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Abstract

We study the long-run environmental impacts of land development activities using flood
claims and land use data at the zip code level. Employing long differences and instru-
mental variable approaches, we find that an increase in developed land is associated
with a significant increase in flood claims after 8 years over a 15-year span. This effect
is primarily observed in land developed from cropland and tree cover and varies by the
initial development conditions of an area. By linking land with the demographic char-
acteristics of residents, our study demonstrates that the flood cost attributable to land
development is not borne equally spatially or between demographic groups, with a few
hotspots and minority neighborhoods experiencing higher costs.
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1. Introduction

Solow’s growth model, as highlighted in Solow (1956), underscores the importance of tech-

nological progress and factors of production, including land, in economic development. Land

serves as a finite and essential resource that underpins various facets of economic growth. It

provides the foundational support for agriculture, not only ensuring food security, but also

generating income for millions of people globally (Deininger and Feder, 2001). Ample land

supply also constitutes a requisite condition for attracting domestic and foreign investments,

igniting urbanization, and cultivating employment opportunities, all of which are indispens-

able for economic advancement (e.g., Banerjee and Duflo, 2007). Furthermore, land serves as

a valuable asset for real estate development and industrial activities, significantly contributing

to a nation’s GDP (Galor and Weil, 2000; Gollin et al., 2002).

In the United States, land use is subject to rigorous regulation by local governments, aiming

to achieve a delicate balance between economic development, environmental sustainability,

and social equity. However, concerns persist regarding the effectiveness and efficiency of these

regulations (Gyourko et al., 2008, 2021). One crucial but often overlooked aspect is the

long-term consequences of land use decisions made in the name of economic development.

Since politicians are constrained by term limits and the costs and benefits of land use policies

unfold over varying timeframes, most analyses tend to focus primarily on short-term economic

benefits while neglecting the flood costs that take longer to materialize. For instance, in the

extended debate over Right-to-Work (RTW) laws, a notable study by Holmes (1998) compares

the differential growth rates of manufacturing activity when crossing state borders from an

antibusiness state to a probusiness state. This unbalanced approach can lead to biased policy

evaluations and have significant repercussions for intergenerational equity, as the long-term

costs associated with land use decisions are borne by future generations.

This study assesses the long-term environmental consequences and temporal aspects of

land development activities. Our assessment quantifies flood costs by analyzing flood damages

utilizing data from the Federal Emergency Management Agency’s (FEMA) National Flood
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Insurance Program (NFIP) claims. Meanwhile, land use data are derived from high-resolution

geospatial information sourced from the Land Change Monitoring, Assessment, and Projection

(LCMAP). We conduct a comprehensive analysis encompassing the entire contiguous United

States, connecting zip code-level data on these variables over the period 2001 to 2019.

The primary empirical challenge we face is the correlation between changes in land de-

velopment and numerous confounding factors that also impact flood risk. To overcome these

challenges, we employ several strategies to identify variations in local land development. Our

first strategy involves using stacked long differences (LD) to capture the impact of land de-

velopment on flood damages over different horizons, ranging from one year to 15 years. This

approach controls for state-by-cohort year fixed effects and incorporates various zip code-

level covariates. In addition, we distinguish between various sources of developed land, which

depend on local natural endowments, and initial development conditions, which affect the

economic incentives of land development. The second strategy entails a panel data analysis

that leverages state-level differences in the adoption of RTW laws, a prominent pro-business

policy, and the initial development states for a given zip code as instrumental variables based

on matched data. We apply a Two-Stage Least Squares (2SLS) approach, demonstrating that

these two instruments are highly predictive of land development and have no direct effect on

flood damages, thus satisfying the exclusion restrictions.

Our baseline results reveal a progressive increase in the relationship between changes in

land development and NFIP flood claims over longer horizons. The relationship lacks statisti-

cal significance over a 1- to 8-year horizon, but becomes positive and significant after 8 years,

with both the magnitude of the estimates and level of significance demonstrating a continual

rise over time. Over the 15-year horizon, a one-percent increase in developed land is associated

with a 2.08-percent increase in NFIP flood claims, a significant result at the 1% level. Con-

sistently, the estimates from panel data regressions capture a smaller short-term relationship

between the contemporaneous change in land development and NFIP flood claims.

In the 2SLS regression, the first-stage results demonstrate that, compared to the control

group containing zip codes in non-RTW states, low-developed zip codes in RTW states ex-
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perience a significantly higher increase in land development by 0.065 percent, significant at

the 1% level; high-developed zip codes in RTW states show a significantly lower increase in

land development by -0.225 percent, also significant at the 1% level. Consistently, the 2SLS

regression yields an estimate of 1.640 percent, slightly larger in magnitude than the OLS esti-

mate. This difference is likely attributed to the instruments capturing the change in developed

land over the long run after the enactment of RTW laws, rather than solely representing the

contemporaneous change in land development in the OLS regressions. This result suggests

that an increase in land development has a causal positive effect on the change in flood risk.

One confounding factor that might explain the results is the change in non-developed

land, rather than developed land, due to the zero-sum nature of changes in developed and

non-developed land. A recent study by Taylor and Druckenmiller (2022), which investigates

the value of wetlands as a public good in the form of ecosystem services, reveals a significant

positive correlation between the loss of wetlands and an increase in flood claims. Employing

an upstream-downstream difference-in-differences (DID) analysis, they identify the mechanism

through which wetland loss amplifies flood damage, highlighting the critical role of wetlands

in providing valuable protective ecosystem services that mitigate flood damage, as the removal

of such wetlands for alternative uses could lead to an escalation in flood-related damage.

When we include the change in non-developed land and also by individual land covers in

the regression, the coefficient on changes in developed land ranges between 1.993-2.094 and

remains statistically significant at the 1% level. The coefficients on changes in undeveloped

land, either as a whole or by individual types of source land, are small and statistically

insignificant. These findings suggest that the increase in flood damages is influenced by the

expansion of developed land—representing the increase in human development activities—

rather than the reduction of natural land, such as wetlands and tree cover (treeland), for

non-development reasons.

Notably, when we examine the sources of developed land from 2001 to 2019 in the US,

treeland and cropland stand as the two predominant sources, contributing to nearly 90% of all

land developed in recent decades. Furthermore, the coefficients of change in developed land
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from cropland or treeland are 4.309 and 3.578 percent, respectively, and both are significant at

the 1% level. The coefficient of change in developed land from wetland is 4.827 percent, though

it is not statistically significant. The coefficients for developed land from other sources are

small and not significant. This suggests that not all land developments have equal effects on

flood risk, and the initial land endowment and, consequently, the source of land development

matter.

The effect of land development on flood risk also depends on the initial development level

and density. Our analysis demonstrates that the initial conditions in land development are

highly predictive of subsequent land development. Zip codes with higher initial development

conditions have experienced significantly higher growth in developed land in the following

years. In total, approximately 80% of the land developed during the 15-year period is in zip

codes with high initial conditions. There is also considerable variation in land development

sources between groups. For areas with high initial conditions, cropland and treeland are the

two most important sources of development, while for areas with medium initial conditions,

treeland becomes a more crucial source than cropland. In contrast, the significant effect

observed in the baseline analysis is mainly due to zip codes with high initial conditions,

where the majority of land development has occurred, and to a lesser degree from those with

medium initial conditions. During the 15-year horizon, a one-percent increase in developed

land is associated with a 1.307-percent increase (significant at the 5% level) in NFIP flood

claims for areas with medium initial conditions and a 3.330-percent increase (significant at

the 1% level) for areas with high initial conditions.

Next, we assess the distributional effects by linking developed land with the demographic

characteristics of residents and also quantify the flood risk attributable to land development.

Our analysis indicates that the most important land developed in the past two decades—

those from cropland and treeland—happen to be in areas where there is a low proportion of

minority and a high proportion of low-income population and where housing and population

are sparse. As more land is developed, these areas see a significant decrease in the share

of the minority and low-income population. There are also demographic differences between
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areas with more cropland or more treeland available. Overall, land development, particularly

from treeland, is associated with a significant decrease in the proportion of minorities and the

proportion of low-income population. Furthermore, areas with high initial conditions have a

higher proportion of minorities but a lower proportion of low-income population, and have

experienced a significant increase in minorities and low-income population as more land is

developed.

Using the coefficients for the change in developed land interacted with land development

sources and initial conditions, we calculate the lifetime flood cost of the developed land to be

$2.59 billion in total and $2,164 per hectare (ha, equivalent to 2.47 acres). Based on estimated

and actual flood damage, 14.7% of the flood damage that has increased from 2001 to 2016

is attributable to land development. The unit costs per ha, representing the long-run social

cost of land development not paid by the private market, are equivalent to 22% of the market

value of land. However, there is significant variation in the estimated flood cost spatially and

between demographic groups, primarily due to differences in natural endowment and initial

development conditions. The top 1% of counties have to bear 95% of the cost, with the highest

burden falling on counties in the Houston metro area. Most of the hotspots, using different

transformations, are located in Texas, Louisiana, Virginia, Maryland, Maine and Florida,

all coastal states. Zip codes with a higher proportion of black population and high-income

majority neighborhoods also experience a disproportionately higher flood risk.

Very few decisions influence the lives of local residents more than a land development

decision, given the essential role of land development in economic growth. However, land

development is costly in terms of land acquisition cost, construction cost, and long-run en-

vironmental cost. While the literature on land development has focused almost exclusively

on the first two cost components, this paper provides a first measure of the long-run environ-

mental cost associated with land development. We find enormous spatial variation in land

development as well as its flood costs across the US. Our reduced-form analysis establishes

three novel stylized facts. First, areas with a higher proportion of minorities tend to have

higher initial development conditions and less land available for future development, but rela-

5



tively more cropland than other covers among the available land. Our analysis indicates that

areas with high initial conditions and more land developed from cropland are associated with

significantly higher flood damage. This exposes original minority residents to high flood risk

in the long run as land is developed. Second, these same areas have seen a significant increase

in the proportion of minority as new land is developed, increasing the share of minority that

have been exposed to the long-run flood risk of land development. Third, while the low-income

population tends to live in areas with lower initial conditions initially, land development in

areas with high initial conditions have attracted more low-income population, exposing them

to the long-run flood risk of land development.

In the remainder of the paper, we propose a framework to rationalize the land development

decisions of households and hence the variation in the long-run flood risk across space and

social demographics. At the center of the model is the intertemporal trade-off involved in

land development decisions and the heterogeneity in the initial land endowments, as docu-

mented above. We start by proposing a simple three-period economy where households have

heterogeneous income and initial fraction of developed land. Higher-income and minority

households are more likely to be in areas with more developed land. The marginal cost of

land development increases with the initial developed fraction while the marginal utility from

land development decreases with the initial income. Residents collectively choose the amount

of land development, which in turn determines their income next period and the flood risk in

the third period, both as a function of the land development. The optimal land development

is determined by local residents’ marginal willingness to give up income in the second period

in exchange for a lower risk of flooding in the third period. In equilibrium, lower-income and

minority households choose to develop more land, as their marginal utility from the short-run

growth outweighs marginal cost of land development. To the extent that migration costs are

sufficiently high, the model predicts that marginalized households are more likely to reside in

the high flood risk areas.

(In progress) We then take the model prediction to the data. By merging the individual-

level demographics and mobility data from the InfoUSA with the land development and flood
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risk data, our dataset constitutes one of the first large-scale panel datasets with detailed infor-

mation on household demographics, mobility, climate risk and land development decisions for

the entire US. Using these rich data, we estimate a land development model where households

choose how much land to develop given their location, where locations differ in the short-

run income growth and in the long-run flood risk. Preliminary results suggest that there are

economically and statistically significant differences in lower- and higher-income households’

marginal-willingness-to-pay (MWTP) to avoid the flood risk associated with land develop-

ment, which in turn affects their land development decisions. Compared to higher income and

white households, the observed flood risk in residential locations of low-income and minority

households reveals a smaller willingness to give up current consumption in exchange for a lower

flood risk 15 years from now. These MWTP differences are consistent with the intertempo-

ral trade-off highlighted in the model. We further quantify the influence of heterogeneity of

MWTP on land development outcomes with a counterfactual exercise. In particular, we ask

how the distribution of the land development would differ if we gave lower-income households

the same MWTP to avoid flood risk as high-income households when they make their land

development decisions in 2001. In the next version of this paper, we will report the results.

The paper is organized as follows. After the literature review, Section 2 discusses some

institutional details of land use in the United States, along with a summary of scientific

research in the relationship between land development and flood risk. This is followed by the

explanation of the data and sample design in Section 3. We present the empirical identification

and the empirical baseline analyses in Section 4 and the heterogeneity analysis in Section 5.

Section 6 presents various distributional analysis of flood risk. Section 7 concludes.

Literature Review We study the long-term effect, particularly the environmental implica-

tions, of economic development specifically through land development. Existing literature has

predominantly emphasized the employment benefits associated with various economic devel-

opment programs and policies aimed at attracting manufacturing plants to specific regions.

For example, Holmes (1998) shows that on average, the manufacturing share of total employ-
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ment in a county increases by approximately one third on the probusiness side, as evidenced

by border analysis, due to an overall effect of the state’s probusines policies.1 Another exam-

ple is Kline and Moretti (2014a) who examine the long-term consequences of the Tennessee

Valley Authority’s initiatives, a prime example of the “big push” development strategy, and

uncover differential effects on agricultural and manufacturing employment stemming from fed-

eral transfers.2 Our paper adds a balanced view to the literature by focusing on the long-term

consequences of flood risks associated with increased land development activities. We find

that although land development does not exert significant flood damage in the short run, the

effect becomes pronounced in the long run. Overlooking these long-term costs can lead to

an incomplete evaluation of economic development policies, as they entail intergenerational

transfers with far-reaching consequences.

Our paper is also situated within a substantial body of literature examining the relation-

ship between land use regulation and housing prices, as well as broader economic outcomes.

Saiz (2010) employs comparable satellite-derived geospatial data to estimate local housing

supply elasticities, underscoring geography as a crucial factor in determining housing supply

inelasticity. Additionally, various studies investigate the impact of land use regulations on

land values by analyzing historical shifts in regulations (Zhou et al., 2008; Libecap and Lueck,

2011). Turner et al. (2014) provides estimates suggesting significant adverse effects of regu-

lation on land values and overall welfare in these regions. A large complementary literature

examines the spillover effects of nearby open spaces and amenities on land prices (e.g., Green-

stone and Gallagher, 2008; Rossi-Hansberg et al., 2010; Gamper-Rabindran and Timmins,

2013). These studies collectively provide insights into the impact of land use regulations on

1Relatedly, Bloom et al. (2019) find that there is considerable variation in management practices across
plants within the same firm and business environment, especially RTW rules, can increase structured man-
agement practices around pay, promotion, and dismissals.

2Numerous other studies have evaluated the impacts of various local, state, and federal economic devel-
opment policies or place-based programs. These include studies by Kline and Moretti (2014b); Busso et al.
(2013); Gobillon and Magnac (2016); Suárez Serrato and Zidar (2016); Slattery and Zidar (2020); Chyn and
Katz (2021), among others. These works collectively highlight the significant potential of public policies to
spur productivity and enhance welfare in severely underdeveloped regions through agglomeration forces, par-
ticularly productive spillovers between workers and firms, as emphasized by Ellison and Glaeser (1997), Ellison
et al. (2010) and Greenstone et al. (2010).
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land prices and, in turn, their broader economic implications. Our findings reveal that land

development has a multifaceted influence, manifesting in both benefits and costs, with these

effects materializing at different time frames. This temporal variation presents a challenge

when attempting to assess the net impact at any given point.

Our analysis is also related to the literature that studies interactions between climate

change, environment and aggregated economy (e.g., Nordhaus, 1977; Golosov et al., 2014;

Nordhaus, 2019). Our study specifically focuses on the impact of land development on future

flood damage, one of the most acute climate-related events. Our findings reveal a significant

and positive association between increased land development and higher flood claims in the

long term, with this effect somewhat attenuating in the short and intermediate terms. This

effect stands apart from the findings in existing literature, which primarily emphasize the role

of protective ecosystem services in mitigating flood damages.

2. Background

2.1. Land Use in Economic Development

Economic development policies often incorporate a range of land-use strategies and initiatives

designed to stimulate private economic growth and foster job creation. One prominent ex-

ample is the establishment of enterprise zones, which receive special privileges such as tax

breaks, regulatory exemptions, or public assistance to encourage business operations within

the designated area. These zones are commonly utilized to revitalize neighborhoods that have

experienced a decline in essential businesses or quality housing (e.g., Jersey City, NJ in the

1980s), or to aid areas struggling to recover from natural disasters (e.g., New Orleans af-

ter Hurricane Katrina). Additional land-use policies include Tax Increment Financing (TIF)

Districts, created to harness the augmented property tax revenue within a specified region

for infrastructure improvements and economic development projects, as well as Foreign Trade

Zones designed to facilitate international trade, promote manufacturing, and generate employ-
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ment by offering tariff and tax incentives to businesses engaged in import/export activities.

RTW laws and land use policies represent two distinct yet interrelated facets of local

economic development policies. RTW laws primarily impact labor relations by forbidding

employers and labor unions from mandating union membership or the payment of union

dues or fees as a condition of employment. Consequently, RTW states often appear more

attractive to businesses when making location decisions. Furthermore, RTW laws frequently

coincide with other pro-business packages, including the designation of specific zones or areas

for economic development, such as business parks or enterprise zones. These designated areas

are strategically established to draw businesses, stimulate investment, and foster job creation.

2.2. Land Use and Flood Risk

The relationship between land development, urbanization and flood risk is complex and in-

terconnected. As urban areas expand and land is developed for various purposes, such as

residential, commercial, or industrial use, the natural landscape often undergoes significant

alterations. These alterations, including the construction of buildings, roads, and drainage

systems, can disrupt the natural flow of water and increase the risk of flooding (e.g., Konrad

et al., 2003; Khan, 2005). Impermeable surfaces like pavement and concrete prevent rainwa-

ter from being absorbed into the ground, leading to increased runoff into rivers and streams

during heavy rainfall (e.g., Yan and Edwards, 2013). Poorly planned land development can

exacerbate flood risks by channeling water into vulnerable areas and reducing natural flood

buffers such as wetlands and floodplains (Taylor and Druckenmiller, 2022). In addition, ur-

banization has the potential to directly influence the magnitude of extreme precipitation. For

example, Zhang et al. (2018) find that the probability of such extreme flood events across

the studied basins increased on average by about 21 times in the period 25–30 August 2017

because of urbanization.
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3. Data

3.1. Sources

LCMAP Data We utilize the LCMAP data from the USGS’s Earth Resources Observation

and Science Center. This dataset provides land cover information at the pixel level and annu-

ally for the years 2001-2019. Covers eight classes, including developed, cropland, grass/shrub

(grassland), tree cover (treeland), water, wetland, ice/snow, and barren. In Figure 1, it is

evident that the United States possesses a substantial amount of undeveloped land that could

potentially be available in the future. In 2001 (Panel A), only 4.9% of the land was developed.

The majority of the landscape consisted of grassland (29.4%), cropland (29.2%) and treeland

(28.1%), representing a total of 87%. Over a 15-year period, the proportion of developed

land slightly increased to 5.1% in 2016, marking a mere 0.2 percentage point increase. This

expansion in developed land, as well as in cropland and grassland, occurred at the expense of

treeland and, to a lesser extent, wetland (Panel B). While the increase in developed land is

smaller in terms of area compared to cropland, the relative growth of developed land is 4.09%,

exceeding the growth of 0.89% observed for cropland.

NFIP Data The National Flood Insurance Program (NFIP) was established in 1968 by the

federal government with the aim of providing affordable flood insurance to homeowners. As

of 2017, the program boasted more than 5 million policies in force nationwide, covering nearly

$1.27 trillion. However, slightly over 80% of the policies within the program are charged

what FEMA terms as full-risk rates, while the remaining 20% receive substantial subsidies

at less than half of the full rates. The NFIP carries various cross-subsidies, both explicit

and implicit, sparking ongoing debates in legislative discussions regarding affordability, rise-

based pricing, and fiscal sustainability - a clear tradeoff (Kousky, 2018).3 The NFIP faces a

substantial debt burden, exceeding $20 billion as of early 2018, with no foreseeable means of

3In 2021, FEMA introduced a new pricing approach known as Risk Rating 2.0 (RR2.0), which enhances
accuracy by assessing risk at the property level. NFIP premiums are now determined through simulation-based
catastrophe models combined with claim history, resulting in insurance pricing that more precisely mirrors a
property’s anticipated losses.
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repayment. This financial scenario has significant implications for land development. First,

due to discounts and cross-subsidies, the financial interests of land developers and landowners

are not aligned with those of the public, who ultimately bear the costs of flood risk. Second, if

land development contributes to increased flood damage, any economic development policies

based on an unsound economic analysis could essentially represent a transfer from taxpayers

to local governments and developers.

Data from the NFIP by the FEMA are used to construct our flood damages (FD) measure.

Specifically, we rely on the NFIP Redacted Claims - v1 dataset, which includes over 2,000,000

claims transactions, providing location and claim amount information. To calculate the total

claim amount, we sum the amounts paid for building and contents claims, aggregating this

data to the zip code-by-year level. To address the infrequency of flood events, we create a

3-year moving average of the NFIP total paid amount for the dependent variable. From 2001

to 2016, the total NFIP claims increased from $1.03 billion to $5.03 billion or by 415%.

Census Data To mitigate concerns about endogeneity resulting from NFIP insurance take-

up rates, we control for various demographic and socioeconomic factors. These data are

sourced from the 2000 Decennial Census and the 5-year American Community Survey (ACS)

at the Zip Code Tabulation Area (ZCTA) level. We construct measures for the population, the

number of housing units, the median household income, and the median housing value. For

distributional effect analysis, we use household demographics to create measures for minority

vs. majority populations and different income classes.

3.2. Sample

Our main sample is based on all zip codes in the LCMAP data. We also used a supplemental

RTW subsample that consists of zip codes located in states that had enacted RTW laws and

their neighboring states.
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National Sample The national sample employs all land cover data spanning from 2001 to

2019, creating a 19-year zip code panel. Subsequently, we computed the differences, denoted

as , for all variables considered in the analysis. This process generates multiple stacked LD

samples. For instance, the 15-year LD sample comprises four stacks: 2001-2016, 2002-2017,

2003-2018, and 2004-2019, constituting the primary dataset for our analysis. As the LD

horizon shortens, the number of stacks and observations within the LD sample increases.

Consequently, we can conduct analyses across the entire horizon to explore the short and

long-term effects of land development on flood risk while controlling for other factors.

The LCMAP dataset initially contains 31,539 zip code-level observations. After merging

with control variables and to maintain strong balance across stacks, the final sample is reduced

to 26,403 zip codes. Table 1 Panel A provides summary statistics for all variables in our main

analysis based on the 15-year LD sample. Over the course of 15 years, developed land has

exhibited an average increase of 2.4% (logarithmic growth weighted by population), while FD

have shown an increase of 38.4%.

These mean values encompass considerable spatial variability in both series. We begin

by visualizing the two primary variables, the change in FD (∆Log(FD)) and the change in

developed land (∆Log(Dev)), from 2001 to 2016, in the two panels of Figure 2. Panel A

shows that changes in developed land exhibit a smaller regional dispersion, with 62% of zip

codes reporting increases in developed land from 2001 to 2016. Five states have seen the most

rapid growth in Dev, driven by their ample land availability, including Wyoming, Montana,

Delaware, Utah, and Texas. Texas stands out with the largest share, contributing 21% to

the total of 1.2 million hectares of land developed in the past 15 years. Following closely

is Florida, which ranks second with 5.6%. On the opposite end of the spectrum, Alabama,

Mississippi, and West Virginia have experienced the slowest rates of Dev, with either negative

or near-zero growth.

Panel B illustrates that changes in FD are geographically concentrated in the South At-

lantic and two Central South regions. From 2001 to 2016, six states have witnessed increases

in flood damage that exceeded ten times, including South Carolina (57 times), Idaho (21
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times), Florida (15 times), Wyoming (14 times), Georgia (12 times), and Montana (11 times).

Analyzing changes in FD dollars during this period, Texas, Louisiana, and Florida emerge

as the top-ranking states, contributing to 62%, 20%, and 10% of the total $4.3 billion in

flood damage, respectively. In contrast, fourteen states have experienced declines in flood

damage during the same 15-year period, with notable examples being North Dakota (-99%),

Delaware (-89%), Maryland (-87%), and Minnesota (-80%). Confirming the substantial spa-

tial variation depicted in our primary variables in Figure 2, ∆Log(FD) exhibits a standard

deviation of 5.281 (13.8 times the mean), whereas ∆Log(Dev) shows a standard deviation of

only 0.087 (3.6 times the mean). Nevertheless, Panel C of Figure 2 reveals that the two series

demonstrate a significant positive correlation at 55%.

RTW Sample Panel B of Table 1 presents summary statistics for the variables in the

supplementary RTW sample. During our sample period (2001-2019), there are five states that

passed and enacted the RTW Law in the state, including Indiana (2012), Michigan (2013),

Wisconsin (2015), West Virginia (2016), and Kentucky (2017). These states constitute the

treatment group, while their neighboring non-RTW states serve as the respective control

groups.4 This approach results in some states being repeated as control states for different

treatment states, albeit with distinct treatment dates. The final sample encompasses 8,938

unique zip codes, divided into 14,498 zip code observations distributed across five state-event

groups.

The treatment group comprises all zip codes located in states that enacted RTW laws

during the sample period, making treatment a time-varying event. Our analysis reveals that in

areas where the zip code’s initial development level is above the 75th percentile, there tends to

be a decreasing relationship between the change in developed land and the initial development

level. Conversely, in areas falling below this “tipping point” threshold in terms of initial

development, the relationship tends to increase. Consequently, we further categorize these zip

4The control groups are composed of Illinois and Ohio for Indiana, Ohio for Michigan, Minnesota and
Illinois for Wisconsin, and Ohio, Pennsylvania, and Maryland for West Virginia, as well as Ohio, Illinois, and
Missouri for Kentucky.
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codes into high and low developed areas based on their initial development status. A zip code

is classified as “low developed” if its proportion of developed land in 2000 falls below the 75th

percentile of the state; otherwise, it is considered “high developed.” Thus, we categorize the

primary variables within the RTW sample into six distinct subgroups, depending on whether

the zip code belongs to one of the two treatment groups or control state, and whether the

observation is from a pre- or post-RTW year.

Panel B indicates that low-developed zip codes in treatment states have seen a change in

developed land from 836 to 895, or 7. 2%, while high-developed areas in the treatment states

have experienced a change from 1,674 to 1,736, or 3. 6%, similar to the control group that has

seen a change from 991 to 1,023, or 3. 2%. Meanwhile, the relative change in FD from the

pre-RTW to the post-RTW years for these three groups is -35%, -51%, and -41%, respectively.

On the surface, there is a high correlation between changes in developed land across the RTW

groups, while there is very little correlation between changes in FD across these groups.

4. Main Analysis

4.1. Empirical Strategy

Our empirical work aims to estimate the causal effect of land development on climate risk using

flood insurance claims. However, we face the challenge that changes in land development are

correlated with many confounding factors that also affect flood risk. For example, Florida, a

coastal state traditionally associated with high flood insurance claims, has experienced faster

land development than many other states in the past decades. However, we cannot interpret

the positive correlation between land development and flood risk as land development directly

causing a higher flood risk, as Florida’s geographic characteristics, such as its low elevation,

porous limestone underlying its land, extensive coastline, and susceptibility to hurricanes,

also contribute significantly to its vulnerability to global sea level rise and increased flood

risk. Furthermore, various local covariates, which may or may not be correlated with land
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development, can explain changes in flood risk.

To address these empirical challenges, we employ several strategies to identify the variation

in local land development that affects flood risk. The first strategy involves stacked LD to

capture the effect of land development on flood risk over different horizons since the land

is developed (t0 + n, n = 1, 2, ..., 15). This approach controls for state (s) by cohort year

(t0) fixed effects and includes many zip code-level covariates. We also control for changes in

non-developed land, which may contribute to flood risk as well. In addition, we distinguish

between various sources of developed land, which depend on local natural endowments, and

initial development conditions, which affect the economic incentives of land development. The

second strategy entails a panel data analysis that leverages state differences in the adoption

of RTW laws—one of the signature pro-business laws—based on matched data and employs

a 2SLS approach.

We will elaborate on the rationale for using state differences in the adoption of RTW laws

as a valid instrumental variable (IV). For the estimation of IV to be valid, the instrument Z

must meet two criteria: (1) it must affect the endogenous treatment variable X, and (2) it

must satisfy the exclusion restriction, which states that Z should not have a direct effect on

the outcome variable Y, or if it does, the effect should only be through X (e.g., Newhouse and

McClellan, 1998; Angrist and Krueger, 2001). Violating the exclusion restriction can lead to

biased IV estimates.

We choose two instruments: the indicator of RTW states and the indicator of initial

development state for a given zip code (high vs. low developed). The former is a time-

varying variable, defined as 1 if a zip code is located in a state that has enacted RTW laws

in a given year, and 0 otherwise. The latter is a cross-sectional variable, defined as low

developed if the share of developed land in a given zip code in the year 2000, one year

before our sample begins, is below a certain threshold, and high developed if it is above the

threshold. The rationale for using RTW states as an instrument for land development is that

land is a critical resource and a key element in any pro-business policy aimed at attracting

businesses. However, it should not directly affect the local flood risk because it is a statewide
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policy. The second variable captures historical land availability—high–developed places have

less land available (and possibly less economic incentives) for further development—which

should not be correlated with changes in future flood risk. Nonetheless, it can influence

the cost and price elasticity of land development, akin to other land supply measures used

in the literature (e.g., Saiz, 2010; Gyourko et al., 2021; Lutz and Sand, 2022). Since our

instrument is an interaction between the initial development conditions and an RTW indicator,

the identification requirement here is even weaker. We need that, else equal, the marginal

effect of the initial developed fraction on the subsequent land development varies across RTW

and non-RTW areas; but its marginal effect on flood risk, if any, does not change with the

pro-business policies.

Figure 3 presents the first-stage results, which involve regressing the outcome and treat-

ment variables on the interaction of the two indicator variables over a 19-year window (10 years

before through 8 years after the enactment of the RTW laws) in the following specification:

(1)

Yi,t

=
8∑

t=−10

(
β1,t · I(Post RTWi,t × Low Devi,0) + β2,t · I(Post RTWi,t × High Devi,0)

)
+ θ · Log(Ri,t) + µg×t + µs + εi,t

where Yi,t represents the logarithm of either FD or land development (Dev), I(Post RTWi,t ×

Low Devi,0) is an indicator for zip codes located in RTW states with low initial land develop-

ment before our sample period (low developed areas), and I(Post RTWi,t ×High Devi,0) is an

indicator for zip codes located in RTW states with high initial land development (high devel-

oped areas). The reference group comprises zip codes located in non-RTW states adjacent to

the RTW states. Each RTW state and its adjacent non-RTW states are matched to form a

state pair named after the RTW state (g, e.g., WV group includes WV and its OH, PA, and

MD neighbors), and some states are thus included in different state pairs. The model includes

state pair by relative year fixed effects (µg×t), state fixed effects (µs), and zip code covariates

Ri,t, such as housing units, housing value, income, population, and NFIP risk ratings.

Panel A of Figure 3 shows no significant differences in FD between the two treatment
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groups and the control group, both before and after the event date. The confidence intervals

for the estimates in high and low developed zip codes also exhibit overlap, suggesting that

there are also no significant differences between the two treatment groups in the pre- and post-

RTW years. These results indicate that the two instruments meet the exclusion restriction

criteria.

Panel B shows that low-developed zip codes located in RTW states experience significantly

higher growth in land development after the enactment of the law compared to control states

in the same region. The growth in land development becomes significantly higher starting

from the third year after the state adopts the RTW laws, relative to its own level before the

law and to its neighboring states. By the eighth year, the differential growth rate between

developing zip codes in RTW states had reached 1. 5%, corresponding to approximately 13

hectares of land development before the law. In contrast, there are no pretrends in the years

before the law was passed, validating the parallel trend assumption. High-developed zip codes

in RTW states also exhibit significantly higher growth in land development following the law,

although to a much smaller extent (0.3%). These results suggest that while RTW laws, along

with other pro-business policies, may provide a necessary condition for land development,

the initial development state and supply constraints play crucial roles in the effect on land

development.

4.2. OLS Results

We begin by employing a stacked LD approach to estimate the short- and long-term relation-

ship between changes in land development and FD using the following specification:

(2)∆Log(FDi,t0+n) = β ·∆Log(Devi,t0+n) + θ ·∆Log(Xi,t0+n) + µs,t0 + εi,t0+n,

Here, ∆Log(FDi,t0+n) and ∆Log(Devi,t0+n) represent the change in the natural logarithm

of flood damage and developed land, respectively, in a zip code i located in state s and cohort

year t0 over an n-year (n = 1, 2, ..., 15) horizon. The vector of covariates Xi,t0+n includes the

logarithmic changes in zip code-level number of housing units, average housing value, median
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household income, the population, and the local participation in the NFIP’s CRS. We also

control for state by cohort year (t0) fixed effects to isolate any state × year-level factors that

could affect ∆Log(Dev). To account for potential correlation in the error term over space,

standard errors are clustered at the county level.

The results are displayed in Table 2. Panel A reports the analysis using the 1-year, 5-

year, 10-year and 15-year differences, and Figure 4 plots the coefficient on ∆Log(Devi,t0+n)

across various horizons for n = 1, 2, ..., 15, according to Equation (4). These findings reveal

a progressive increase in the relationship between ∆Log(Dev) and ∆Log(FD) over longer

horizons. Initially, the relationship is negative, but lacks statistical significance on a 1- to

3-year horizon. Subsequently, it turns positive, but remains statistically insignificant over a

4- to 8-year horizon. The relationship achieves statistical significance after 8 years, with both

the magnitude of the estimates and the level of significance demonstrating a continual rise

over time. Over the 15-year horizon, a one-percent increase in developed land is associated

with a 2.08-percent increase in flood damage, a significant result at the 1% level.

4.3. 2SLS Results

Alternatively, we utilize a panel fixed effects model that relies on within-zip code year-over-

year variation in land development to estimate its short-term effect on flood risk:

(3)Log(FDi,t) = β · Log(Devi,t) + θ · Log(Xi,t) + µi + µs,t + εi,t,

In this equation, Log(FDi,t) and Log(Devi,t) represent the logarithm of flood damage and

land development in zip code i located in state s and year t, respectively. The vector of covari-

ates Log(Xi,t) includes the logarithm of zip code-level numbers of housing units, the average

housing value, the median household income, the population, and the local participation in

the NFIP’s CRS. To control for unobserved zip code-level and state × year-level confounding

factors, we include state × year (µs,t) fixed effects. Once again, we cluster standard errors at

the county level to account for possible correlation in the error term over space and time.
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Panel B of Table 2 summarizes the analysis based on panel data regressions as specified

in Equation (3). Columns (1) and (2) present the OLS regressions for the full sample and the

RTW sub-sample, respectively. Column (2) further includes state pair by relative year fixed

effects to account for the fact that some control states may appear in another state pair for

different events. The OLS regression results in estimates of 0.545 and 0.506, indicating that a

one-percent annual increase in land development is associated with a 0.545 and 0.506-percent

increase in flood damage within the same zip code, both estimates are statistically significant

at the 1% level. Taking into account the structure of the panel, these estimates capture the

short-term relationship between the contemporaneous change in land development and flood

damage and, as a result, the estimate is comparatively smaller in magnitude compared to the

LD analysis in panel A.

Columns (3) and (4) present the first and second stage results in the 2SLS regression,

where Log(Devi,t) is instrumented with I(Post RTWi,t × Low Devi,0) and I(Post RTWi,t ×

High Devi,0) in Equation (1). The results in the first stage indicate that, compared to the

control group comprising zip codes in non-RTW states, low-developed zip codes in RTW states

experience a significantly higher increase in land development of 0.065 percent, significant

at the level 1%. In contrast, high-developed zip codes in the treatment states exhibit a

significantly lower increase in land development by -0.225 percent, also significant at the 1%

level. Both the underidentification test and the weak instruments test strongly reject the null

hypothesis, signifying that the instruments possess sufficient explanatory power to predict the

X variable. This suggests that our two instrument variables effectively predict changes in land

development.

Consistently, the 2SLS regression yields an estimate of 1.640 percent, significant at the

10% level. This estimate is larger in magnitude than the OLS estimate in column (2), likely

attributed to ̂Log(Devi,t) now capturing the change in developed land over 8 years after the

enactment of RTW laws for zip codes in the treatment group, rather than solely representing

the contemporaneous change in land development in column (2). However, this result suggests

that an increase in land development has a causally positive effect on the change in flood risk.
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5. Heterogeneity Analysis

The baseline results in Table 2 consistently show a positive and significant relationship be-

tween changes in land development and flood risk, while controlling for state fixed effects

and local covariates, as well as employing exogenous instrument variables that provide quasi-

randomization of the treatment. However, concerns remain about unobserved confounding

factors that might explain the results.

5.1. Different Land Uses

5.1.1. Change in Non-Developed Land

One confounding factor that warrants consideration is the change in non-developed land,

rather than developed land, which could drive changes in flood risk. This is due to the

zero-sum nature of changes in developed and non-developed land. Consequently, an increase

in flood risk may not be primarily due to population growth and industrial activities, but

rather to the reduction of land that could have been conserved as natural habitat and climate

mitigants, as demonstrated by the case of wetlands studied by Taylor and Druckenmiller

(2022). It is essential to recognize that other land uses might similarly contribute to the

natural ecosystem, impacting flood risk exposure.

To test this hypothesis, we include the change in non-developed land in Equation (1) using

the 15-year LD specification. The results are presented in Table 3.5 Column (1) is our baseline

specification in Table 2. Column (2) shows that the coefficient on ∆Log(Devi,t0+15) remains

positive at 2.014 and statistically significant at the 1% level, slightly lower than the baseline

estimate of 2.080. In contrast, the coefficient on ∆Log(NonDevi,t0+15) is negative but not

statistically significant, suggesting that the positive effect of land development observed in

the baseline regressions is not explained by changes in non-developed land as a whole.

In columns (3) and (4), we break down ∆Log(NonDevi,t0+15) into changes in wetland

5Since both our sample and empirical specification differ from those in Taylor and Druckenmiller (2022),
we adopt their small sample so that we can replicate similar results using our specification. We also report
the estimated results using their specifications in Panel A of Table ??.
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and other non-developed land uses, such as cropland, treeland, grassland, water, and barren.

The findings indicate that none of the coefficients for the changes in non-developed land are

statistically significant. Collectively, these findings suggest that the increase in flood damage

is associated with the expansion of developed land rather than changes in other land uses.

5.1.2. Sources of Developed Land

Panel B of Table 3 provides insight into the sources of developed land from 2001 to 2019

in the US. In particular, treeland emerges as the predominant contributor, representing a

significant portion ranging from 47% to 61% of the total developed land on various horizons.

Follow closely, cropland consistently represents the second most important source, contributing

around 40% to the total developed land. Barren land trails as a distant third, making up 6.5%

to 10% of all developed land. The wetland accounts for 2.4% to 2.6% of the developed land.

In contrast, land developed from grassland or water has either declined or shown negligible

growth in recent decades.

In column (5) of Panel A, we replace the change in developed land with the changes in

developed land from different sources, such as those from wetland, cropland, grassland, tree-

land, water, and barren land. First, when estimating the effect of the change in developed

land from wetland, we observe a substantial effect of 3.361 percent, although it is not statisti-

cally significant. Second, several other development sources are also positively associated with

changes in flood damage. In particular, the coefficients for the change in developed land from

cropland and treeland are 4.133 and 3.076 percent, respectively, and both are statistically

significant at the 1% or 5% level. On the contrary, the coefficients for changes in other devel-

opment sources are not statistically significant. These results underscore that the significant

and positive impact of land development on flood damage in the baseline analysis is mainly

driven by changes in land developed from croplands and treelands. Third, the estimates of

changes in developed land from cropland and treeland become even more pronounced when

accounting for changes in other land uses in columns (6) and (7). In column (7) with full

controls, the coefficients of change in developed land from cropland or treeland are 4.309 and
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3.578 percent, respectively, and both are significant at the 1% level.

Figure 5 plots the estimated effect of the change in developed land from cropland and

treeland, the two most significant development sources, over the entire 1 to 15-year horizon.

Compared to the general effect of the change in developed land from all sources shown in

Figure 4, the estimated effects of these two development sources are not only much greater

in magnitude, but they also impact flood damage much earlier. Development sourced from

treeland exhibits a positive and significant effect on flood damage as early as the 3rd year,

increasing in magnitude and significance over time, in contrast to the 9th year for all sources.

The same pattern applies to the development sourced from cropland as well, which is with a

larger magnitude compared with all sources and shows a significant effect as early as the 5th

year.

To assess the relative importance of changes in non-developed land and various develop-

ment sources in explaining flood damage, we calculate the proportion of the total XBETA

explained by each variable. In column (8) in Table 3 Panel A, it is revealed that, among all

land uses, the change in developed land from land covers with trees has the most substantial

effect, registering an XBETA of 5.9. The change in developed land from cropland is closely

followed, with an XBETA of 5.6. On the contrary, the combined impact of the other four

sources amounts to an XBETA of 0.7. In comparison to developed land, the contribution of

changes in non-developed land is relatively small.

5.2. Initial Development Conditions

The previous finding that the effect of the RTW laws on land development depends on the

initial development state in Section 4.3 suggests that the initial conditions of a local area may

also affect flood risk indirectly by affecting the economic incentives of land development. In

this section, we examine the variations in this relationship between zip codes with different

initial conditions. Here, the term “initial conditions” encompasses both the initial develop-

ment state and the initial development density. The former captures the varying availability
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of non-developed land (and associated economic incentives) for future development, while

the latter reflects the intensity in the use of existing developed land, although both may be

correlated with the natural endowments of the area.

5.2.1. Land Development Patterns Across Difference Initial Conditions

As such, we categorize all zip codes into three groups based on their initial conditions: zip

codes in the low initial conditions group characterized by a low share of developed land and low

development density; those in the high initial conditions group characterized by a high share

of developed land and high development density; and the remaining zip codes are classified

as medium initial conditions. Panel A of Table 4 presents the land characteristics based on

these initial conditions. According to defined criteria, zip codes in the low, medium, and

high initial conditions group had 3.45%, 17.3%, and 42.9% of their land developed in 2001,

respectively. In addition, the three groups show an ascending trend in land density, measured

by the number of people living in each square mile. Concerning flood risk, while the average

flood damage at the beginning of the sample period is higher for zip codes with higher initial

conditions, there is no apparent difference in the percentage change in flood damage between

the high and low initial conditions groups. Furthermore, during the 15-year period, the flood

damage for the low and high initial conditions groups decreases by a smaller percentage than

that for the medium initial conditions group.

The initial conditions are shown to be highly predictive of future land development. During

the 15-year span, developed land has experienced an average increase of 81.8 hectares or 4.11%

for zip codes in the high initial conditions group, 16.81 hectares or 1.97% for the medium group,

and merely 2.56 hectares or 0.82% for the low group per zip code. In total, approximately 80%

of the land developed during the 15-year period is in zip codes with high initial conditions.

There is also considerable variation in land development sources between groups. For areas

with high initial conditions, cropland and treeland are the two most important sources of

development, each accounting for about 41% of the developed land. For areas with medium

initial conditions, treeland becomes a more crucial source than cropland, accounting for twice
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the share of developed land. For areas with low initial conditions, treeland is even more

important, accounting for more than 200% of developed land. In areas with low and medium

conditions, the development on treeland and cropland is offset by the conversion of developed

land to grassland, suggesting that the cost of land development in these areas is not high.

5.2.2. Estimates Across Difference Initial Conditions

Taking advantage of these distinct land development patterns, we explore differences in the

relationship between ∆Log(Dev) and ∆Log(FD) by estimating separate coefficients on the

change in developed land between the initial condition categories. The results are presented in

Panel B of Table 4. It reveals that there is no significant relationship between ∆Log(Dev) and

∆Log(FD) in the short and long term for zip codes with low initial conditions. In contrast,

the significant effect observed in the baseline analysis is mainly due to zip codes with high

initial conditions, where the majority of land development has occurred, and to a lesser degree

from those with medium initial conditions. Over the 15-year horizon, a one-percent increase

in developed land is associated with a 1.307-percent increase (significant at the 5% level) in

flood damage for the medium conditions group and a 3.330-percent increase (significant at

the 1% level) for the high conditions group, respectively. Over the 10-year horizon, a one-

percent increase in developed land is associated with a 1.289-percent increase (significant at

the 5% level) in flood damage for the medium conditions group and a 2.054-percent increase

(significant at the 5% level) for the high conditions group, respectively. In other periods with

shorter horizons, the estimates for either group are not statistically significant.

Figure 6 plots the estimated effect across the horizon for the three initial condition groups.

Compared to the general effect in Figure 4, the effect is much greater and more significant for

higher initial conditions. It is not statistically significant and close to zero in most years for

zip codes in the initial low group. In contrast, the effect is positive and significant after the

9th year for the medium initial conditions group and even greater in magnitude and earlier in

timing for the high initial conditions group.

Taking stock, we observe considerable variation in the estimated effect of developed land
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across different development sources, as well as the initial development conditions of the local

area. Lands developed from croplands and treelands are associated with the most significant

impact on flood damage, while other development sources are not as damaging to flood risk.

Similarly, the initial development conditions, which prove to predict development activities

in the following years, also influence the estimated effect, with the majority of the impact

stemming from development activities in areas with high initial conditions.

6. Distributional Analysis

In this section, we link the change in developed land with the demographic characteristics of

residents who ultimately bear the cost of flood damage.

6.1. Demographic Characteristics of Developed Land

6.1.1. Initial Demographic Characteristics

We identify the demographic characteristics of the land developed in the past 15 years using

Equation (3), but replace ∆(FD) with demographic variables at the zip code level as the

dependent variable. Table 5 Panel A presents the analysis of various initial demographic

characteristics in the year before our land cover sample begins. We adopt five specifications

to analyze the relationship between the demographic characteristics of the area and (1) the

change in developed land, (2) initial shares of different land covers that measure the natural

endowment, (3) the change in developed land from different sources, (4) the initial conditions

categories and (5) the interaction of the change in developed land and the initial conditions

categories.

The regressions in specification (1) reveal that, first, areas with a high proportion of mi-

norities, a high proportion of low-income population, lower housing values, lower income, and

a lower population in 2001 have experienced slower land development in the past 15 years.

Furthermore, the results of specification (5) show that the slower land development experi-
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enced by areas with more minorities and a higher low-income population is significant in all

three initial condition categories. Second, areas with a higher proportion of minorities and a

larger population tend to have less land available for future development, but relatively more

cropland than treeland available, as shown in Specification (2). In contrast, areas with a higher

proportion of low-income population tend to have more land available, particularly treeland

and other land covers except cropland. Third, despite having different natural endowments,

Specification (3) indicates that areas with a higher proportion of minorities, low-income pop-

ulation, and a larger overall population have experienced a relatively higher amount of land

developed from cropland compared to treeland. Fourth, Specification (4) shows that areas

with high initial conditions are associated with a higher proportion of minorities, more hous-

ing units, a larger population and higher housing value, but a lower proportion of low-income

population and a higher income.

6.1.2. Changes in Demographic Characteristics

These demographic characteristics are highly likely to change as more land is developed. Fo-

cusing on the net change from the initial level to account for people moving in and out,

Table 5 Panel B presents the analysis of changes in various initial demographic characteris-

tics. The results in Specification (1) indicate that, first, areas with more land development

are associated with a significant increase in the proportion and minorities, the proportion of

low-income population, housing units, housing value, income and population over the 15-year

span. Furthermore, the increase in minorities and the low-income population associated with

land development is more pronounced in areas with high initial conditions than elsewhere

(see Specification (5)). Second, Specification (2) shows that areas with more non-developed

land available have seen a significant decrease in the proportion of minorities and low-income

population, indicating that these populations have relocated from these areas to more devel-

oped ones. Specifically, areas with a high share of treeland have seen a greater decrease in

minorities, a smaller increase in population and median income compared to those with a

significant amount of cropland, while areas with a high share of cropland have seen a greater
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reduction in low-income population compared to those with a significant amount of treeland.

Third, areas with more land developed from treeland are associated with a significant

increase in the proportion of minorities, housing units, population, housing value, and median

income, exceeding the impact observed in areas with more land developed from cropland and

other sources. Areas with more land developed from other sources, such as wetland, are

associated with a significant increase in the proportion of low-income population, surpassing

the impact observed in areas with more land developed from cropland and treeland, as seen

in Specification (3). Fourth, areas with high initial conditions have experienced a significant

increase in the proportion of minorities, the proportion of low-income population and the

overall population, but a significant decrease in income, as seen in Specification (4).

6.1.3. Summary

In summary, the sources of developed land are largely determined by the natural endowments

of an area, specifically, the availability of different land covers. Consequently, the development

of these land covers inevitably affects the people who live in them. Our analysis indicates

that the most important land developed in the past two decades—those from cropland and

treeland—happen to be in areas where there is a low proportion of minority and a high

proportion of low-income population and where housing and population are sparse. As more

land is developed, these areas see a significant decrease in the share of the minority and low-

income population. There are also demographic differences between areas with more cropland

or more treeland available. Initially, areas with more treeland available have even fewer

minorities and a higher low-income population, experiencing a greater decline in minorities

and a lesser decline in the low-income population as more land is developed, compared to areas

with more cropland. Overall, land development, particularly from treeland, is associated with

a significant increase in income, population, and housing units, and a significant decrease

in the proportion of minorities, the proportion of low-income population, and the value of

housing.

The distribution of initial development conditions is related to, but different from, natural
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endowments in that areas with high initial conditions develop land equally from cropland and

treeland, while areas with medium and low conditions predominantly develop from treeland.

Relative to zip codes with low initial conditions, those with high initial conditions have a

higher proportion of minority but a lower proportion of low-income population, and have

experienced a significant increase in minorities and low-income population as more land is

developed. Thus, land development is expected to have different distributional effects on

different demographic groups due to differences in initial demographic characteristics as well

as changes in them.

6.2. Methodology

We quantify the distributional effects across demographic groups by estimating the change

in flood damage on developed land interacted with a grid of both land development sources

and initial conditions, while controlling for state-by-cohort year fixed effects and zip code

covariates. We focus on the 15-year LD as this represents the longest horizon in our data for

which we can estimate the long-term effect. The estimation is specified below:

(4)
∆Log(FDi,t0+15) =

∑
j

∑
k

βj,k ·∆Log(Devi,t0+15) · 1(Sourcej)

· 1(Initialk) + µs,t0 + θ ·∆Log(Xi,t0+n) + εi,t0+15,

where 1(Sourcej) and 1(Initialk) represent categorical variables defined based on sources of

land development (i.e., from cropland, treeland, and others) and initial conditions (e.g., low,

medium and high).

The coefficients for these 9 grids are presented in Table 6. Consistent with the results in

Section 5, the change in developed land from croplands and treelands is associated with a

significant increase in flood damage, while there is no significant link between developed land

from other sources and flood damage. The grid analysis further shows that the significant

association between the change in developed land from cropland and flood damage is valid
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in the medium and high initial condition categories, but that between land developed from

treeland and flood damage is only positive and significant for the high initial conditions group.

During the 15-year horizon, a one-percent increase in developed land from cropland and

treeland is associated with a 5.892 and 6.170-percent increase (both significant at the 1% level)

in flood damage for the initial high group. The effect decreases to only a 2.595-percent increase

(significant at the 5% level) in flood damage per one-percent increase in developed land from

cropland for the medium initial conditions group and an insignificant increase for the low

conditions group, respectively. The effect of the increase in developed land from treeland on

flood damage is positive, but not significant for the low and medium initial conditions.

6.3. Estimated Cost

Using the predicted XBETA from the coefficients for these 9 grids as the basis, we calculate

the long-run flood cost per hectare of developed land. This is done by transforming the

XBETA, representing the percent change in flood damage, to total dollars in each zip code

by multiplying the estimated percent change and FD0 at the zip code level. At the national

level, we estimate that the long-term flood cost of developed land through the flood damage

channel to be $627 million at the 15th year, which accounts for 14.7% of $4.27 billion in FD

increased from 2001 to 2016. Based on the distribution of the estimated cost over different

years depicted in Figure 4, we apply a factor of 4.1 to obtain the lifetime cost. This amounts

to $2.59 billion in total and $2,164 per hectare cumulated over the 15-year span, representing

the social cost of land development not paid by the private market. Based on the average

land value of $9,979 per hectare in 2016, the social cost represents 22% of the market value.

6.3.1. Spatial Distribution

However, there is significant spatial variation in the estimated flood cost, as shown in Figure

7, primarily due to differences in the natural endowment and initial development conditions.

Panel A shows the total estimated lifetime cost by US county. If all counties were to equally

share the total cost of $2.59 billion, that would amount to $839,000 per county. However,
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the top 1% of counties have to bear 95% of the cost, with the highest burden falling on

Harris County, TX, in the Houston metro area, which has to bear $1.53 billion. Most of these

hotspots are located in Texas, Louisiana, Virginia, Maryland and Florida. These hotspots

also have the highest cost per hectare of developed land in Panel B. Controlling for total flood

damage in Panel C, hotspots become more spatially clustered in Texas, Louisiana, Florida

and Maine, all coastal states. When we take into account the land value in Panel D, new

hotspots emerge in North Dakota and Washington besides Texas, Louisiana and Florida.

6.3.2. Distributional Effects Across Demographic Groups

Flood risk is not borne equally by all demographic groups. We utilize zip-code-level data from

the 2016 ACS to examine the demographic characteristics, focusing on race and poverty, of

present-day flood risk due to land development across the United States. Our analysis centers

on the estimated lifetime flood cost per hectare and as a percentage of actual flood damage

in the zip code. Panel A of Figure 8 indicates that zip codes with a higher proportion of

minority population experience disproportionately higher flood risk. The estimated flood cost

is $5,837 per hectare of developed land in zip codes in the top quartile by minority proportion,

roughly 69 times higher than the risk in zip codes that fall into the least minority quartile.

The share of total flood damage attributable to land development is 19.5% in the top quartile

by minority proportion, compared to only 3.1% in the bottom quartile.

Concentrating on majority communities, characterized by zip codes with less than a 30%

minority population, Panel B consistently reveals that high-income neighborhoods suffer dis-

proportionately higher flood cost, whether assessed through the poverty rate or median family

income. The estimated flood cost stands at $423 per hectare of developed land in zip codes

within the quartile with the lowest poverty rate and $497 in those with the highest median

income, each accounting for approximately 9.0% of the actual flood damage in these zip codes.

These shares are approximately 3 to 4 times higher than the share in zip codes falling into

the highest poverty rate and lowest median income quartiles.
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7. Conclusion

We estimate the effect of land development on flood risk in the continental United States based

on zip code-level data over the past two decades. Employing long differences and instrumental

variable approaches, we find that an increase in developed land is associated with a significant

increase in flood claims after 8 years through a 15-year span. During the 15-year horizon,

a one-percent increase in developed land is associated with a 2.08-percent increase in flood

damage based on the stacked LD approach and a smaller 1.64-percent increase using the

instrument variable approach, both statistically significant.

The estimates remain robust when we include changes in non-developed land covers. The

effect of developed land represents a new mechanism in which increased human development

activities can have a direct effect on flood risk, aside from the loss of natural covers. Further-

more, the effect is predominantly due to two development sources: cropland and treeland, not

other sources. The effect also varies by local initial development conditions, with zip codes

with high initial development conditions experiencing significantly higher growth in developed

land in the following years and also seeing the highest risk of floods per percent increase in

developed land.

Based on these estimates, we quantify a substantial amount of flood cost attributable to

land development land in the past decades. Due to the public nature of flood claims, the flood

cost is never priced into the original land development and has ultimately been and is expected

to continue to be borne by taxpayers. We find that the substantial amount of the long-run

cost of land development is spatially clustered in a few hotspots but ultimately receive implicit

transfers from the federal government. Zip codes with a higher proportion of black population

and high-income majority neighborhoods also experience a disproportionately higher flood

risk.
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Figure 1. Land Uses in the United States

A: Distribution of Land Covers in 2001 and 2016 (%)

B: Change in Land Covers: 2001-2016

Notes: This figure shows the land uses in the United States. Panel A compares the shares of each land cover in
2001 and 2016. Panel B shows the change in land cover between 2001 and 2016 in the unit of 1,000 hectares, with
the change in percentage denoted in parentheses.
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Figure 2. 15-Year Change in Developed Land and NFIP Claims

A: ∆Log(Developed Land)

B: ∆Log(Flood Damage)
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C: Correlation

Notes: This figure shows 15-year changes in developed land and flood damage between 2001 and 2016. Panel A
is the zip code-level map of the change in logarithm of developed land. Panel B is the zip code-level map of the
change in logarithm of NFIP flood damage. Panel C shows the raw binscatter plot of the two variables, with the
blue dashed line denoting the linear fitted line.
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Figure 3. First-Stage Results of IV Regressions

A: Differences in Flood Damage

B: Differences in Land Development

Notes: This figure shows the first-stage results of IV regressions, which presents the regressions of the logarithm
of flood damage (Panel A) and the logarithm of developed land (Panel B) on the indicators for Post-RTW ×
Low Developed and Post-RTW × High Developed by the year relative to the RTW enactment year. Lines show
90 percent confidence intervals. We control for state pair × relative year and zip code fixed years, and zip code
covariates, including zip code-by-year level population, housing units, housing value, income, and NFIP CRS.
Standard errors are clustered at the state pair level.
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Figure 4. The Effect of Land Development on Flood Damage over Different Horizons

Notes: This figure shows the effect of land development on flood damage over different horizons. Each data point
presents a regression of ∆Log(FD) on ∆Log(Dev) over a particular horizon, where the x-axis denotes the horizon
for the long differences and the y-axis denotes the coefficient. Upper and lower bounds indicate the 90% confidence
intervals. We control for zip code covariates, including zip code-by-year level population, housing units, housing
value, income, and NFIP CRS. Regressions are based on the stacked LD samples containing differences from four
cohort years: 2001 to 2016, 2002 to 2017, 2003 to 2018 and 2004 to 2019. All regressions are weighted by zip
code level population share (as a percent of national population) at the year level. Standard errors are clustered
at the county level.
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Figure 5. The Effect of Land Development on Flood Damage by Source

A: Estimates of Changes in Developed Land Sourced from Cropland

B: Estimates of Changes in Developed Land Sourced from Treeland

Notes: This figure shows the effect of land development by source on flood damage over different horizons. Each
data point presents a regression of ∆Log(FD) on ∆Log(Dev) sourced from cropland (Panel A) and treeland
(panel B) on a particular horizon, where the x-axis denotes the horizon for the long differences and the y-axis
denotes the coefficient. The upper and lower bounds indicate the 90% confidence intervals. We control for zip
code covariates, including zip code-by-year level population, housing units, housing value, income, and NFIP
CRS. Regressions are based on the stacked LD samples containing differences from four cohort years: 2001 to
2016, 2002 to 2017, 2003 to 2018 and 2004 to 2019. All regressions are weighted by zip code level population
share (as a percent of national population) at the year level. Standard errors are clustered at the county level.
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Figure 6. The Effect of Land Development on Flood Damage by Initial Conditions

A: Estimates for Areas with Low Initial Conditions

B: Estimates for Areas with Medium Initial Conditions
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C: Estimates for Areas with High Initial Conditions

Notes: This figure shows the effect of land development on flood damage over different horizons by the initial
development conditions. We classify all zip codes into low initial development conditions as those with initial
development level below the median and developed land density above the median, high initial development
conditions as those with initial development level above the median and developed land density above the median),
and medium initial development conditions as those not in the high or low conditions group. Each data point
presents a regression of ∆Log(FD) on ∆Log(Dev) over a particular horizon, where the x-axis denotes the horizon
for the long differences, and the y-axis denotes the coefficient. The upper and lower bounds indicate the 90%
confidence intervals. We control for zip code covariates, including zip code-by-year level population, housing units,
housing value, income, and NFIP CRS. Regressions are based on the stacked LD samples containing differences
from four cohort years: 2001 to 2016, 2002 to 2017, 2003 to 2018 and 2004 to 2019. All regressions are weighted
by zip code level population share (as a percent of national population) at the year level. Standard errors are
clustered at the county level.
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Figure 7. Spatial Distribution of The Estimated Long-Run Cost of Land Development

A: Total Estimated Cost ($)

B: Estimated Cost Per Hectare ($)
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C: Total Estimated Cost as % of Actual ∆FD

D: Estimated Cost Per Ha as % of Land Value

This figure shows the distribution of the estimated long-run cost of land development by county. Panel A plots
the total estimated lifetime cost of land development. Panel B plots the estimated cost of land development per
hectare. Panel C plots the estimated cost of land development as a percentage of the actual change in flood
damage in the area. Panel D is the estimated cost of land development as a percentage of the land value. The
long-run flood cost is predicted based on the regression in Table 6 and based on the LD sample containing 15-Year
changes from 2001 to 2016.
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Figure 8. Demographic Distribution of The Estimated Long-Run Cost of Land Development

A: Estimated Cost by Minority Population Share

B: Estimated Cost by Income Groups for Majority Neighborhoods

This figure shows the demographic distribution of the estimated long-run cost of land development at the zip code
level. It reports the estimated cost of land development as a percentage of the actual change in NFIP claims, with
the estimated cost of land development per hectare denoted in parentheses. Panel A shows the estimated cost
by minority population share at the zip code level. Panel B shows the estimated cost by low-income population
share and by median income, within the areas with relatively low share of minority share (quartiles 1-3 in Panel
A). Minority is defined to include Black, American Indian, Asian, Pacific Islander, and Hispanics. The low-
income population is defined as households whose incomes are less than two thirds of the national median (Pew
Research Center, 2015; Elwell, 2014). The long-run flood cost is predicted based on the regression in Table 6 and
based on the LD sample containing 15-year changes from 2001 to 2016.
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Table 1: Summary Statistics

Panel A: Full Sample

Variable N Mean SD P1 P5 P50 P95 P99

Main Variables

Dev0 105,612 1,117 1,146 29 79 696 3,479 5,177
∆Log(Dev) 105,612 0.024 0.087 -0.192 -0.064 0.005 0.164 0.352
FD0 (ha) 105,612 128,991 3,991,956 0.000 0.000 0.000 68,036 629,503
∆Log(FD) 105,612 0.384 5.281 -11.677 -9.456 0.000 9.891 11.910

Other Land Covers

∆Log(Wetland) 105,612 -0.003 0.082 -0.209 -0.052 0.000 0.025 0.213
∆Log(Cropland) 105,612 0.128 0.442 -1.002 -0.343 0.010 1.024 1.708
∆Log(Treeland) 105,612 -0.031 0.239 -0.822 -0.332 -0.008 0.193 0.716
∆Log(Grassland) 105,612 0.131 0.473 -0.971 -0.469 0.025 1.030 1.723
∆Log(Water) 105,612 0.009 0.230 -0.649 -0.218 0.000 0.259 0.779
∆Log(Barren) 105,612 0.169 0.556 -1.410 -0.649 0.102 1.126 1.787

Controls

∆Log(Housing Units) 105,612 0.108 0.194 -0.385 -0.100 0.078 0.431 0.769
∆Log(Housing Value) 105,612 0.518 0.251 -0.038 0.154 0.504 0.953 1.174
∆Log(Income) 105,612 0.340 0.148 0.000 0.115 0.333 0.583 0.766
∆Log(Population) 105,612 0.079 0.216 -0.495 -0.198 0.058 0.427 0.783
∆Log(CRS) 105,612 0.011 0.838 -2.918 -1.792 0.000 1.792 2.773

Panel B: RTW Sample

Treatment vs. Control Treatment Control

Initial Condition Low Developed High Developed Both

Time Pre-RTW Post-RTW Pre-RTW Post-RTW Pre-RTW Post-RTW

FD 10,593 6,914 16,644 8,182 15,871 9,398
(98,155) (75,076) (157,960) (44,463) (143,293) (64,552)

Dev 836 895 1,674 1,736 991 1,023
(1,015) (1,054) (1,219) (1,264) (1,125) (1,142)

Housing Units 2,782 2,938 8,967 9,121 4,231 4,301
(3,616) (3,783) (5,898) (6,006) (5,668) (5,872)

Housing Value 109,991 141,986 133,429 159,174 132,517 153,312
(46,696) (55,945) (69,498) (88,145) (85,539) (94,615)

Income 44,221 56,167 48,765 58,129 50,806 61,710
(13,172) (15,020) (19,919) (24,002) (18,798) (22,077)

Population 6,178 6,368 20,374 20,564 9,865 9,910
(8,453) (8,865) (13,692) (13,878) (13,460) (13,871)

CRS 0.170 0.116 1.197 0.737 0.248 0.260
(1.434) (1.114) (4.815) (3.269) (1.879) (1.925)

N 35,613 14,832 6,841 3,343 161,630 53,184

Notes: This table reports the summary statistics of the variables used in our analysis. Panel A includes the main
variables of interest, other land covers, and controls used in our stacked 15-year LD regressions. All the ∆Log
variables are the logarithmic change of the variable, weighted by the zip code level share of population, which
is also the weight in all regressions throughout the paper. Panel B reports the mean and standard deviation
(in parentheses) of the variables in the RTW subsample and used in panel regressions. The sample is further
classified into 3 subsample based on whether the state has the RTW law enacted during 2001–2019 (treatment
vs. control) and whether the zip code has a low or high initial developed land share. The high or low developed
share is defined based on whether the zip code has an initial developed share above or below the 75th percentile
within the state.
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Table 2: Baseline Results

Panel A: LD Regressions

Dep Var ∆Log(FD)

Horizon 1-Year 5-Year 10-Year 15-Year

(1) (2) (3) (4)

∆Log(Dev) -0.461 0.498 1.456*** 2.080***
(0.485) (0.503) (0.515) (0.512)

∆Log(Housing Units) 0.508* 0.702* 0.715** 0.515
(0.288) (0.399) (0.362) (0.461)

∆Log(Housing Value) -0.070 0.214 0.974*** 0.436
(0.155) (0.253) (0.282) (0.310)

∆Log(Income) 0.359** 0.265 0.398 0.419
(0.152) (0.225) (0.285) (0.343)

∆Log(Population) -0.155 -0.313 -0.279 -0.203
(0.255) (0.360) (0.340) (0.434)

∆Log(CRS) 0.551*** 1.163*** 1.165*** 1.155***
(0.020) (0.041) (0.041) (0.058)

State × Year FE Yes Yes Yes Yes

N 475,254 369,642 237,627 105,612
adj. R-sq 0.138 0.186 0.179 0.122
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Panel B: Panel Regressions

Dep Var Log(FD)

Sample Full RTW Subsample

Specification OLS OLS
IV

2nd-Stage 1st-Stage

(1) (2) (3) (4)

Log(Dev) 0.545*** 0.506*** 1.640*
(0.047) (0.079) (0.841)

Log(Housing Units) 0.827*** 0.611*** -0.114 0.634***
(0.082) (0.197) (0.568) (0.064)

Log(Housing Value) 0.627*** 0.019 0.605 -0.520***
(0.086) (0.114) (0.517) (0.137)

Log(Income) -0.156 0.223 -0.710 0.821***
(0.107) (0.203) (0.788) (0.120)

Log(Population) -0.337*** -0.064 -0.261 0.180***
(0.086) (0.175) (0.203) (0.052)

Log(CRS) 1.949*** 2.043*** 2.040*** 0.005
(0.069) (0.075) (0.073) (0.025)

I(Post RTW × Low Developed) 0.065***
(0.015)

I(Post RTW × High Developed) -0.225***
(0.052)

State × Year FE Yes
State FE Yes Yes Yes
State Pair × Relative Year FE Yes Yes Yes

N 501,657 275,443 275,443 275,443
adj. R-sq 0.333 0.204 0.152 0.822

Underidentification test (Kleibergen-Paap rk LM stat.) 17.07
Weak identification test (Cragg-Donald Wald F stat.) 433.06
Weak identification test (Kleibergen-Paap Wald rk F stat.) 11.553
Overidentification test (Hansen J stat.) 0.733

Notes: This table reports the baseline results for the effects of developed land on flood damage. Panel A is based
on the stacked ∆Log specification using 1-year, 5-year, 10-year, and 15-year differences. Panel B is based on the
RTW sample, where the treatment states are those with RTW Law enacted during 2001-2019, and the control
groups are the states adjacent to them but without RTW Law (with repeated observations). The dependent
variable and the main explanatory variable are ∆Log(FD) and ∆Log(Dev) over different horizons, respectively,
in Panel A and Log(FD) and Log(Dev) over different horizons, respectively, in Panel B. We control for state by
cohort year fixed effects and zip code covariates include zip code by year level population, housing units, housing
value, income, and NFIP CRS. Regressions are based on the stacked LD samples containing differences from four
cohort years: 2001 to 2016, 2002 to 2017, 2003 to 2018 and 2004 to 2019. All regressions are weighted by zip
code level population share (as a percent of national population) at the year level. Standard errors are clustered
at the county level. Asterisks denote significance levels (***=1%, **=5%, *=10%).
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Table 3: The Impacts of Developed Land Sources

Panel A: Effect of Non-Developed Land and Land Development Sources

∆Log(FD) Xβ × 100

(1) (2) (3) (4) (5) (6) (7) (8)

∆Log(Dev) 2.080*** 2.014*** 1.993*** 2.094***
(0.512) (0.490) (0.490) (0.505)

∆Log(Dev: Wetland) 3.361 4.454 4.827 0.411
(4.200) (4.198) (4.233)

∆Log(Dev: Cropland) 4.133*** 4.024*** 4.309*** 5.602
(1.038) (1.022) (1.030)

∆Log(Dev: Treeland) 3.076** 3.013** 3.578*** 5.921
(1.373) (1.369) (1.374)

∆Log(Dev: Grassland) -0.186 -0.176 -0.262 0.009
(0.757) (0.761) (0.759)

∆Log(Dev: Water) -1.010 -1.946 -1.012 -0.001
(4.324) (4.292) (4.204)

∆Log(Dev: Barren) 2.755 2.254 1.141 0.278
(3.088) (3.171) (2.944)

∆Log(Wetland) 0.591 0.524 0.607 0.524
(0.442) (0.454) (0.444) (0.453)

∆Log(Cropland) 0.003 0.053
(0.167) (0.168)

∆Log(Treeland) 0.325 0.359
(0.236) (0.234)

∆Log(Grassland) -0.106 -0.133
(0.090) (0.090)

∆Log(Water) 0.088 0.063
(0.146) (0.144)

∆Log(Barren) -0.078 -0.084
(0.071) (0.071)

∆Log(Non-Dev) -0.149
(0.171)

∆Log(Non-Dev/Wetland) -0.177 -0.132
(0.164) (0.168)

State-by-Year FE Yes Yes Yes Yes Yes Yes Yes
Zip Code Covariates Yes Yes Yes Yes Yes Yes Yes

N 105,612 105,612 105,612 105,612 105,612 105,612 105,612
adj. R-sq 0.122 0.122 0.122 0.122 0.123 0.123 0.123
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Panel B: Summary of Land Development Sources

Source of Developed Land 1-Year 5-Year 10-Year 15-Year

Change in Developed Land (ha)
Dev: Wetland 0.06 0.30 0.51 0.95
Dev: Cropland 1.09 4.55 7.17 14.52
Dev: Treeland 1.24 6.05 11.12 18.48
Dev: Grassland 0.06 -0.36 -2.44 -0.37
Dev: Water 0.01 0.00 -0.04 0.01
Dev: Barren Land 0.17 0.92 1.83 2.72
Total 2.63 11.46 18.15 36.32

% of Change in Developed Land (%)
Dev: Wetland 2.43 2.64 2.78 2.62
Dev: Cropland 41.54 39.73 39.50 39.98
Dev: Treeland 47.07 52.80 61.26 50.89
Dev: Grassland 2.15 -3.15 -13.42 -1.02
Dev: Water 0.32 -0.01 -0.22 0.04
Dev: Barren Land 6.49 7.99 10.10 7.50
Total 100.00 100.00 100.00 100.00

Percentage Change (%)
Dev: Wetland 0.01 0.03 0.04 0.09
Dev: Cropland 0.10 0.40 0.63 1.30
Dev: Treeland 0.11 0.53 0.98 1.65
Dev: Grassland 0.00 -0.03 -0.21 -0.03
Dev: Water 0.00 0.00 0.00 0.00
Dev: Barren Land 0.01 0.08 0.16 0.24
Total 0.23 1.01 1.60 3.25

Notes: This table reports the impact of developed land from different sources on flood damage. Panel A reports
the regression of ∆Log(FD) on ∆Log(Dev) over the 15-year horizon. We control for state by cohort year fixed
effects and zip code covariates include the logarithmic changes in zip code by year level population, housing units,
housing value, income, and NFIP CRS. Regressions are based on the stacked LD samples containing differences
from four cohort years: 2001 to 2016, 2002 to 2017, 2003 to 2018 and 2004 to 2019. All regressions are weighted
by zip code level population share (as a percent of national population) at the year level. Standard errors are
clustered at the county level. Asterisks denote significance levels (***=1%, **=5%, *=10%). Panel B reports the
summary of land development sourced from other land covers over 1-year, 5-year, 10-year and 15-year horizon.
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Table 4: The Impacts of Initial Conditions

Panel A: Land Covers by Initial Conditions

Initial Condition

Low Medium High

Initial Land Attributes
Initial Developed Share (%) 3.45 17.30 42.90
Initial Density Index 826 1998 3813

NFIP
FD0 ($) 19,504 68,687 273,419
FD Change ($) -5,309 -26,872 -78,222
FD Change (%) -27.22 -39.12 -28.61

Change in Developed Land (ha)
Dev: Wetland 0.33 0.95 1.41
Dev: Cropland 0.29 6.63 33.35
Dev: Treeland 5.51 13.55 33.29
Dev: Grassland -4.39 -6.57 9.09
Dev: Water -0.02 0.01 0.04
Dev: Barren Land 0.85 2.24 4.62
Total 2.56 16.81 81.80

% of Change in Developed Land (%)
Dev: Wetland 12.88 5.64 1.73
Dev: Cropland 11.25 39.43 40.77
Dev: Treeland 214.64 80.61 40.69
Dev: Grassland -171.22 -39.09 11.12
Dev: Water -0.68 0.07 0.05
Dev: Barren Land 33.12 13.36 5.65
Total 100.00 100.00 100.00

Percentage Change (%)
Dev: Wetland 0.11 0.11 0.07
Dev: Cropland 0.09 0.78 1.68
Dev: Treeland 1.76 1.59 1.67
Dev: Grassland -1.41 -0.77 0.46
Dev: Water -0.01 0.00 0.00
Dev: Barren Land 0.27 0.26 0.23
Total 0.82 1.97 4.11

No. of Zip Codes 7,043 9,891 9,469
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Panel B: Estimates by Initial Conditions

∆Log(FD)

1-Year 5-Year 10-Year 15-Year

(1) (2) (3) (4)

∆Log(Dev) × I(Initial Low Conditions) -0.152 0.082 0.255 0.354
(0.376) (0.551) (0.478) (0.451)

∆Log(Dev) × I(Initial Medium Conditions) -0.784 -0.023 1.289** 1.307**
(0.635) (0.599) (0.562) (0.531)

∆Log(Dev) × I(Initial High Conditions) -0.088 1.197 2.054** 3.330***
(0.768) (0.753) (0.867) (0.812)

Zip Code Covariates Yes Yes Yes Yes
State × Year FE Yes Yes Yes Yes

N 475,254 369,642 237,627 105,612
adj. R-sq 0.138 0.186 0.179 0.122

Notes: This table reports the impact of developed land on flood damage by different initial development conditions.
We classify all zip codes into low initial development conditions as those with initial development level below
the median and developed land density above the median, high initial development conditions as those with
initial development level above the median and developed land density above the median), and medium initial
development conditions as those not in the high or low conditions group. Panel A reports the summary of flood
damage and land development sourced from other land covers over 1-year, 5-year, 10-year and 15-year horizon.
Panel B reports the regression of ∆Log(FD) on ∆Log(Dev) over the 15-year horizon. We control for state
by cohort year fixed effects and zip code covariates include the logarithmic changes in zip code by year level
population, housing units, housing value, income, and NFIP CRS. Regressions are based on the stacked LD
samples containing differences from four cohort years: 2001 to 2016, 2002 to 2017, 2003 to 2018 and 2004 to 2019.
All regressions are weighted by zip code level population share (as a percent of national population) at the year
level. Standard errors are clustered at the county level. Asterisks denote significance levels (***=1%, **=5%,
*=10%).
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Table 5: Demographic Characteristics of Developed Land

Panel A: Demographic Characteristics in 2000

Dep Var

Share Share Log of

of of Low Housing Housing Median Popu-
Minority Income Units Value Income lation

(1) (2) (3) (4) (5) (6)

Specification (1)
∆Log(Dev) -0.397*** -0.439*** 0.041 0.935*** 1.017*** 0.302**

(0.041) (0.020) (0.136) (0.077) (0.048) (0.140)

Specification (2)
Initial Share: Cropland -0.247*** 0.010 -2.379*** -0.455*** -0.072*** -2.249***

(0.019) (0.010) (0.056) (0.044) (0.027) (0.063)
Initial Share: Treeland -0.348*** 0.058*** -2.189*** -0.397*** -0.155*** -2.435***

(0.017) (0.011) (0.054) (0.043) (0.030) (0.061)
Initial Share: Other Non-Dev -0.229*** 0.061*** -2.196*** -0.508*** -0.169*** -2.462***

(0.021) (0.013) (0.070) (0.046) (0.034) (0.074)

Specification (3)
∆Log(Dev: Cropland) -0.290*** -0.371*** -0.485** 0.538*** 0.860*** -0.030

(0.095) (0.047) (0.228) (0.170) (0.113) (0.234)
∆Log(Dev: Treeland) -1.333*** -0.735*** -2.109*** 1.277*** 1.757*** -1.978***

(0.138) (0.064) (0.270) (0.198) (0.156) (0.286)
∆Log(Dev: Other) -0.066 -0.331*** 1.268*** 1.037*** 0.746*** 1.388***

(0.068) (0.034) (0.259) (0.118) (0.083) (0.265)

Specification (4)
I(Initial Medium Conditions) 0.041*** -0.007*** 0.979*** 0.107*** 0.031*** 1.027***

(0.005) (0.002) (0.023) (0.012) (0.006) (0.024)
I(Initial High Conditions) 0.110*** -0.058*** 2.396*** 0.349*** 0.174*** 2.528***

(0.009) (0.004) (0.027) (0.018) (0.011) (0.028)

Specification (5)
∆Log(Dev) × I(Initial Low) -0.116* -0.192*** -0.296 0.567*** 0.420*** -0.130

(0.060) (0.022) (0.353) (0.097) (0.057) (0.354)
∆Log(Dev) × I(Initial Medium) -0.303*** -0.207*** -0.965*** 0.402*** 0.464*** -0.834***

(0.050) (0.023) (0.152) (0.113) (0.059) (0.159)
∆Log(Dev) × I(Initial High) -0.518*** -0.642*** 0.765*** 1.358*** 1.503*** 1.131***

(0.054) (0.028) (0.194) (0.100) (0.065) (0.205)

State FE Yes Yes Yes Yes Yes Yes

N 25,270 25,270 25,270 25,270 25,270 25,270
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Panel B: Change in Demographic Characteristics During 15-Year Span

Dep Var

∆Share ∆Share ∆Log of

of of Low- Housing Housing Median Popu-
Minority Income Units Value Income lation

(1) (2) (3) (4) (5) (6)

Specification (1)
∆Log(Dev) 0.126*** 0.076*** 1.211*** 0.126*** 0.121*** 1.324***

(0.014) (0.010) (0.050) (0.027) (0.017) (0.054)

Specification (2)
Initial Share: Cropland -0.060*** -0.042*** 0.145*** -0.050** 0.062*** 0.138***

(0.005) (0.004) (0.012) (0.021) (0.010) (0.015)
Initial Share: Treeland -0.076*** -0.032*** 0.090*** -0.069** 0.036*** 0.036**

(0.005) (0.005) (0.014) (0.029) (0.012) (0.018)
Initial Share: Other Non-Dev -0.053*** -0.051*** 0.142*** 0.001 0.061*** 0.116***

(0.009) (0.008) (0.022) (0.026) (0.021) (0.025)

Specification (3)
∆Log(Dev: Cropland) 0.133*** 0.033* 1.425*** 0.053 0.174*** 1.587***

(0.024) (0.019) (0.065) (0.052) (0.032) (0.070)
∆Log(Dev: Treeland) 0.146*** 0.058* 1.694*** 0.274*** 0.311*** 1.819***

(0.048) (0.032) (0.096) (0.079) (0.057) (0.101)
∆Log(Dev: Other) 0.103*** 0.111*** 0.753*** 0.121*** -0.007 0.808***

(0.023) (0.021) (0.099) (0.039) (0.037) (0.108)

Specification (4)
I(Initial Medium Conditions) 0.017*** 0.005*** 0.014** 0.017* -0.001 0.048***

(0.001) (0.001) (0.007) (0.009) (0.006) (0.008)
I(Initial High Conditions) 0.054*** 0.036*** 0.003 -0.004 -0.057*** 0.057***

(0.002) (0.002) (0.007) (0.010) (0.006) (0.009)

Specification (5)
∆Log(Dev) × I(Initial Low) 0.039** 0.027* 0.444*** 0.166*** 0.127*** 0.512***

(0.018) (0.015) (0.071) (0.035) (0.029) (0.073)
∆Log(Dev) × I(Initial Medium) 0.027* 0.026** 0.918*** 0.141*** 0.150*** 0.971***

(0.016) (0.013) (0.073) (0.031) (0.023) (0.081)
∆Log(Dev) × I(Initial High) 0.210*** 0.118*** 1.566*** 0.107*** 0.101*** 1.727***

(0.019) (0.013) (0.049) (0.037) (0.024) (0.052)

State FE Yes Yes Yes Yes Yes Yes

N 25,270 25,270 25,270 25,270 25,270 25,270

Notes: This table reports the demographic characteristics of developed land. The explanatory variables are the
change in developed land in Specification (1), initial shares of different land covers that measure the natural
endowment in Specification (2), the change in developed land from different sources in Specification (3), the
initial conditions categories in Specification (4), and the interaction of the change in developed land and the initial
conditions categories in Specification (5). The dependent variables are the proportion of minority, the proportion
of low-income population, the logarithm of housing units, the logarithm of housing value, the logarithm of median
income, and the logarithm of population in 2001 in Panel A and changes in these variables from 2001 to 2016 in
Panel B. Minority is defined as the population of Black, American Indian, Asian, Pacific Islander, and Hispanics.
The low-income population is defined as households whose incomes are below two-thirds of the national median.
All regressions in Panel B are weighted by zip code level population share (as a percent of national population)
at the year level. Standard errors are clustered at the county level. Asterisks denote significance levels (***=1%,
**=5%, *=10%).
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Table 6: Prediction Model

Dep Var ∆Log(FD)i,t0+15

Initial Conditions
Low Medium High

∆Log(Dev: Cropland)i,t0+15 1.512 2.595** 5.892***
(1.011) (1.097) (1.434)

∆Log(Dev: Treeland)i,t0+15 0.031 0.385 6.170***
(1.754) (1.912) (1.674)

∆Log(Dev: Other)i,t0+15 -0.414 0.696 -0.961
(0.503) (0.724) (1.420)

Zip Code Covariates Yes
State × Year FE Yes

N 105,612
adj. R-sq 0.123

Notes: This table reports the impact of developed land from different sources and initial development conditions
on flood damage. The dependent and main explanatory variables are ∆Log(FD) on ∆Log(Dev) over the 15-year
horizon, respectively. We control for state by cohort year fixed effects and zip code covariates include changes in
zip code by year level population, housing units, housing value, income, and NFIP CRS. Regressions are based
on the stacked LD samples containing differences from four cohort years: 2001 to 2016, 2002 to 2017, 2003 to
2018 and 2004 to 2019. All regressions are weighted by zip code level population share (as a percent of national
population) at the year level. Standard errors are clustered at the county level. Asterisks denote significance
levels (***=1%, **=5%, *=10%).
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