exactly one ball
satisfies Z ≥ S − (g − S) = 2S − g. The result follows.

Lemma 6.7 (Sufficient honest players in the final committee). Suppose that |A| < (1− 2η)n. Let
G ⊆ H denote an arbitrary subset of honest players with g = |G|, where g

n ≥ 1/2r. Except with
probability exp(−Ω(2r)), the number of players from G that are in the final committee8 is at least
g · d2v · (1− 2−0.48r).

As a direct corollary, no matter how large A is, as long as the coalition A adopts the honest
strategy, then, for any subset G ⊆ [n] of at least n/2r players, except with probability exp(−Ω(2r)),
the number of players from G that are in the final committee is at least g · d2v · (1− 2−0.48r).

Proof. Let V = 2v, and so n
V = 1

20.5r . Since |A| < (1− 2η)n, the mask z to be reconstructed later is
fully determined before selecting input x to the sampler — in this case, we can imagine that yG is
chosen and revealed at the end, independent of x, y[n]\G, and z.

8Throughout, a player with multiplicity µ in the final committee is counted µ times.
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Setting α := 1
2r in Lemma 6.6, we have, except with probability

p ≤ exp

(
−Ω(

1

22r
· g · (1− 2−0.5r))

)
≤ exp

(
−Ω(

n

23r
)
)
,

the number of players in G whose final v-id has no collision is at least Z := g(1−2·2−0.5r−2·2−r) ≥ g
2 .

Recall that r ≤ C1 log n, and, as long as the constant C1 is sufficiently small, we have that n > 24r,
and thus p ≤ exp(−Ω(2r)).

Setting ε0 := εs· 2
v

|Z| ≤ 2·2−6r·21.5r, and using Lemma 6.3, we can show that except with probability

exp(−Ω(2r)), the number of players from G in the final committee is at least (1 − ε0) · d · Z2v ≥
g · d2v · (1− 2−0.48r).

6.4 Maximin Fairness

In this section, we will prove the following lemma.

Lemma 6.8 (Ideal-world protocol: maximin fairness). The ideal-world protocol (i.e., instantiated
with Fcomm and Fmpc) satisfies (1− 2−0.4r) = (1− 2−Θ(r))-sequential-maximin-fairness against any
non-uniform p.p.t. coalition9 of size at most (1− 2η)n = (1− 2−Θ(r))n.

Proof. Due to Lemma B.1, we can do a round-by-round analysis. Let r∗ be the first round in
which the coalition deviates. Let r̃ be the round in which all players reconstruct the mask vector z.
Throughout, we may assume that A < (1− 2η)n. Further, for each round r∗, we may assume that
Pr[Devr

∗
] is non-negligible where Devr

∗
denotes the event that A deviates first in round r∗. We want

to show that conditioned on this non-negligible probability event Devr
∗
, A cannot conditionally harm

an honest individual noticeably, or conditionally increase its own winning probability noticeably.

Easy case: r∗ > r̃. This means the coalition A will deviate only in the tournament tree protocol,
whose sequential maximin fairness holds according to Theorem 3.5. This means each honest player
can only be hurt negligibly more.

Easy case: r∗ = r̃. As mentioned earlier, as long as |A| < (1 − 2η)n, in this round, no matter
what A does, reconstruction of z is guaranteed and the reconstructed value is unique.

Slightly more complicated case: r∗ = r̃ − 1. This is the case when the coalition A deviates
in the round in which the unmasked v-ids y are opened. Since we are using an ideal Fcomm, the
only possible deviation in round r∗ = r̃− 1 is if some member of the coalition i ∈ A fails to open its
committed its yi value.

We consider two cases.

• First, suppose that |A| ≥ ηn. This means that the adversarial coalition already knows the
committed mask z at the end of the sharing phase. In this case, the z mask to be reconstructed
is uniquely determined at the end of the sharing phase. In the round r∗ = r̃ − 1, to harm any
specific honest individual, A’s best strategy is the following: for every final v-id in the space
{0, 1}v, if one or more player(s) in A happen(s) to have that final v-id, make exactly one of
them open its yi value, such that there is no internal collision among the coalition A. Due to
the sequential fairness of the tournament-tree protocol (i.e., Theorem 3.5), conditioned on the

9Recall that the tournament-tree protocol is still instantiated with real cryptography.
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history of the protocol till the end of round r̃, every honest final committee member’s winning
probability is at least 1

|C| − negl(κ), no matter how A behaves in any round greater than r̃.
Therefore, avoiding internal collision but otherwise opening every final v-id is A’s best strategy
for harming any specific honest player.

Note that opening the coalition members’ unmasked v-ids in an internal-collision-avoiding manner
like above does not change whether any honest individual is included in the final committee,
but it may increase the final committee size (in comparison with the case when A continues to
play honestly). Due to Lemma 6.7, and since A has acted honestly so far, except with negligible
probability, the final committee size is at least nd

2v (1− 2−0.48r).

Now, suppose A excludes its members from the final committee due to internal collision. Observe
that actually this decision could have been made before the input x to the Samp is chosen. Since
there are at most n finalized v-ids with no collision, by Lemma 6.4, except with exp(−2Ω(r))
probability (which is negligible if r ≥ C0 log log n for a sufficiently large C0), the final committee
has size at most nd

2v (1 + 2−5.5r).

Therefore, except with negligible probability, for any honest i, the coalition A can only reduce
Υi by a 1− 2−Θ(r) factor.

• Second, suppose that |A| < ηn. In this case, A has no information about the mask z, and Devr
∗

is
independent of z. Further, z is guaranteed to be reconstructed later. In this case, we can reprove
Lemma 6.5 almost identically except that instead of using the randomness yH , we now use the
randomness zH ; further, notice that bad1 is independent of zH , and even when conditioning on
the non-negligible probability event Devr

∗
, the probabilities of bad1 and bad2 are still negligible.

Therefore, we get that even when conditioning on Devr
∗
, for any honest i, the expectation of Υi

is at least 1
n · (1− 2−0.48r) no matter how A behaves during round r̃ and after. Had A continued

to play honestly, using the randomness of z, we know that even when conditioning on Devr
∗
, the

expectation of Υi is at least 1/n− negl(κ) where the negl(κ) term is due to the negligibly small
probability of bad1 and bad2 in which case Υi is defined to be 0. (see Lemma 6.5).

Therefore, deviating in round r̃ will not reduce any honest individual’s conditional winning
probability by a 1− 2−Θ(r) multiplicative factor.

Remaining case: r∗ < r̃ − 1. The rest of the proof focuses on this remaining case. Recall
that we assume Pr[Devr

∗
] ≥ 1

poly(n) . Let LEIdeal denote a randomized execution of our ideal-world
leader-election protocol described in Section 5.1.

Conditioning on the event Devr
∗
, we prove maximin fairness assuming that the coalition A

contains no more than a 1− 2η fraction of the players. Fix any i /∈ A. Now, observe the following:

1. Recall that we may assume Devr
∗

happens with non-negligible probability. Following the proof
of Lemma 6.5, and observing that before round r̃, the randomness yH remains hidden and is
independent of whatever that has happened so far, we have:

E
[
tr ← LEIdeal : Υi|Devr

∗
(tr)

]
≥ 1

n
·
(
1− 2−0.48r

)
. (2)

The only difference in the argument is that both the probabilities Pr[bad1|Devr
∗
] and Pr[bad2|Devr

∗
]

are at most poly(n) · exp(−Ω(26r)), which is is still negligible, because we assume that r =
Ω(log log n) is sufficiently large. Indeed, for sufficiently large n, poly(n) · exp(−Ω(26r)) ≤
exp(−Ω(25.99r)), and the proof works as before.
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2. We next consider the proof of Lemma 6.7, but now we conditioned on Devr
∗

(which has non-
negligible probability). Suppose all players in A actually play honestly. Define bad3 to be the
event that the final committee has size less than nd

2v · (1 − 2−0.48r). Lemma 6.7 states that

Pr[bad3] ≤ exp(−Ω(2r)). Since Devr
∗

has non-negligible probability, we have Pr[bad3|Devr
∗
] ≤

poly(n) · exp(−Ω(2r)) ≤ exp(−Ω(20.99r)) ≤ negl(κ), where the last inequalities hold for large
enough n ≥ κ because r ≥ Ω(log logn).

This implies that an honest continuation of the execution would lead to a conditional expectation
of Υi of at most

d/2v

n · d2v · (1− 2−0.48r)
+ negl(κ) ≤ 1

n
· (1 + 2−0.47r) + negl(κ) ≤ 1

n
· (1 + 2−0.46r)

Summarizing the above, we have that the ideal protocol is (1− 2−0.4r)-sequential-maximin-fair
for any coalition that is at most (1− 2η)n = (1− 2−Θ(r))n in size.

6.5 CSP Fairness for a Large Coalition

In this section, we prove the following lemma.

Lemma 6.9 (Ideal-world protocol: CSP fairness for a large coalition). The ideal-world protocol
(i.e., instantiated with Fcomm and Fmpc) satisfies (1 − 2−Θ(r))-sequential-CSP-fairness against a
non-uniform p.p.t. coalition of size at least ηn.

Proof. We divide into cases by the first round of deviation r∗ as before.

Easy case: r∗ > r̃. This means the coalition A will deviate only in the tournament tree protocol,
whose sequential CSP fairness holds according to Theorem 3.5. This means that the coalition can
gain only negligibly more.

Easy case: r∗ = r̃. We consider two cases. First, if |A| < (1 − 2η)n, then, in the round r̃, no
matter what A does, reconstruction of z is guaranteed and the reconstructed value is unique.

Second, if |A| ≥ (1− 2η)n, then the mask z the sharing-phase transcript binds to is revealed to
A; moreover, A is allowed to open the mask to an arbitrary value during the round r̃. Recall that
we condition on the event Devr

∗
, which happens with non-negligible probability.

Hence, except with negligible (conditional) probability, had A continued to play honestly, the
number of corrupt players in the final committee is at least |A| · d2v · (1− 2−0.48r) by the argument

in Lemma 6.7, and the final committee’s size is at most n · d2v · (1 + 2−0.48r) by Lemma 6.4.
Therefore, except with negligible probability, A can improve its representation on the final

committee by at most a 1/(1− 2−Θ(r)) multiplicative factor, because the conditional probability of
the adversary winning is at most 1 even when it deviates.

Slightly more complicated case r∗ = r̃ − 1. This is the round in which the players’ unmasked
v-ids are opened. We consider the following cases:

• Suppose that |A| ≥ (1 − 2η)n. The same argument for the case |A| ≥ (1 − 2η)n and r∗ = r̃
applies here, too.

25



• Suppose that |A| ∈ [ηn, (1− 2η)n). In this case, A already knows the z that will be opened later.
A knows all players’ unmasked v-ids too at the beginning of this round. A’s best strategy is the
internal-collision-avoidance strategy described earlier in the proof of Lemma 6.8.

Due to Lemma 6.7, except with negligible probability, had A continued to play honestly, there
are at least |A| · d2v (1− 2−0.48r) coalition members in the final committee.

Next, we condition on the non-negligible event Devr
∗

and analyze the gain by A if it actually
deviates at round r∗. Observe that this decision could have been made before the input x to
the sampler is chosen, and the adversary can have at most |A| distinct final v-ids after avoiding
internal collision. Hence, we can use the argument in Lemma 6.3 with ε0 = εs · 2v

|A| ≤ 2−6r · 20.3r

to conclude that, except with negligible (conditional) probability, there are at most |A| · d2v (1 + ε0)
coalition members in the final committee.

Therefore, except with negligible probability (conditioning on Devr
∗
), A can increase its repre-

sentation in the final committee by a multiplicative factor of at most 1+ε0
1−2−0.48r ≤ 1

1−2−Θ(r) .

Remaining case r∗ < r̃ − 1.

• First, consider the easy case when |A| ≥ (1− 2η)n. Recall that we condition on Devr
∗
, which

has non-negligible probability.

By the argument of Lemma 6.7, except with exp(−Ω(2r)) · Pr[Devr
∗
]−1 = negl(κ) probability

(conditioning on Devr
∗
), if the coalition A continues to behave honestly, the number of players

from A that are in the final committee is at least |A| · d2v · (1− 2−Θ(r)).

Moreover, by Lemma 6.4, except with exp(−Ω(2r)) · Pr[Devr
∗
]−1 = negl(κ) probability (condi-

tioning on Devr
∗
), the final committee size is at most n · d2v · (1 + 2−Θ(r)). This means that

conditioned on Devr
∗
, except with negligible probability, had A continued to behave honestly,

the fraction of corrupt players in the final committee is at least 1− 2−Θ(r) which is very close to
1 already. Hence, conditioning on Devr

∗
, the coalition’s winning probability cannot increase by a

multiplicative factor of 1/(1− 2−Θ(r)).

• Henceforth, it suffices to consider the case when |A| < (1 − 2η)n. We next use the sequential
maximin fairness result in Lemma 6.8. From (2), we have for each i /∈ A, no matter what p.p.t.
strategy A adopts, the following holds:

E
[
tr ← LEIdeal : Υi(tr)|Devr∗(tr)

]
≥ 1

n
·
(
1− 2−Cr

)
, (3)

where C = 0.48. Let h := n− |A|, and we have,

E
[
tr ← LEIdeal : WA(tr)|Devr∗(tr)

]
≤ 1− h

n
· (1− 2−Cr) = 1− h

n
+
h

n
· 2−Cr (4)

If 1− h/n ≥ 1
2Cr/2

≥ η, then the above expression can be upper bounded by 1− h
n + h

n · 2
−Cr ≤

1− h
n + (1− h

n) · 2−Cr/2 ≤ (1− h
n) · 1

1−2−Cr/2
.

We next condition on the event Devr
∗

(which has non-negligible probability) and analyze what
happens had A acted honestly. Except with negligible (conditional) probability, 1) there would
be at least |A| · d2v · (1− 2−0.48r) coalition members in the final committee (by Lemma 6.7); and 2)

the final committee’s size is at most n · d2v (1+2−Θ(r)) (by Lemma 6.4). Therefore, conditioning on

Devr
∗
, had A continued to behave honestly, its probability of winning is at least |A|n (1− 2−Θ(r)).
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6.6 CSP Fairness for a Small Coalition

In this section, we prove the following lemma.

Lemma 6.10 (Ideal-world protocol: CSP fairness for a small coalition). The ideal-world protocol
(i.e., instantiated with Fcomm and Fmpc) satisfies (1 − 2−Θ(r))-sequential-CSP-fairness against a
non-uniform p.p.t. coalition of size less than ηn.

Proof. We divide into cases by the first round of deviation r∗ as before.

Easy case: r∗ > r̃. Same as Section 6.5.

Easy case: r∗ = r̃. For a coalition of size less than ηn, what it does has no effect on the
reconstruction of z.

Slightly more complicated case: r∗ ≤ r̃ − 1. A small coalition of size less than ηn has no
information about z at this point; further, the z that the sharing-phase transcript binds to is
guaranteed to be reconstructed later. In this case, no matter what x is, since Devr

∗
is independent

of z, suppose that exactly α ≤ |A| number of coalition members open their unmasked v-ids, then,
conditioning on the event that the final committee is non-empty, by the randomness of z and the
symmetry between players, A’s expected fraction in the final committee is exactly α/(α+ h), where
h = n− |A|.

If the default winner is not in A when the final committee is empty, obviously A does not have
incentive to withhold their unmasked v-ids. However, even if the default winner is in A when the
final committee is empty, the adversary can take advantage of this only if no honest player is in the
final committee; because of independence of z among the players, the adversary A will not be hurt
if all players in A open their yA.

It follows that conditioning on any trace up to round r̃, the adversary A should open its yA.
However, the adversary A may deviate before round r̃ to influence the probability that the final

committee is empty. Nevertheless, Lemma 6.7 implies that no matter what the adversary does, the
probability that the final committee is empty is less than exp(−Ω(2r)). Hence, conditioning on any
non-negligible Devr

∗
, the probability that the final committee is empty is still negligible.

7 Extending the Fairness Guarantees to the Real-World Protocol

7.1 Analysis of the IdealZK-Hybrid Protocol Πmpc

Theorem 7.1 (Πmpc protocol of Section 5.2). Suppose that the commitment scheme comm is perfectly
binding and computationally hiding. Then, the IdealZK-hybrid-world protocol in Section 5.2 satisfies
the following security properties:

1. If |A| < (1− 2η)n, at the end of the sharing phase, there exists a unique string coins, such that
during the reconstruction phase, all honest players will output coins.

2. If |A| < ηn, then there exists a p.p.t. simulator Sim, such that

(coins, viewsharing
A ) ≡c (U,Sim(1κ))

where coins denotes the unique coin that the transcript of the sharing phase binds to, viewsharing
A

denotes the adversary’s view in the sharing phase, U is a random string of the same length as
coins, and ≡c means computational indistinguishability.
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Proof. For the first claim, if |S| < ηn, then the claim is trivial. Henceforth we focus on the case when
|S| ≥ ηn. Suppose that |A| < (1− 2η)n, we know that everyone in S must have obtained ok from
at least (1− η)n players, it must be that at least ηn of these ok messages come from honest players.
This means that everyone j ∈ S must have supplied a valid opening of its commitment message
to IdealZK, and moreover the opening is a valid dηne-out-of-n secret sharing which determines
the coin value coins. Furthermore, all the ηn honest players who have sent ok for j’s commitment
message must have received a valid opening of its own share, and will send its share’s opening during
the reconstruction phase. Therefore, reconstruction must succeed and reconstruct to coins.

We now prove the second claim. Let ZKHyb denote an execution of Πmpc where the simulator acts
on behalf of all honest players and interacts with the adversary, and moreover the simulator simulates
IdealZK for the adversary too. We now consider a hybrid experiment Hyb which is almost identical to
ZKHyb, except that we replace the way how the simulator computes an honest player i’s commitment
messages: for each j ∈ [n]\A, let Ci,j := comm(0, ρi,j); for each j ∈ A, Ci,j := comm(coinsi,j , ρi,j);
and the commitment message of i is ({Ci,j}j∈[n]). The IdealZK instances interacting with the
adversary (simulated by the challenger) vouches for this new commitment message ({Ci,j}j∈[n]), too.
Hyb is computationally indistinguishable from ZKHyb due to the computational hiding property of
the commitment scheme comm.

Now, consider Hyb. Since |A| < ηn, |S| ≥ ηn must hold since all honest players will send ok for
all honest players. Recall that we are using dηne-out-of-n secret sharing; therefore, for every honest i,
the shares {coinsi,j , ρi,j}j∈A the adversary receives is independent of coinsi. If |A| < ηn, and we know

that |S| ≥ ηn, then there must exist an honest player u ∈ S, and coinsu is independent of viewsharing
A .

Therefore, in Hyb, viewsharing
A is independent of the coin coins := ⊕j∈Scoinsj to be reconstructed

later. In other words, Hyb essentially defines a simulator Sim, such that (coins, viewsharing
A ) ≡ (U,Sim)

where ≡ means identically distributed, and U is a uniform random string of appropriate length.

7.2 Hybrid Experiments

Throughout, we will use LE to denote a randomized execution of our leader election protocol
instantiated with the IdealZK-hybrid Πmpc in place of Fmpc, and with non-malleable commitments
in place of the idealized commitments. In our proof, we will make use of a couple hybrid experiments
denoted LEHyby and LEHybz which we define below. Later on, when our proof needs to use the
independence of yH w.r.t. other coins, we will use LEHyby as stepping stone. When the coalition is
smaller than ηn and we need to use the independence of z w.r.t. other coins, we will use LEHybz as
stepping stone.

Hybrid LEHyby. Hybrid experiment LEHyby essentially runs LE but replaces the NMC step with
the NMC’s simulator.

Hybrid experiment LEHyby

1. Elect the preliminary committee U using lightest bin as before.

2. Like before, let Samp : {0, 1}|U| → {{0, 1}v}d, and if the parameter check fails, abort with
the exception param error and output player 1 as the leader.

3. Run the sharing phase of Πmpc which is in the IdealZK-hybrid world. At the end of this
step, the transcript uniquely binds to some z.
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4. Each honest player i ∈ H chooses a random yi ∈ {0, 1}v, and invokes n NMC instances and
run the commit phase with n receivers. Run the simulator for the NMC which outputs 1) n
values each corrupt player is trying to commit; and 2) the view of the adversary viewA. If
the same corrupt player j ∈ A is committing to different values, we simply let its committed
value be yj := 0v; else, we let yj be the value output by the simulator. Use the simulated
view viewA to reset the adversary’s internal state.

5. Every player in the preliminary committee i ∈ U broadcasts a bit xi. Let x be the
concatenation of all of {xi}i∈U in increasing order of the players’ indices — here for any
player j who has aborted, its xj is treated as 0 (same as in LE).

Hybrid LEHybz. Hybrid experiment LEHybz essentially runs LE but replaces the Πmpc with its
simulator Sim (for the case when |A| < ηn).

Hybrid experiment LEHybz

1. Elect the preliminary committee U using lightest bin as before.

2. Like before, let Samp : {0, 1}|U| → {{0, 1}v}d, and if the parameter check fails, abort with
the exception param error and output player 1 as the leader.

3. Run the simulator Sim of Πmpc which outputs viewsharing
A and sample a random mask

z ∈ {0, 1}vn. Use viewsharing
A to reset the adversary’s internal state.

4. Every player commits to a random unmasked v-id yi ∈ {0, 1}v by creating n instances of the
NMC scheme, one for each of the n receivers.

5. Every player in the preliminary committee i ∈ U broadcasts a bit xi. Let x be the
concatenation of all of {xi}i∈U in increasing order of the players’ indices — here for any
player j who has aborted, its xj is treated as 0 (same as in LE).

6. Every player i now opens its committed yi by posting the openings of n instances to the
broadcast channel. If the openings are inconsistent, treat the opened value yi := 0v; else, let
yi be the opened value (same as in LE).

Remark 7.2. Observe that in LEHyby and LEHybz, the experiments stop before the opening phase
of the NMC, and of the Fmpc, respectively. This is because using the concurrent non-malleability
definition of NMC and due to Theorem 7.1, the simulatability of the NMC and the Fmpc holds only
for the commitment/sharing phase. In our proofs later, we will rely on the simulatability of the
commitment/sharing phase, and then, we will define polynomial-time computable variables over
the view of the experiment before opening, and argue computational indistinguishability of these
variables in LEHyby (or LEHybz) and in our IdealZK-hybrid-world leader election protocol denoted
LE later.

7.3 Maximin Fairness

In this section, we prove the following theorem.

Theorem 7.3 (Real-world protocol: maximin fairness). Suppose that the NMC scheme satisfies
perfectly binding and concurrent non-malleability as defined in Appendix A, and that Πmpc satisfies
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Theorem 7.1. Then, the real-world protocol satisfies (1− 2−Θ(r))-sequential-maximin-fairness against
any non-uniform p.p.t. coalition of size at most (1− 2−Θ(r))n.

Proof. Let LE be a randomized execution of our leader election protocol instantiated with the
IdealZK-hybrid Πmpc in place of Fmpc, and with non-malleable commitments in place of the
idealized commitments. Due to Theorem 4.3, it suffices to prove our sequential approximate fairness
notions for LE, and the same guarantees would extend to the real-world protocol when the IdealZK
is instanatiated with the bounded concurrent zero-knowledge proofs suggested by Pass [Pas04].

Like the proof of Lemma 6.8, we will divide into several cases based on the first round of deviation
r∗. Let r̃ be the round in which players open the mask z.

Case r∗ > r̃. The analysis in the proof of Lemma 6.8 still applies.

Case r∗ = r̃. The analysis in the proof of Lemma 6.8 still applies.

Case r∗ = r̃ − 1. For the case when |A| ≥ ηn, the analysis in the proof of Lemma 6.8 still applies.
Below we focus on the case when |A| < ηn. Fix an arbitrary honest individual i, we want to derive
an upper bound on E[Υi] conditioned on Devr

∗
.

Observation 7.4. Observe that Lemma 6.5 actually holds when Υi is defined solely as a polynomial-
time computable function over x, y, z and independent of additional random coins of A. In other
words, the proof of Lemma 6.5 actually defines Υi assuming the worst case for the honest player i
when x, y and z are fixed: essentially, we do not penalize the coalition for internal collision, that is,
the lemma holds when all members of A open their unmasked v-ids, but if two or more members
of A happen to have the same final v-id, we pretend a-posterior that only one of these coalitions
members opened.

Due to this observation as well as Theorem 7.1 (the case for |A| < ηn), we may equivalently
lower bound on E[Υi(x, y, z)] conditioned on Devr

∗
in LEHybz, and the quantity E[Υi(x, y, z)] in

LE should only be negligibly apart. Now, observe that in LEHybz, Lemma 6.5 still holds, even
when conditioned on Devr

∗
(which is independent of z), if we simply redo the argument using the

randomness of zH in place of yH .
Now, if A had continued to play honestly, then Υi is also a polynomial-time computable

function over (x, y, z). In LEHybz, it is not hard to see that had A continued to play honestly,
E[Υi] is 1/n − negl(κ) conditioned on Devr

∗
. Therefore, due to Theorem 7.1 (for the case where

|A| < ηn), in LE, E[Υi] is at most is 1/n + negl(κ) conditioned on Devr
∗
. More specifically, Υi

can only take polynomially many possible values, and if in LEHybz and LE, their expectation is
more than negligibly apart, then there must exist at least one value whose probability differs
by more than a negligible amount in LEHybz and LE, respectively. We can then construct an
efficient distinguisher which outputs 1 upon encountering this specific value, and otherwise outputs
0. Such an efficient distinguisher can distinguish LEHybz and LE with non-negligible probability,
thus violating Theorem 7.1.

This means that conditioned on deviating in round r∗ = r̃ − 1, A cannot reduce i’s conditional
winning probability by a multiplicative 1− 2−Θ(r) factor.

Case r∗ < r̃ − 1. For the case when |A| ≥ (1− 2η)n, the analysis in the proof of Lemma 6.8 still
applies. Below we focus on the case |A| < (1− 2η)n. Let i /∈ A be an arbitrary honest individual.
In the proof of Lemma 6.8 for this case, the part that an honest continuation of the execution
would lead to the stated bound on the conditional expectation of Υi still holds for LE. It remains
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to show that even in LE, conditioned on Devr
∗
, the expectation of Υi is at least 1

n(1 − 2−Θ(r)).
To show this, due to Observation 7.4, it suffices to prove the statement for Υi(x, y, z) in LEHyby,
and the conditional expectation of Υi(x, y, z) in LE is only negligibly apart due to the concurrent
non-malleability of NMC. To conclude the proof, observe that the proof of Lemma 6.5 holds in
LEHyby even when conditioning on Devr

∗
, since in LEHyby, yH is independent of x, yA and z.

7.4 CSP Fairness

The following theorem states sequential approximate CSP fairness for our real-world protocol for
coalitions that are not too small.

Theorem 7.5 (Real-world protocol: CSP fairness for a large coalition). Suppose that the NMC
scheme satisfies perfectly binding and concurrent non-malleability as defined in Appendix A, and that
Πmpc satisfies Theorem 7.1. The real-world protocol satisfies (1− 2−Θ(r))-sequential-CSP-fairness
against a non-uniform p.p.t. coalition of size at least ηn.

Proof. Due to Theorem 4.3, it suffices to prove our sequential approximate fairness notions for LE,
and the same guarantees would extend to the real-world protocol when the IdealZK is instanatiated
with the bounded concurrent zero-knowledge proofs suggested by Pass [Pas04]. Like the proof of
Lemma 6.9, we will divide into several cases based on the first round of deviation r∗. Let r̃ be the
round in which players open the mask z. The analysis in the proof of Lemma 6.9 for all cases where
r∗ ≤ r̃ − 1 still hold for LE.

Below we focus on the case when r∗ < r̃− 1. For the sub-case when |A| ≥ (1− 2η)n, the analysis
in Lemma 6.9 applies to LE. Therefore, we focus on the sub-case when |A| > (1− 2η)n. Here, just
like in the proof of Lemma 6.9, we can still conclude that in LE, conditioning on the non-negligible
probability event Devr

∗
, had A continued to behave honestly, its probability of winning is at least

|A|
n (1− 2−Θ(r)). We can also show that conditioned on Devr

∗
, A’s winning probability is at most

|A|
n /(1−2−Θ(r)) using a similar argument as in the proof of Lemma 6.9 since the argument essentially

relies on sequential maximin fairness which we have also proven earlier for LE.

The following theorem states sequential approximate CSP fairness for our real-world protocol
for a very small coalition.

Theorem 7.6 (Real-world protocol: CSP fairness for a small coalition). Suppose that the NMC
scheme is perfectly binding and that Πmpc satisfies Theorem 7.1. The real-world protocol satisfies
(1− 2−Θ(r))-sequential-CSP-fairness against a non-uniform p.p.t. coalition of size less than ηn.

Proof. Due to Theorem 4.3, it suffices to prove our sequential approximate fairness notions for LE,
and the same guarantees would extend to the real-world protocol when the IdealZK is instanatiated
with the bounded concurrent zero-knowledge proofs suggested by Pass [Pas04]. Like the proof of
Lemma 6.10, we will divide into several cases based on the first round of deviation r∗. Let r̃ be
the round in which players open the mask z. The analysis in the proof of Lemma 6.10 for all cases
where r∗ ≥ r̃ still hold for LE.

For the case r∗ ≤ r̃ − 1, we can consider the hybrid LEHybz. Essentially, at the point when
(a subset of) coalition members open their unmasked v-ids, we can use the values x, y, and z to
determine the adversarial fraction on the final committee, and conditioned on Devr

∗
, the coalition’s

winning probability is the same as the expected adversarial fraction. the analysis of Lemma 6.10
holds for the Therefore, the analysis of Lemma 6.10 still holds in LEHybz. Now, by Theorem 7.1,
the same holds for LE too.
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7.5 Proof of Our Main Theorem

Given the analysis in this section, the proof of Theorem 5.1 follows from Theorems 7.3, 7.5, and
7.6, and observing that all the cryptographic primitives we need can be instantiated from enhanced
trapdoor permutations and collision resistant hashing [Pas04,LP15,CGL+18].

8 Lower Bound on Round Complexity

In this section, we show that the folklore tournament tree protocol for leader election (described
in Appendix C) has tight round complexity Θ(log n) under certain conditions. Our protocol can
circumvent this lower bound because it relaxes both requirements.

• Perfect fairness. We prove the lower bound for protocols achieving perfect fairness, i.e., ε = 0.
Observe that for the special case ε = 0, maximin fairness is the same as CSP fairness, and
moreover, the sequential and non-sequential versions are equivalent too.

• Open immediately after commit. The tournament tree protocol follows the paradigm in which
values committed by players in one round are immediately open in the next round. In contrast,
in our protocol, values committed by players in one round are opened in later rounds, and not
immediately the next round.

Theorem 8.1 (Lower bound on round complexity). Under the above assumptions, a perfectly fair
protocol electing a leader uniformly at random from n players must take Ω(log n) rounds.

8.1 Notation

In addition to the definitions in Section 3, we introduce further concepts to facilitate our lower
bound proof.

Winning probability vector. Recall that the goal is that there is a set [n] of players who wish
to collaboratively select a leader (or winner). Our lower bound works for the more general case
when each player i ∈ [n] has some winning probability pi ∈ [0, 1] such that

∑
i∈[n] pi = 1. Indeed, it

is easy to modify the tournament tree protocol in Appendix C to support rational probabilities.
Given p ∈ [0, 1]n, its support is σ(p) := {i ∈ [n] : pi > 0} and we denote ‖p‖0 := |σ(p)|.

Commitment scheme and adversary. Our lower bound assumes an ideal concurrent non-
malleable commit scheme as described in Appendix A. Hence, no assumption on the computational
power of the adversary is needed. However, we do need that the adversary is non-uniform, i.e., it
can depend on a given protocol.

Communication model under the commit-and-immediately-open framework. One round
of the protocol is captured by a function ϕ : ×i∈[n]Ωi ∪ {⊥} → O, where Ωi is the input set for
player i and O is the set of outcomes. We consider the commit-open framework in which one round
consists of two phases.
Commit Phase. Each honest player i ∈ [n] samples an element xi from its input set Ωi uniformly at
random (which is without loss of generality), produces a commitment ci of xi, and broadcasts the
commitment ci to every other player. A coalition A of dishonest players may collude and sample
their inputs according to any arbitrary joint distribution on ΩA := ×i∈AΩi. A dishonest player
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may also broadcast anything arbitrarily, but we assume that whatever a player broadcasts can be
observed by everyone.
Open Phase. Each honest player i ∈ [n] opens the element xi that it has committed in the previous
phase (which can be verified under the commitment scheme). We assume that the adversary is
rushing, i.e., after observing all honest players’ revealed inputs, a set A of dishonest players can
decide to reveal the inputs of which subset of A.
Outcome. For each player i, if its ci in the commitment phase and its xi in the open phase can be
verified, then its input to the function ϕ is xi, otherwise its input to ϕ is ⊥. The outcome of this
round is then produced by ϕ.

Multi-round protocols for committee selection. We use P(1) to denote the set of one-
round protocols to elect a leader10. Each one round protocol is captured by some function ϕ :
×i∈[n]Ωi ∪ {⊥} → [n] in the commit-open framework. We also use the convention P(0) := [n], which
we identify with {x ∈ {0, 1}n :

∑
i∈[n] xi = 1}.

Multi-round protocols to select exactly one leader is defined recursively. Suppose for some ` ≥ 1,
the set P(`) of `-round protocols is already defined. Then, each (`+ 1)-round protocol in P(`+1) is
captured by some function ϕ : ×i∈[n]Ωi ∪ {⊥} → P(`) in the commit-open framework, where each
outcome is an `-round protocol.
Additional Assumptions. For simplicity, we also assume that if a player’s input to the protocol is ⊥
in some round, then all its inputs in subsequent rounds are also ⊥, and that player has no chance
to be a winner.

Definition 8.2 (Perfect Fairness and Tight Protocol). Given a winning probability vector ~p := (pi :
i ∈ [n]), a (multi-round) protocol among players in [n] achieves ~p with perfect fairness, if for each
i ∈ [n], even when all players in [n] \ {i} collude, provided that player i remains honest (in every
round), the probability that player i wins is at least pi.

We say that a protocol ϕ attains ~p optimistically, if for each player i, the winning probability is
pi, provided that all players are honest; in this case, we write P(ϕ) := ~p and Pi(ϕ) = pi.

We say that a protocol is tight if there is some ~p such that it achieves ~p both optimistically and
with perfect fairness; in this case, we simply say that the tight protocol achieves ~p.

Fact 8.3. For any ~p ∈ [0, 1]n such that
∑

i∈[n] pi = 1, any (multi-round) protocol ϕ electing exactly
one leader that achieves ~p with perfect fairness must be tight.

Lemma 8.4 (Tightness is Hereditary with No Aborts). Suppose ϕ is a tight multi-round protocol,
and ϕ′ is some intermediate protocol encountered after several rounds during which no player aborts.
Then, ϕ′ is also tight.

Proof. On the contrary, assume that the protocol ϕ′ is not fair with respect to P(ϕ′). This means
that there is some honest player i such that it wins with probability strictly less than Pi(ϕ′) if all
other players collude against it (under the non-uniform adversarial model).

Then, the original protocol ϕ is not tight, because all other players can collude against i as
follows. All players play honestly unless their sequence of inputs during initial rounds leads to the
intermediate protocol ϕ′, at which point they collude against i.

10In the case that all players deviate from the protocol, it might be the case that the protocol might not return any
leader. To insist on exactly one leader elected, the protocol can have some default leader, say player 1.
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8.2 Technical Proof

To simplify the notation, for each player i ∈ [n], we use Ωi to denote its set of inputs in every round.
To avoid running into non-measurable and other technical issues, we restrict to the case that Ωi is
finite, and an honest player i should sample from Ωi uniformly at random (which is without loss of
generality) in each round. One consequence is that every configuration of inputs over all the rounds
happens with non-zero probability. We prove the following statement by induction on `. Observe
that Theorem 8.1 immediately follows from the special case when all pi’s are equal.

Theorem 8.5 (Lower Bound). Suppose some tight `-round protocol selecting exactly one winner
achieves ~p ∈ [0, 1]n and

∑
i∈[n] pi = 1. Then, ‖~p‖0 ≤ 2`.

When players abort. The following definition captures the expected reward of honest users
when other users abort.

Definition 8.6 (Closure Vector). Suppose ϕ is an `-round protocol. The closure operator Pϕ is
defined on the inputs of a subset of players as follows. Suppose T ⊆ [n] and denote T := [n] \ T .
Then, for some inputs x ∈ ΩT from players in T , the closure operator Pϕ(x) ∈ [0, 1]T is defined
such that for each i ∈ T , its i-th coordinate is Pϕi (x) := maxy∈ΩT

Pi(ϕ(x, y)).
Recall that P(ϕ(x, y)) is the winning vector that the (` − 1)-round protocol ϕ(x, y) achieves

optimistically.

Lemma 8.7 (Tight Protocol and Closure Vector). Suppose ϕ is an `-round protocol that is tight,
and suppose S ⊆ [n]. Then, for any x ∈ ΩT , the (`− 1)-round protocol ϕ(x,⊥) is perfectly fair with
respect to the closure vector Pϕ(x) ∈ [0, 1]S.

Proof. Suppose there is some x0 ∈ ΩT such that ϕ(x0,⊥) is not perfectly fair with respect to
Pϕ(x0). This means that there exists some i ∈ T and y0 = arg maxy∈ΩT

Pi(ϕ(x0, y)) such that in
the (`− 1)-round protocol ϕ(x0,⊥), the probability that player i wins is less than Pi(ϕ(x0, y0)), if
all other players collude against i.

It follows that in the supposedly tight protocol ϕ, player i can be hurt by all other players
(who form a non-uniform adversary) as follows. Suppose in the first round, all players sample their
inputs according to the specified distribution. If (x0, y0) ∈ ΩT × ΩT is sampled, then the (rushing)
adversary instructs players in T to abort; subsequently, in the protocol ϕ(x0,⊥), all players other
than i will collude to make sure that i wins with probability less than Pi(ϕ(x0, y0)). This violates
the tightness of ϕ.

We prove Theorem 8.5 by induction on `.

8.2.1 Base Case

The base case ` = 0 is trivially true, because with no communication there can only be (at most)
one default winner. However, as a warmup, we will also prove the case ` = 1 (which the reader
might skip). As we shall see, the general inductive step is more complicated.

Lemma 8.8. For any ~p ∈ [0, 1]n such that
∑

i∈[n] pi = 1 and ‖p‖0 ≥ 3, there is no tight 1-round
protocol that achieves ~p.

Proof. Assume the contrary and suppose there is some tight 1-round protocol that achieves some
~p ∈ [0, 1][n] with ‖p‖0 ≥ 3. Without loss of generality, we can assume n = 3, because we can merge
extra players into one (which makes the adversary slightly weaker as the merged players can only
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abort together). Hence, we have for all i ∈ [3], pi > 0. Moreover,
∑

i∈[3] pi = 1. Since the winner is
determined after one round, we can simplify the notation and assume ϕ(·) ∈ [3].

Fix any x ∈ Ω1 and y ∈ Ω2. Because of the fairness of ϕ, PrZ←Ω3 [ϕ(x, y, Z) = 3] ≥ p3; in fact,
equality holds because ϕ is also tight. Hence, we have {3} ( ϕ(x, y,Ω3), where the proper subset
follows from p3 < 1.

Next, we argue that ϕ(x, y,Ω3) cannot contain both 1 and 2. Otherwise, there exists z and
z′ such that ϕ(x, y, z) = 1 and ϕ(x, y, z′) = 2. By Lemma 8.7, the outcome ϕ(x, y,⊥) is fair with
respect to Pϕ(x, y) = (1, 1), which means both 1 and 2 are winners. Hence, we can conclude that
ϕ(x, y,Ω3) is either {1, 3} or {2, 3}.

For the rest of the proof, we fix some x0 ∈ Ω1 and define for i ∈ {1, 2}, G(i) := {y ∈ Ω2 :
ϕ(x0, y,Ω3) = {i, 3}}. Note that Ω2 = G(1) ∪ G(2); moreover, p1, p2 > 0 implies that both G(1)

and G(2) are non-empty. For any y ∈ Ω2, define Qy := {z ∈ Ω3 : ϕ(x0, y, z) = 3}, which is
non-empty, because of fairness (to player 3, who is supposed to win with probability p3 > 0).
Observe that for any y, y′ ∈ G(1), we must have Qy = Qy′ . Otherwise, there exists z such that
ϕ(x0, y, z) = 1 and ϕ(x0, y

′, z) = 3; by Lemma 8.7, the outcome ϕ(x0,⊥, z) is fair with respect to
Pϕ(x0, z) = (1, 1), i.e., we have the impossible situation that both 1 and 3 are winners. Hence, we
write Q(1) := Qy, for all y ∈ G(1). Recall that because ϕ is tight, we must have for all y ∈ G(1),
PrZ←Ω3 [ϕ(x0, y, Z) = 3] = Pr[Z ∈ G(1)] = p3.

For any y ∈ G(2) and z ∈ Ω3 \ Q(1), we observe that ϕ(x0, y, z) = 2. Otherwise, we have
ϕ(x0, y, z) = 3 and picking any y′ ∈ G(1), the choice of z /∈ Q(1) implies that ϕ(x0, y

′, z) = 1. Again,
by Lemma 8.7, the outcome ϕ(x0,⊥, z) has the impossible situation of containing both 1 and 3 as
winners. Hence, it follows that for all y ∈ G(2), Qy ⊆ Q(1). However, since ϕ is tight, we also have
p3 = PrZ←Ω3 [Z ∈ Qy] ≤ Pr[Z ∈ Q(1)] = p3, where the last equality is from above. Hence, we must
have Qy = Q(1) for all y ∈ G(2).

This implies that for any z ∈ Q(1), for any y ∈ Ω2 = G(1) ∪ Ω2 = G(2), ϕ(x0, y, z) = 3.
This means that players 1 and 3 can collude such that player 1 first picks any x0 ∈ Ω1 and player

3 picks any z ∈ Q(1) (depending on x0) to hurt player 2 (who is supposed to win with non-zero
probability p2 > 0).

8.2.2 Inductive Step

Lemma 8.4 says that if a multi-round protocol ϕ is tight and no player aborts during the initial
rounds, then the resulting protocol is also tight. However, in the case that some players abort, then
the remaining protocol might not be tight (but will still be fair with respect to some closure vector
as stated in Lemma 8.7). This is the reason why the inductive step is tricky, because if the protocol
is not tight, then the induction hypothesis cannot be readily applied. As we shall see, the inductive
step uses the technical result in Lemma 8.9.
Notation. Given any (multi-round) protocol ϕ, we use S(ϕ) to denote the support (set of non-zero
coordinates) of the vector P(ϕ) achieved optimistically by ϕ.

Lemma 8.9 (Replacement Lemma). Suppose ϕ is a tight (multi-round) protocol and ω ∈ Ω[n] is
some input such that T = S(ϕ(ω)). Then, for any U ⊆ ([n] \ T ) ∩ S(ϕ), there exists some ω′ ∈ Ω[n]

such that every player in [n] \ U has the same input in ω and ω′, and U ⊆ S(ϕ(ω′)).
In other words, suppose U is a subset of players, each of which has a chance to win in the

protocol ϕ, but somehow all get eliminated under some input configuration ω ∈ Ω[n] in the first
round. Then, it is possible for players in U to change their inputs (while players not in U keep their
inputs as in ω) in the first round of ϕ such that all players in U will still have a chance to win after
the first round.
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Proof. For any subset U ⊆ [n], for any input vectors x ∈ Ω[n] and y ∈ ΩU , we use (x : y) ∈ Ω[n] to
denote the vector such that (x : y)i = yi if i ∈ U and xi otherwise. Moreover, we use (x : y : z) to
mean ((x : y) : z).

We prove the statement by induction on |U |.

Base case. Pick any player j ∈ ([n] \ T ) ∩ S(ϕ). Since player j is supposed to win with some
positive probability pj > 0, there must exist some xj ∈ Ωj such that j ∈ S(ϕ(ω : xj)). Otherwise,
all other players (who form a non-uniform adversary) can collude against j by choosing their inputs
according to ω, in which case j wins with zero probability.

Inductive step. Suppose that for some U ⊆ (N \ T ) ∩ S(ϕ) (where |U | ≥ 1), there exists some
xU ∈ ΩU such that U ⊆ S(ϕ(ω : xU )).

Pick any player j ∈ (N \ (T ∪ U)) ∩ S(ϕ); if there is no such player, the proof is finished.
Observe that for all x ∈ ΩU , j /∈ S(ϕ(ω : x)). Otherwise, consider the closure vector Pϕ(ωN\U )

(corresponding to players in U aborting), whose support must include both T and j. However, the
closure vector must dominate PN\U (ϕ(ω)), whose coordinates in T already sum to 1, and so the
closure vector cannot have a non-zero coordinate at j, otherwise Lemma 8.7 will be violated.

Next, fix any y ∈ Ωj . Observe that for any x ∈ ΩU , for any i ∈ U , we must have:
Pi(ϕ(ω : x)) ≥ Pi(ϕ(ω : x : y)). Otherwise, consider the closure vector Pϕ((ω : x)N\{j})

(corresponding to j aborting), which must dominate P(ϕ(ω : x)) whose j-th coordinate is 0 and
other coordinates already sum to 1 (because Lemma 8.4 says ϕ(ω : x) is also tight); therefore, the
i-th coordinate in P(ϕ(ω : x)) must also dominate Pi(ϕ(ω : x : y), otherwise Lemma 8.7 will be
violated.

Because ϕ is tight, it follows that if all players in U sample X ← ΩU honestly, we have for each
i ∈ U :

pi = E[Pi(ϕ(ω : X))] ≥ E[Pi(ϕ(ω : X : y)] = pi. This implies that for all y ∈ Ωj , all x ∈ ΩU ,
and all i ∈ U , Pi(ϕ(ω : x)) = Pi(ϕ(ω : x : y).

Finally, consider the case when all players except j play according to (ω : xU ) in the first round
of ϕ. We have just proved that no matter what input y ∈ Ωj the player j chooses, for all i ∈ U , we
have Pi(ϕ(ω : xU : y)) = Pi(ϕ(ω : xU )) > 0, which implies that U ⊆ S(ϕ(ω : xU : y)). Since j is
supposed to win with probability pj > 0 if it plays honestly, there must exist some yj ∈ Ωj such
that j ∈ S(ϕ(ω : xU : yj)).

Therefore, we have shown that U ∪ {j} ⊆ S(ϕ(ω : xU : yj)), which completes the inductive step
and also the proof.

We state the induction hypothesis formally as follows.

Induction hypothesis. Suppose for some ` ≥ 2, any vector ~p ∈ [0, 1]N satisfying
∑

i∈N pi = 1
that can be achieved by a tight (`− 1)-round protocol selecting 1 winner must satisfy ‖~p‖0 ≤ 2`−1.

Lemma 8.10 (Inductive Step). Assuming the above induction hypothesis, any vector ~p ∈ [0, 1]N

satisfying
∑

i∈N pi = 1 that can be achieved by a tight `-round protocol ϕ selecting 1 winner must
satisfy ‖~p‖0 ≤ 2`.

Proof. Assume on the contrary that there is some tight `-round protocol achieving ~p ∈ [0, 1]N such
that

∑
i∈N pi = 1 and ‖~p‖0 ≥ 2` + 1. By merging extra players as in the proof of Lemma 8.8, we

can assume that |N | = 2` + 1 such that for all i ∈ N , pi > 0.
Pick any ω ∈ Ω[n]. By the induction hypothesis, T := S(ϕ(ω)) has size at most 2`−1, because

ϕ(ω) is a tight (`− 1)-round protocol (by Lemma 8.4). We next apply Lemma 8.9 with U = N \ T ,
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which says there is some ω′ ∈ Ω[n] such that U ⊆ S(ϕ(ω′)). However, observe that ϕ(ω′) is also a

tight (`− 1)-round protocol and |U | ≥ 2`−1 + 1. This contradicts the induction hypothesis.
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A Preliminary: Publicly Verifiable Concurrent Non-Malleable Com-
mitment

A publicly verifiable commitment scheme (C,R,V) consists of a pair of interacting Turing machines
called the committer C and the receiver R respectively, and a deterministic, polynomial-time public
audit function denoted V. Suppose the commitment protocol completes successfully and produces
some transcript Γ (which includes an ordered sequence of all bits transmitted between C and R),
then V(Γ) outputs either a bit b ∈ {0, 1} to accept or ⊥ which indicates rejection. If a bit b ∈ {0, 1}
is output (and not ⊥), we call it the accepting bit. Henceforth we assume that the protocol has
two phases, a commitment phase and an opening phase, and that all algorithms receive a security
parameter κ as input. Henceforth we often use the notation 〈C∗(z),R∗(z′)〉 to indicate a (possibly
randomized) execution between C∗ that is invoked with the input z and R∗ that is invoked with the
input z′.

Perfectly correct. We require a strong notion of correctness, that is, for either b ∈ {0, 1}, and
for any κ ∈ N, if C is honest and receives the input bit b, then for any (possibly unbounded)
non-aborting R∗, with probability 1, the execution 〈C(1κ, b),R∗(1κ)〉 will successfully complete with
the accepting bit b. Note that here we assume that if the malicious receiver R∗ sends malformed
messages outside the appropriate range, it is treated the same way as aborting. This notion of
correctness implies that an honest sender can always complete the protocol correctly opening its bit,
and an arbitrarily malicious (non-aborting) receiver cannot cause it to be stuck.

Perfectly binding. We can denote the transcript as Γ := (Γ0,Γ1) ∈ {0, 1}`(κ) where the former
term denotes the transcript by the end of the commitment phase and the latter term denotes the
transcript of the opening phase, and `(·) is a fixed polynomial function in κ that denotes the maximum
length of the transcript in each phase. We require that for any κ ∈ N, any Γ0,Γ1,Γ

′
1 ∈ {0, 1}`(κ), if

V(1κ,Γ0,Γ1) = b and V(1κ,Γ0,Γ
′
1) = b′ where b, b′ ∈ {0, 1}, then it must be that b = b′. In other

words, the transcript by the end of the commitment phase determines at most one bit that can be
successfully opened (even when both the committer and receiver are corrupt and unbounded).
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Computationally hiding. Henceforth let p(1κ, v) denote the probability that R∗ outputs 1 at
the end of the commitment phase in the execution 〈C(1κ, v),R∗〉 where C runs the honest committer.
We say that a commitment scheme is computationally hiding, iff for every non-uniform p.p.t. R∗,
there exists a negligible function negl(·) such that for every κ ∈ N, for every v1, v2 ∈ {0, 1}κ, it must
hold that |p(1κ, v1)− p(1κ, v2)| ≤ negl(κ).

Concurrent non-malleability. We use the definition of concurrent non-malleability by Lin
et al. [LPV08] — note that this notion implies computationally hiding. To define concurrent
non-malleability, we will consider a man-in-the-middle adversary A that participates in m left
interactions and m right interactions: on the left it interacts with an honest committer who runs
the commitment phase of the protocol and commits to values v1, . . . , vm using identities id1, . . . , idm;
on the right A interacts with an honest receiver attempting to commit to a sequence of values
v′1, . . . , v

′
m, again using identities of its choice id′1, . . . , id

′
m. If any of the right commitments are

invalid its value is set to ⊥. For any i ∈ [m], if id′i = idj for some j ∈ [m], v′i is set to ⊥. Now, let
mitmA(1κ, v1, . . . , vm, z) denote a random variable that describes the values v′1, . . . , v

′
m and the view

of A in the above experiment — note that v′1, . . . , v
′
m are well-defined if the commitment is perfectly

binding.

Definition A.1 (Concurrent non-malleability). A commitment scheme is said to be concurrent non-
malleable (w.r.t. commitment) if for every polynomial p(·) and every non-uniform p.p.t. adversary
A that participates in at most m = p(κ) concurrent executions, there exists a polynomial-time
simulator S such that the following ensembles are computationally indistinguishable:{

mitmA(1κ, v1, . . . , vm, z)
}
v1,...,vm∈{0,1},κ∈N,z∈{0,1}∗ and

{S(1κ, z)}v1,...,vm∈{0,1},κ∈N,z∈{0,1}∗

Theorem A.2 (Publicly verifiable concurrent non-malleable commitment [LP15]). Assume that
one-way permutations exist. Then there exists a constant-round, publicly verifiable commitment
scheme that is perfectly correct, perfectly binding, and concurrent non-malleable.

Proof. Lin and Pass [LP15] construct a concurrent non-malleable commitment scheme starting from
any non-interactive or 2-round commitment scheme. If we instantiate this commitment with the
perfectly-correct and perfectly-binding non-interactive commitment scheme of Blum [Blu83] based
on one-way permutations, then the resulting protocol will inherit these properties.

B Additional Details Regarding Sequential Approximate Fairness

B.1 Equivalent Formulation of Sequential Approximate Fairness

For our sequential approximate fairness proofs, we will check round by round and argue that the
adversary has no ε incentive to deviate in any round. We show that Definitions 3.1 and 3.2 are
equivalent to an alternative version where we essentially rule out the incentive for deviation round
by round.

Henceforth given a coalition A ⊂ [n] playing the strategy S, we use the notation viewrA(S)(tr)

(often abbreviated as viewrA(tr)) to denote the coalition’s view in the protocol up to the beginning
of round r, after having observed honest players’s round-r messages.

Fix a coalition A and its strategy S. Let Devr,A(S)(tr) denote the event that A(S) first deviates
in round r given a sample path tr which consists of all players’ random coins. We sometimes write
Devr when A(S) is clear from the context.
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Lemma B.1 (An equivalent formulation of sequential approximate fairness). Let ε ∈ (0, 1). A
leader election protocol Π achieves (1− ε)-sequential-CSP-fairness against a (non-uniform p.p.t.)
coalition A ⊂ [n] iff there exists a negligible function negl(·), s.t. at least one of the following holds
for every r:

• Pr[ExecA(S) : Devr,A(S)] ≤ negl(κ);

• Pr[ExecA(S) : WA|Devr,A(S)] ≤ 1
1−ε Pr[ExecA(Π) : WA|Devr,A(S)] + negl(κ).

Note that a similar equivalence lemma holds for maximin fairness too, and the proof is almost
identical. Below, we only prove the equivalence for CSP-fairness.

Proof. The =⇒ direction is obvious. We now prove the ⇐= direction. Observe that for any r, for
any κ, Definition 3.1 says that at least one of the following holds for some negligible function negl(·):

1. PrA(S)[Dev
r] ≤ negl(κ),

2. PrA(S)

[
WA

∣∣ Devr] ≤ 1
1−ε · PrA(Π)

[
WA

∣∣ Devr]+ negl(κ), which is equivalent to:

EA(S)

[
WA · Devr

]
≤ 1

1− ε
·EA(Π)

[
WA · Devr

]
+ negl(κ) · Pr

A(S)
[Devr] (5)

Note that Dev can be partitioned into the disjoint events Dev1,Dev2, . . .. Then, summing (5)
over all r, we have

EA(S)

[
WA · Dev

]
≤ 1

1− ε
·EA(Π)

[
WA · Dev

]
+ negl′(κ)

Therefore, either Pr[Dev] is negligible; or if not, it must be that PrA(S)

[
WA

∣∣ Dev] ≤ 1
1−ε ·

PrA(Π)

[
WA

∣∣ Dev]+ negl′′(κ), as required. In the above, negl′ and negl′′ denote different negligible
functions.

B.2 Comparison with Rational Protocol Design

Garay et al. [GKM+13,GKTZ15,GTZ15] suggest a the Rational Protocol Design (RPD) paradigm
for studying game-theoretic cryptographic protocols. In their work, they model a meta-game, i.e., a
Stackelberg game between the protocol designer and an attacker: the designer first picks a protocol
Π, then the attacker can design which coalition to corrupt and its attack strategy after examining
this protocol Π. They suggest a solution concept that achieves a subgame perfect equilibrium in
this Stackelberg meta-game. The existing works on RPD [GKM+13, GKTZ15, GTZ15] consider
MPC-style protocols where the adversary’s utility comes from breaking either privacy or correctness.

In comparison with the RPD line of work, we consider a different type of protocol where the
most natural utility function is very different. Nonetheless, it is interesting to consider whether we
can think of our notion as a meta-game between the protocol designer and the attacker too. We
therefore slightly modify the RPD definitions by 1) changing the utility definition; and 2) allowing
a multiplicative version of approximation. We show that our non-sequential game-theoretic fairness
notions can be interpretted in this modified RPD framework. However, as mentioned in our work,
our new, sequential approximate notions provide a better solution concept when approximation is
necessary.

For completeness, we describe the slightly modified RPD paradigm in our leader election context.
Consider the following Stackelberg meta-game. The protocol designer first chooses some protocol
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Π ∈ ITMn for the leader election problem where ITMn denote the space of all possible n-party
p.p.t. protocols that satisfy the correctness definition specified in Section 3, i.e., under an all-honest
execution, every player is equally likely to get elected. The designer then gives the description of
the protocol Π to the adversary who controls a coalition A ⊂ [n], and is additionally targeting some
individual i /∈ [n] in the case of maximin-fair utility. The adversary now picks a (non-uniform p.p.t.)
strategy S(Π). We care about these two types of utilities:

• Maximin-fair utility. The designer’s utility uD(Π, S) is defined to be the player i’s probability of
being elected in the protocol Π when playing against the coalition A adopting the strategy S;
and the adversary’s utility uA(Π, S) = −uD(Π, S), i.e., the game is zero-sum.

• CSP-fair utility. The adversary’s utility uA(Π, S) is the probability that some member of
A is elected leader when the coalition A adopts the strategy S, and the designer’s utility
uD(Π, S) := −uA(Π, S).

Definition B.2 (Subgame perfect equilibrium). Fix some A ⊂ [n] and possibly some victim i /∈ A
in the case of maximin-fair utility. Let S be a mapping from efficient protocols to non-uniform p.p.t.
strategies. A pair of actions by the designer/adversary (Π, S(Π)) achieves an ε-subgame-perfect
equilibrium in the above Stackelberg meta-game, iff the following hold:

1. for any (correct) protocol Π′ ∈ ITMn, uD(Π′, S(Π′)) ≤ uD(Π, S(Π)) + ε · |uD(Π, S(Π))|; and

2. for any S̃, uA(Π, S̃(Π)) ≤ uA(Π, S(Π)) + ε · |uA(Π, S(Π))|.

Henceforth, we use SΠ(Π) (or SΠ for short) to denote the trivial strategy where the coalition A
simply acts honestly according to the prescribed protocol Π.

The following simple fact proves an equivalence of our non-sequential approximate fairness
notions and the above RPD-inspired formulation. As mentioned earlier in Sections 1 and 3, we
believe that our sequential approximate notion provides a better solution concept for defining
approximate game-theoretic fairness in the context of multi-party protocols.

Fact B.3 (Relationship to RPD). A (correct) leader election protocol Π satisfies non-sequential
(1− ε)-maximin-fairness against the coalition A ⊆ [n], iff for any i /∈ A, (Π, SΠ) is an ε-subgame-
perfect equilibrium the above Stackelberg meta-game (fixing A and i), for the maximin-fair utility.

Similarly, if a (correct) leader election protocol Π satisfies non-sequential (1− ε)-CSP-fairness
against the coalition A ⊆ [n], then (Π, SΠ) is a 2ε-subgame-perfect equilibrium the above Stackelberg
meta-game (fixing A and i), for the CSP-fair utility. Further, given a (correct) leader election
protocol Π, if (Π, SΠ) is an ε-subgame-perfect equilibrium the above Stackelberg meta-game (fixing A
and i), for the CSP-fair utility, then Π satisfies non-sequential (1− ε)-CSP-fairness.

Proof. We prove it for maximin fairness and CSP-fairness, respectively.

Maximin fairness. First, consider a leader election protocol Π that is (1− ε)-maximin-fair. We
want to prove that (Π, SΠ) is an ε-subgame-perfect equilibrium of the Stackelberg meta-game w.r.t.
the maximin-fair utility. The first condition, i.e., ∀Π′ ∈ ITMn, uD(Π′, SΠ′) ≤ uD(Π, SΠ) + ε ·
|uD(Π, SΠ)|, follows directly from the correctness definition of a leader election protocol. We now
prove the second condition, i.e., for any (non-uniform p.p.t.) strategy S̃, uA(Π, S̃) ≤ uA(Π, SΠ) + ε ·
|uA(Π, SΠ)|. Recall that the adversary’s utility in this case is 0 or negative. Therefore, flipping the
sign on both sides of the inequality, and observing that the Stackelberg meta-game is zero-sum, it
suffices to prove that for any (non-uniform p.p.t.) strategy S̃, uD(Π, S̃) ≥ uD(Π, SΠ)−ε·uD(Π, SΠ) =
(1− ε) · uD(Π, SΠ). This follows directly from non-sequential (1− ε)-maximin fairness.
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Next, suppose that no matter who the targeted victim i /∈ A is, (Π, SΠ) is a ε-subgame-perfect
equilibrium of the Stackelberg meta-game w.r.t. the maximin-fair utility. This means that for any
(non-uniform p.p.t.) strategy S̃, uD(Π, S̃) ≥ uD(Π, SΠ)− ε · uD(Π, SΠ) = (1− ε) · uD(Π, SΠ), which
is exactly the requirement of non-sequential (1− ε)-maximin fairness.

CSP fairness. First, consider a leader election protocol Π that is (1− ε)-CSP-fair. We want to
prove that no matter who the targeted victim i /∈ A is, (Π, SΠ) is a 2ε-subgame-perfect equilibrium of
the Stackelberg meta-game w.r.t. the CSP-fair utility. As before, the first condition follows directly
from the correctness definition of a leader election protocol. We therefore focus on proving the second
condition, i.e., for any (non-uniform p.p.t.) strategy S̃, uA(Π, S̃) ≤ uA(Π, SΠ) + 2ε · |uA(Π, SΠ)|.
In this case, the adversary’s utility non-negative. Therefore, it suffices to prove that for any
(non-uniform p.p.t.) strategy S̃, uA(Π, S̃) ≤ uA(Π, SΠ) + 2ε · uA(Π, SΠ) = (1 + 2ε) · uA(Π, SΠ). This
follows directly from non-sequential (1 − ε)-maximin fairness which guarantees that uA(Π, S̃) ≤

1
1−ε ·uA(Π, SΠ) < (1+2ε)·uA(Π, SΠ). Note that the factor of 2 is because we define our multiplicative

factor as 1
1−ε

11.

Next, suppose that (Π, SΠ) is an ε-subgame-perfect equilibrium of the Stackelberg meta-game
w.r.t. the CSP-fair utility. This means that for any (non-uniform p.p.t.) strategy S̃, uA(Π, S̃) ≤
uA(Π, SΠ) + ε · uA(Π, SΠ) ≤ 1

1−ε · uA(Π, SΠ) which is exactly the requirement of non-sequential
(1− ε)-CSP fairness.

B.3 Deferred Proofs from Section 3

Fact B.4 (Restatement of Fact 3.3). Let ε(n, κ) ∈ (0, 1) be a non-negligible function. If a leader
election protocol satisfies (1− ε)-sequential-CSP-fairness (or (1− ε)-sequential-maximin-fairness
resp.) against the coalition A ⊆ [n], then for ε′(n, κ) = ε(n, κ) + negl(κ) where negl(·) is some
negligible function, then, the same protocol also satisfies non-sequential (1− ε′)-CSP-fairness (or
non-sequential (1− ε′)-maximin-fairness resp.) against A.

Proof. We prove it for CSP-fairness and the proof for maximin fairness is essentially the same.
Suppose S is some strategy by the coalition and let Dev be the corresponding deviation event. We
consider two cases. We use shorthand PrS [·] := Pr[ExecA(S)(1κ) : ·] and PrΠ[·] := Pr[ExecA(Π)(1κ) : ·].

Observe that we have PrS [Dev] = PrΠ[Dev] and PrS [WA · Dev] = PrΠ[WA · Dev].

• Case Pr[Dev] ≤ negl(κ). Then, we have PrS [WA] = PrS [WA ·Dev] + PrS [WA ·Dev] ≤ negl(κ) +
PrΠ[WA].

• Case Pr[Dev] is non-negligible in κ. In this case, our sequential CSP-fairness definition
implies that PrS [WA|Dev] ≤ 1

1−ε · PrΠ[WA|Dev] + negl(κ).

Hence, we have

Pr
S

[WA] = Pr
S

[WA · Dev] + Pr
S

[WA · Dev]

≤ 1

1− ε
· Pr

Π
[WA · Dev] + negl(κ) · Pr[Dev] + Pr

Π
[WA · Dev]

≤ 1

1− ε
· Pr

Π
[WA] + negl(κ)

11We choose to use this style because it is more natural if 1-fair is perfectly fair and 0-fair means not fair at all.

44



In either case, by choosing ε′ := ε+ negl′(κ) for some suitable negligible function negl′(·), we can
conclude that PrS [WA] ≤ 1

1−ε′ · PrΠ[WA], where we have used the fact that PrΠ[WA] ≥ 1
n .

Fact B.5 (Restatement of Fact 3.4). If a protocol Π satisfies (1 − negl(κ))-CSP-fairness (or
(1 − negl(κ))-maximin-fairness resp.) against the coalition A ⊂ [n] for some negligible function
negl(·), then Π satisfies (1− negl′(κ))-sequential-CSP-fairness (or (1− negl(κ))-sequential-maximin-
fairness resp.) against A for some negligible function negl′(·).

Proof. As in Fact 3.3, we prove the part concerning CSP-fairness, and the maximin-fairness part is
almost identical. Suppose the protocol Π does not satisfy the sequential definition. This means that
the coalition has a strategy S such that the deviation probability p := PrS [Dev] is non-negligible,
and moreover for any ρ1 and ρ2 that are negligible, we have PrS [WA|Dev] ≥ 1

1−ρ1
PrΠ[WA|Dev] +ρ2.

Therefore, we have

Pr
S

[WA] = Pr
S

[WA|Dev] · Pr[Dev] + Pr
S

[WA|Dev] · Pr[Dev]

≥
(

1

1− ρ1
· Pr

Π
[WA|Dev] + ρ2

)
· Pr[Dev] + Pr

Π
[WA|Dev] · Pr[Dev]

≥ Pr
Π

[WA|Dev] · Pr
Π

[Dev] + Pr
Π

[WA|Dev] · Pr
Π

[Dev] + ρ2 · Pr[Dev]

≥ Pr
Π

[WA] + ρ2 · Pr[Dev]

Since the above holds for any negligible function ρ2, it means that there exists some non-negligible ξ,
such that PrS [WA] ≥ PrΠ[WA] + ξ ·Pr[Dev]. This means the protocol Π is not (1−negl(·))-CSP-fair
for any negligible negl(·).

C Tournament Tree Protocol

In this section, we provide details on the well-known tournament tree protocol. Whenever appropriate,
we state the security of our protocols assuming that the commitment scheme adopted is the ideal
functionality Fcomm. For all lemmas stated, the same guarantees are still respected (except for a
negligibly small additive loss in security) if we instead instantiate the commitment with a publicly
verifiable, non-malleable commitment scheme as defined in Section A. We will illustrate how to
achieve this using a hybrid argument (e.g., in the proof of of Theorem C.4).

C.1 Duel Protocol

First, we extend the two-party Blum coin toss protocol [Blu83] (henceforth also called the duel
protocol) to one that supports rational distributions. In particular, for i ∈ [2], we have ki ∈ Z>0

such that player i wins with probability ki
k1+k2

.
To achieve this, we can modify Blum’s coin toss as follows:

• Denote k = k1 + k2 and ` := dlog2 ke. First, each player i ∈ [2] commits to an `-bit random
string that denotes some si ∈ Zk.

• Next, each player i opens their commitment and reveals si. If s1+s2 mod k ∈ {0, 1, . . . , k1−1},
then the player 1 wins; else, player 2 wins.

If a player aborts or fails to correctly open the commitment that reveals an element in Zk,
then it is treated as having forfeited and the other player wins.
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It is easy to see that the following fact holds.

Fact C.1. Suppose that in the duel protocol, the commitment scheme is instantiated with the perfect
non-malleable commitment Fcomm functionality, then for each i ∈ [2], if player i plays honestly, then
it wins with probability at least ki

k1+k2
.

C.2 Tournament Tree Protocol for Leader Election

Recall that the tournament tree protocol can elect a leader from n players. We want that in an
honest execution, every player gets elected with probability 1

n .
We use Elect(S) to denote the protocol that elects a leader from the set S of players, where

|S| = n:

Elect(S):

Assume: S is a set of size n ≥ 1.

• If n = 1, simply return single player in S; else continue with the following.

• Suppose that the players in S are arranged in a lexicographical order by their respective
identities. Denote n1 :=

⌊
n
2

⌋
and n2 := dn2 e. Let S1 be the first n1 players in S and

S2 := S \ S1.

• In parallel, for i ∈ [2], run Elect(Si) to elect Pi ∈ Si.

• The final winner is determined by the duel protocol between P1 and P2 such that for i ∈ [2],
Pi wins with probability ni

n .

Fact C.2. The above protocol finishes in O(log n) number of rounds if the commitment protocol
adopted is constant round; and moreover, in an honest execution, every player has an equal chance
of being elected leader.

Remark C.3. Obviously, Theorem C.4 holds if the commitment is instantiated with an idealized
commitment functionality Fcomm: for a player to commit a value, it simply sends it to Fcomm; for
the committer to open the value, it sends “open” to Fcomm, and Fcomm sends the committed value
to everyone.

The hybrid argument deals with the case when Fcomm is replaced with a real commitment
scheme in Appendix A.

Theorem C.4 (Game theoretic characterization of the tournament-tree protocol). The above
generalized tournament-tree protocol, when instantiated with a suitable publicly verifiable, non-
malleable commitment scheme (see Section A), satisfies (1− negl(κ))-sequential-cooperative-strategy-
proofness and (1 − negl(κ))-sequential-maximin-fairness against non-uniform p.p.t. coalitions of
arbitrarily sizes.

Proof. Because of Lemma B.1, we fix some arbitrary round r and consider a trace for which A’s
strategy S wants to deviate at the beginning of round r.

We show that conditioned on any such trace till the beginning of round r, A can only negligibly
increase its probability of winning or harm any individual. Observe that the remaining protocol
corresponds to a tree, where each leaf corresponds to a player that still has a chance to become the
leader and each internal node corresponds to an instance of some duel protocol (whose winning
probabilities are already specified).
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Suppose there are m internal nodes and we label them using any breadth-first order from the
root, i.e., the root (which is the final duel that determines the final winner) receives label 1, and some
internal node furthest away from the root receives label m. Recall that each node i corresponds to
some duel protocol between players with some winning probabilities pi and qi such that pi + qi = 1.

Fix such a trace till the beginning of round r, and consider a continuation of the randomized
execution based on the current trace tr . We now define a sequence of hybrid experiments:

• Let Hyb0 denote an execution of the real-world protocol continuing from this round.

• For i ∈ {1, 2, . . . ,m}, Hybi is almost identical to Hybi−1, except that in node i of the tournament
tree, we instead perform the following:

– Let viewA be the internal state of the adversarial algorithm representing the corrupt
coalition right before players start the duel protocol corresponding to node i of the tree.
We now call the simulator of the non-malleable commitment scheme (see Section A)
feeding it viewA. Now the simulator outputs an updated state view′A (including the
committed values).

– For the duel protocol at node i, we do the following to replace the real protocol:

1. if a corrupt player plays with an honest player, then we use the honest player’s
opening and the committed value output by the simulator to determine the winner
(note that this implicitly assumes that the corrupt player does not abort);

2. if both players are honest, the winner is determined by the honest protocol between
the two players;

3. if both players are corrupt, an arbitrary one can be the winner.

Notice that in Hybm, every time a corrupt player in A duels with an honest player, a simulator
is called to produce the commitment; and therefore the committed value must be independent of
the honest player’s committed value. Thus, in Hybm, every time a corrupt player in A duels with an
honest player, the honest player survives with at least the probability indicated by the duel protocol.

This means that in Hybm regardless of A’s strategy, any honest player has at least the correct
probability of winning, and the coalition A has no unfair advantage of winning.

Let pji denote the probability that player j wins in Hybi, and let pAi denote the probability
that someone in A wins in Hybi. Now, due to the security of the non-malleable commitment
scheme, in any pair of adjacent hybrid experiments Hybi−1 and Hybi, it follows that for any

j /∈ A, pji−1 ≥ pji − negl(κ), and pAi−1 ≤ pAi + negl(κ). The theorem now follows through a hybrid
argument.
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