Bank Risk-Taking and Monetary Policy Transmission: Evidence from China¹

Xiaoming Li¹ Zheng Liu² Yuchao Peng³ Zhiwei Xu⁴

¹Shanghai Advanced Institute of Finance

²Federal Reserve Bank of San Francisco

³Central University of Finance and Economics

⁴Shanghai Jiao Tong University

ABFER, June 2, 2021

¹The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System

- Monetary policy easing following global financial crisis and COVID-19 raised concerns about risk-taking and financial stability (Stein, 2013; Bernanke, 2020)
- Theory: ambiguous link b/n policy easing and bank risk-taking
 - Portfolio choice theory: low interest rates encourage risk-taking
 - Risk-shifting theory (Stiglitz and Weiss, 1981): low interest rates reduce bank funding costs, alleviating agency problem and reducing risk-taking
- In data, effects of both portfolio choice and risk shifting are present: hard to identify risk-taking channel

The goal

- Examine empirical link between bank risk-taking and monetary policy using micro-level Chinese data
 - Bank loans primary source of firm financing in China \to changes in bank regulations important for monetary policy transmission
- Significant tightening of capital regulations in 2013 when China implemented Basel III
 - Raised minimum capital adequacy ratio (CAR) from 8% to 10.5%
 - New IRB approach raised sensitivity of risk-weighted assets to loan risks
- Use regulation change in 2013 to estimate effects of monetary policy shocks on bank risk taking
 - Guided by theory, use diff-in-diff identification
 - Exploit cross-sectional differences in lending behaviors b/n high-risk and low-risk bank branches before and after the new regulations

- New regulations significantly reduced bank risk-taking, both on average and conditional on monetary policy easing
 - To reduce asset risk, branches increased share of lending to SOEs, which are *de jure* safe borrowers
- Declines in risk-taking driven mainly by changes in risk weighting
- Risk-weighting mechanism implies tradeoff for monetary policy
 - Lessens financial-stability concerns associated with policy easing
 - But exacerbates capital misallocation, reducing TFP

- Representative bank has endowment *e*, takes deposit *d* at risk-free rate *r*, and lends *k* to finance risky project with stochastic return *R*
- Project return $R \in [\underline{R}(\sigma, \Delta), \overline{R}(\sigma, \Delta)]$ drawn from uniform distribution:

$$\mathbf{E}\left[R
ight] = \left(\phi_1 - \phi_2\sigma
ight)\sigma$$
, $\mathbf{Var}\left[R
ight] = rac{1}{12}\left(\sigma\Delta
ight)^2$,

where $\sigma > 1$ is aggregate risk and $\Delta \ge 1$ is bank-specific idiosyncratic risk (e.g., risks related to locations or customers)

Bank's optimizing decisions

• Under limited liabilities, a bank solves

$$V = \max_{\{\sigma,d\}} \int_{\underline{R}(\sigma,\Delta)}^{\underline{R}(\sigma,\Delta)} \max \{Rk - rd, 0\} d\mathbf{F}(R),$$

subject to flow-of-funds constraint

$$k = e + d$$

and CAR constraint

$$\frac{e}{\xi\left(\sigma\Delta\right)k} \geq \tilde{\psi}.$$

where $\xi(\sigma\Delta) = \mu \left(\sigma\Delta\right)^{
ho}$ is the risk-weighting function with $ho \in (0,1)$

- Raising regulatory risk-weighting sensitivity (ρ) reduces bank risk-taking (σ)
- (2) Increasing ρ also reduces bank risk-taking in response to monetary policy easing
- Banks facing higher idiosyncratic risks (Δ) respond more to changes in regulation (ρ), both on average and conditional on monetary policy shocks

These theoretical predictions help guide empirical identification

- Confidential loan-level data from one of the "Big Five" commercial banks in China from 2008:Q1 to 2017:Q4
 - Data contain detailed information on each individual loan: quantity, price, credit rating, etc.
 - Focus on firm loans
- Merge loan data with firm-level data from ASIF to obtain controls for borrower characteristics
 - ASIF covers all above-scale manufacturing firms from 1998 to 2013, with about 4mn firm-year observations
 - Detailed information on individual firms: revenue, value-added, ownership type, employment, capital, balance sheets
- Merged data contain 400,000 unique firm-loan pairs, accounting for half of total loans issued to manufacturing firms by the bank

→ Ξ →

 $\begin{aligned} \textit{SOE}_{\textit{ijt}} &= \alpha \times \textit{RiskH}_{j} \times \textit{Post}_{y} + \beta \times \textit{RiskH}_{j} \times \textit{Post}_{y} \times \textit{MP}_{t} \\ &+ \gamma \times \textit{RiskH}_{j} \times \textit{MP}_{t} + \theta \times \textit{X}_{i} \times \mu_{y} + \eta_{j} + \mu_{t} + \epsilon_{\textit{ijt}}. \end{aligned}$

- Dependent variable: dummy $SOE_{ijt} = 1$ if loan *i* is extended to SOE by branch *j* in quarter *t*
 - All else equal, SOE loans receive high credit ratings: SOE credit rating
- $Post_y$: post-Basel III dummy, equal to 1 iff year ≥ 2013
- MP_t : monetary policy shock estimated by Chen, Ren, and Zha (2018)
- *RiskH_j*: risk history of branch *j*, equals 1 iff pre-2013 average NPL ratio above median
- X_i : initial controls of firm *i*: size, age, leverage, and ROA
- Fixed effects: year (μ_y) , quarter (μ_t) , and branch/location (η_j)

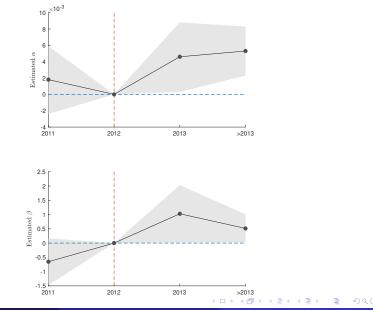
 $\begin{aligned} \textit{SOE}_{\textit{ijt}} &= \alpha \times \textit{RiskH}_{j} \times \textit{Post}_{y} + \beta \times \textit{RiskH}_{j} \times \textit{Post}_{y} \times \textit{MP}_{t} \\ &+ \gamma \times \textit{RiskH}_{j} \times \textit{MP}_{t} + \theta \times \textit{X}_{i} \times \mu_{y} + \eta_{j} + \mu_{t} + \epsilon_{\textit{ijt}} \end{aligned}$

- Theory implies $\alpha > 0$
 - New regulations increased risk-weighting sensitivity, reducing risk-taking Prop 1
 - High-risk branches more responsive to regulation changes Prop 4

 $\begin{aligned} \textit{SOE}_{\textit{ijt}} &= \alpha \times \textit{RiskH}_{j} \times \textit{Post}_{y} + \beta \times \textit{RiskH}_{j} \times \textit{Post}_{y} \times \textit{MP}_{t} \\ &+ \gamma \times \textit{RiskH}_{j} \times \textit{MP}_{t} + \theta \times \textit{X}_{i} \times \mu_{y} + \eta_{j} + \mu_{t} + \epsilon_{\textit{ijt}} \end{aligned}$

- Theory implies $\alpha > 0$
 - New regulations increased risk-weighting sensitivity, reducing risk-taking Prop 1
 - High-risk branches more responsive to regulation changes Prop 4
- Theory also implies $\beta > 0$
 - Monetary policy expansion boosts bank leverage; under binding CAR, bank reduces loan risks (Prop 2)
 - By raising sensitivity to risk weighting, new regulations amplify reductions in risk-taking (Prop 3)
 - Amplification effects are stronger for high-risk branches Prop 4

June 2, 2021 10 / 28


< □ > < □ > < □ > < □ > < □ > < □ >

Effects of regulations on bank risk-taking

	(1)	(0)	(0)	(4)
SOE _{i,i,t}	(1) OLS	(2) Probit	(3) OLS	(4) Probit
$RiskH_i \times MP_t \times Post_v$	0.535**	0.452**	1.221***	0.929***
, - ,	(0.215)	(0.184)	(0.354)	(0.293)
$RiskH_i imes Post_y$	0.00712***	0.0058***	0.00411*	0.0025
2	(0.00149)	(0.0014)	(0.00213)	(0.0021)
$RiskH_j imesMP_t$	-0.0185	-0.0598	6.137**	4.245*
	(0.172)	(0.125)	(2.415)	(2.287)
$\textit{RiskH}_{j} imes \textit{MP}_{t} imes \textit{CAR}_{y-1}$			-0.487**	-0.339*
			(0.192)	(0.179)
$\mathit{RiskH_j} imes \mathit{CAR_{y-1}}$			0.00192^{*}	0.0021**
			(0.00108)	(0.0011)
Branch FE	yes	yes	yes	yes
Year-quarter FE	yes	yes	yes	yes
Initial controls $ imes$ year FE	yes	yes	yes	yes
R ²	0.353		0.353	
Observations	333,500	315,382	333,500	315,382

 \bullet One-std MP shock increases prob of SOE lending by up to 14%

Parallel trends

Li, Liu, Peng, and Xu

Bank Risk-Taking and Monetary Policy

June 2, 2021 12 / 2

Changes in risk-taking reflect loan supply decisions, not demand factors

	(1)	(2)	(3)	(4)
	LoanRate _{i,j,t}	RateGap _{i,j,t}	LoanRate _{i,j,t}	RáteGap _{i,j,t}
$RiskH_j imes SOE_{i,t} imes MP_t imes Post_y$	-18.86**	-2.779**	-19.31**	-2.878**
	(9.169)	(1.407)	(9.233)	(1.435)
$RiskH_i imes MP_t imes Post_v$	15.58**	2.239*	15.70* [*]	2.336*
	(6.309)	(1.174)	(6.467)	(1.208)
$RiskH_i \times SOE_{i,t} \times MP_t$	7.960*́	1.597**	8.407*´	1.609**
	(4.750)	(0.673)	(4.724)	(0.674)
$RiskH_i \times MP_t$	-15.34***	-2.186***	-15.33***	-2.180***
	(2.699)	(0.414)	(2.684)	(0.414)
$RiskH_i imes SOE_{i,t} imes Post_v$	-0.0115	Ò.00867	-0.0169	Ò.00806
	(0.0885)	(0.0142)	(0.0881)	(0.0143)
$RiskH_i \times SOE_{i,t}$	-0.281***	-0.0387***	-0.273***	-0.0381***
	(0.0541)	(0.00839)	(0.0538)	(0.00836)
$RiskH_i imes Post_v$	0.124	0.0235*	0.123	0.0238*
	(0.0781)	(0.0133)	(0.0780)	(0.0133)
In(<i>LoanAmount</i> _{i,i,t})			0.0102* [*] **	0.001** [*]
			(0.0025)	(0.0003)
			. ,	. ,
Observations	15,552	15,552	15,470	15,470
R-squared	0.966	0.937	0.966	0.937
Branch FE	yes	yes	yes	yes
Firm-Year-Quater FE	yes	yes	yes	yes

Empirical results are robust

- Control for impact of interest rate liberalization
- Control for effects of anti-corruption campaign
- Placebo test: deleveraging policy
- Including more controls
- A battery of other variations:
 - Clustering standard errors
 - Alternative classifications of SOE
 - Alternative measures of CAR
 - Using total social financing in place of M2
 - Using direct measures of IRB coverage instead of post-2013 dummy

see the Appendix

MP easing increases SOE lending and reduces TFP

			(-)	<i>,</i> , , , , , , , , , , , , , , , , , ,
	(1)	(2)	(3)	(4)
	TFP Growth	TFP Growth	TFP Growth	TFP Growth
$MP_t \times Post_v$	-9.688***	-8.760***	-8.169***	
t y	(1.197)	(1.191)	(1.352)	
$MP_t \times Post_v \times RiskH_p$	()	()	-4.550**	-4.077*
in the cody is then ip			(1.850)	(2.055)
Post _v	-0.0298***	-0.0351***	-0.0387***	(2.000)
rosty	(0.00589)	(0.00631)	(0.00679)	
MP+	2.847***	3.350***	2.254**	
ivii t	(0.988)	(0.975)	(0.930)	
Deat & BiakH	(0.900)	(0.975)	0.0274**	0.0292**
$Post_y imes RiskH_p$				
			(0.0129)	(0.0107)
$MP_t imes RiskH_p$			8.189***	8.297***
			(1.792)	(1.638)
Year FE	no	no	no	yes
Controls	no	yes	yes	yes
Province FE	yes	yes	yes	yes
Observations	300	287	287	287
R ²	0.288	0.375	0.391	0.557

 $\bullet~$ SOEs less productive than private firms (Hsieh-Klenow, 2009) \rightarrow increasing SOE lending reduces TFP

• Under new Basel regulations after 2013, monetary policy easing reduced TFP growth, esp. for provinces with high-risk bank branches

June 2, 2021 15 / 28

• • • • • • • • • • • •

- We present robust evidence that Basel III regulations in China reduced bank risk-taking, both on average and conditional on monetary policy expansions.
 - Diff-in-diff identification guided by theory: banks of different risk types respond to regulations differently
- Under new regulations, banks reduced risk-taking by shifting lending to SOEs, leading to capital misallocation that reduces TFP
 - Reduction in risk-taking quantitatively important: one std positive shock to monetary policy increased prob of SOE lending by up to 14%
- Broader implications: under industrial policy that favors inefficient firms (e.g., SOEs), capital regulations can lead to tradeoff between financial stability and credit misallocation

• • = • • =

Appendix

Go back

Proposition 1

Given regulations, optimal project risk σ increases with idiosyncratic risk Δ :

 $\frac{\partial \sigma}{\partial \Delta} > 0$

Given Δ , optimal project risk σ decreases with both required capitalization (ψ) and the sensitivity of risk-weighting (ρ) :

$$rac{\partial\sigma}{\partial\psi} < 0, \quad rac{\partial\sigma}{\partial
ho} < 0$$

Monetary policy easing raises leverage and reduces risk-taking

Go back

Proposition 2

Given CAR constraints, banks response to a decline in the risk-free rate r by raising leverage $(\lambda = \frac{k}{e})$ and reducing project risk (σ):

$$rac{\partial\lambda}{\partial r} < 0, \quad rac{\partial\sigma}{\partial r} > 0.$$

CAR regulations affect how bank risk-taking responds to monetary policy shock

Go back

Proposition 3

In special case with homogeneous banks (identical Δ), sensitivity of risk-taking to monetary policy shock $\left(\frac{\partial\sigma}{\partial r}\right)$ decreases with ψ but increases with ρ :

$$rac{\partial^2 \sigma}{\partial r \partial \psi} < 0, \quad rac{\partial^2 \sigma}{\partial r \partial
ho} > 0.$$

- Raising $\psi \rightarrow$ better capitalization \rightarrow policy easing still raises bank leverage and reduces risk-taking, but to lesser extent
- Raising $\rho \to {\rm CAR}$ more sensitive to risks \to policy easing leads to larger reduction in risk-taking

Heterogeneous risk-taking responses to CAR regulations (idiosyncratic risks important)

Go back

Proposition 4

Following an increase in ρ , high-risk banks (high Δ) reduces risk-taking more aggressively, both on average...

$$rac{\partial^2 \sigma}{\partial
ho \partial \Delta} < 0$$

... and conditional on monetary policy easing

$$\frac{\partial}{\partial \Delta} \left[\frac{\partial \sigma}{\partial r} |_{\rho=1} - \frac{\partial \sigma}{\partial r} |_{\rho=0} \right] > 0$$

Go back

- SOEs enjoy preferential credit access and government guarantees
- SOE loans, both in numbers and amounts, account for bulk of high-quality (AA or higher) loans

Credit Rating	(1)	(2)	(3)	(4)
	OLS	Ordered Probit	Ordered Probit	Ordered Probit
SOE loan	1.361***	0.884***	0.374***	0.509***
	(0.028)	(0.008)	(0.011)	(0.012)
Branch FE	yes	no	no	yes
Year-quarter FE	yes	no	yes	yes
Initial Controls × year FE	yes	no	yes	yes
R ² Observations	0.262 241,688	264,213	241,688	241,688

	(1)	(2)	(3)	(4)	(5)
Variables	Low-risk	High-risk	Mean	t-statistic	<i>p</i> -value
	group	group	difference		
SOE loan share	0.316	0.349	-0.033	-0.9256	0.355
AAA&AA+ loan share	0.097	0.068	0.028	1.3638	0.174
Small firm loan share	0.236	0.209	0.028	1.212	0.226
Averaged loan rate (%)	6.357	6.403	-0.046	-1.1523	0.250
log(Interest Income)	17.299	17.308	-0.009	-0.0589	0.953
log(loan amount)	20.057	20.049	0.008	0.0533	0.958
Loan-to-firm asset ratio	0.142	0.130	0.012	0.5455	0.586

Controlling for interest-rate liberalization

Go back

	(1)	(2)
SOE _{i,j,t}	OLS	Probit
$RiskH_i imes MP_t imes Post_v$	0.708***	0.551***
,	(0.223)	(0.190)
$RiskH_i imes Post_v$	0.00737***	0.0060***
,	(0.00152)	(0.0014)
$RiskH_i imes MP_t$	0.213	0.1602
5	(0.340)	(0.325)
$RiskH_i imes MP_t imes LoanRateGap_{t-1}$	-3.518	-2.857
-	(3.121)	(3.148)
$RiskH_i imes LoanRateGap_{t-1}$	0.0624***	0.0424***
5	(0.0185)	(0.0186)
Branch FE	yes	yes
Year-quarter FE	yes	yes
Initial controls $ imes$ year FE	yes	yes
R ²	0.350	0.510
Observations	330,473	312,053

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Controlling for effects of anti-corruption campaign

SOE _{i,i,t}	(1) OLS	(2) OLS
$RiskH_i \times MP_t \times Post_v$	0.550**	1.237***
$RiskH_j imes Post_y$	(0.215) 0.00677***	(0.353) 0.00376*
$\textit{RiskH}_j imes \textit{MP}_t$	(0.00149) -0.0295 (0.172)	(0.00213) 6.136**
$\textit{RiskH}_{j} imes \textit{MP}_{t} imes \textit{CAR}_{y-1}$	(0.172)	(2.415) -0.487** (0.192)
$\textit{RiskH}_j imes \textit{CAR}_{y-1}$		0.00192* (0.00108)
$AntiCorrup_j imes Post_y$	0.00673*** (0.00154)	0.00672*** (0.00154)
$AntiCorrup_j imes MP_t$	0.207 (0.174)	0.204 (0.174)
$AntiCorrup_j imes MP_t imes Post_y$	-0.319 (0.218)	-0.317 (0.218)
Branch FE	yes	yes
Year-quarter FE	yes	yes
Initial controls \times year FE	yes	yes
R ² Observations	0.354 333,500	0.354 333,500

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

SOE _{i,j,t}	(1) OLS	(2) OLS	(3) Probit	(4) Probit
$RiskH_j imes Delev_y$	0.001	0.001	0.002	0.016
$\textit{RiskH}_j imes \textit{MP}_t imes \textit{Delev}_y$	(0.002	(0.002) 0.150	(0.002)	(0.036) -0.504
$\textit{RiskH}_j imes \textit{MP}_t$		(0.563) 0.072		(0.531) 0.036
Branch FE	yes	(0.098) yes	yes	(0.087) yes
Year-quarter FE Initial control $ imes$ year FE	yes yes	yes yes	yes yes	yes yes
R ² Observations	0.353 333,500	0.353 333,500	_ 315,382	_ 315,382

Image: A match a ma

æ

SOE _{i,j,t}	(1) OLS	(2) OLS	(3) OLS	(4) Probit	(5) Probit	(6) Probit
$RiskH_i imes Post_v$	0.007***	0.006***	0.002	0.006***	0.005***	0.006***
$RiskH_{j} imes MP_{t} imes Post_{y}$	(0.0015) 0.541**	(0.0015) 0.522**	(0.0014) 0.688***	(0.0014) 0.475***	(0.0014) 0.453**	(0.0014) 0.594***
$\textit{RiskH}_j imes \textit{MP}_t$	(0.215) -0.0178	(0.214) -0.0268	(0.203) -0.136	(0.184) -0.0675	(0.184) -0.066	(0.188) -0.140
	(0.172)	(0.170)	(0.160)	(0.126)	(0.128)	(0.123)
InitProfit $_{i}$ $ imes$ year FE	yes	yes	yes	yes	yes	yes
$InitSOE_j \times year FE$	no	yes	yes	no	yes	yes
Industry FE	no	no	yes	no	no	yes
Branch FE	yes	yes	yes	yes	yes	yes
Year-quarter FE	yes	yes	yes	yes	yes	yes
Initial controls \times year FE	yes	yes	yes	yes	yes	yes
R ²	0.355	0.359	0.448	_	_	_
Observations	333,500	333,500	303,404	315,382	315,382	276,893

(日)

SOE loans more likely to be non-performing ex post

	(1)	(2)	(3)	(4)
	ŇPĹ	ŇPĹ	Overdue	Overdue
	OLS	Probit	OLS	Probit
SOE Loan	0.0286***	0.0197***	0.0121***	0.0290***
	(0.0021)	(0.0012)	(0.0019)	(0.0022)
Credit Rating	-0.0051***	-0.0056***	-0.0160***	-0.0149***
	(0.0001)	(0.0001)	(0.0002)	(0.0002)
Branch FE	yes	yes	yes	yes
Year FE	yes	yes	yes	yes
Initial controls $ imes$ year FE	yes	yes	yes	yes
R ²	0.075	_	0.111	-
Observations	241,688	225,845	241,086	236,923

• SOE loans receive high credit ratings, reflecting government guarantees

• But ex post, controlling for credit ratings, new SOE loans have higher NPL