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Abstract

This paper uses foreign exchange (FX) options with different strike prices and
maturities (“the term structure of volatility smiles”) to capture both market expectations
and perceived risks. Using daily options data for six major currency pairs, we show that
the cross section and term structure of options-implied standard deviation, skewness
and kurtosis consistently explain not only the conditional mean but also the entire
conditional distribution of subsequent currency excess returns for horizons ranging
from one week to twelve months. We also find that exchange rate movements, which
are notoriously difficult to model empirically, are in fact well-explained by the term
structures of forward premia and options-implied higher moments. The robust empirical
pattern is consistent with a representative expected utility maximizing investor who,
in addition to the mean and variance, also cares about higher moments in the return
distribution. The term structure linkage in turn provides support for an Epstein-Zin
type preference. Our results suggest that the perennial problems faced by the empirical
exchange rate literature are likely due to overly restrictive assumptions inherent in
the prevailing testing methods, which fail to properly account for the forward-looking
property of exchange rates and potential skewness or excess kurtosis in the conditional

distribution of F'X movements.
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1 Introduction

The exchange rate economics literature has over the years faced many empirical puzzles.
As an example, although theory predicts that nominal exchange rates should depend on
current and expected future macroeconomic fundamentals, the consensus in the literature
is that exchange rates are essentially empirically “disconnected” from the macroeconomic
variables that are supposed to determine them. This empirical disconnect comes in the
form of low correlations between nominal exchange rates and their supposed macro-based
determinants and also in the form of poor performance of macro-based exchange rate models
in out-of-sample forecasting 1]

A related empirical anomaly that has received considerable attention in the literature is
the uncovered interest parity (UIP) puzzle or the forward premium puzzle. The UIP puzzle
is the empirical irregularity showing that the forward exchange rate is a biased predictor of
future spot exchange rates. The UIP puzzle is taken seriously in the exchange rate literature
because the UIP condition is a property of most open-economy macroeconomic models.

One manifestation of this empirical (ir)regularity is that countries with higher interest
rates tend to see their currencies subsequently appreciate and a “carry-trade” strategy
exploiting this pattern, on average, delivers excess currency returnsE] This violation of the
UIP condition is commonly attributed to time-varying risk premia and biases in (measured)
market expectations. However, empirical proxies based on surveyed forecasts or standard
measures of risk - for instance, ones built from consumption growth, stock market returns,
or the Fama and French! (1993)) factors -have been unsuccessful in explaining the puzzle.ﬂAs

such, while recognizing the presence of risk, macroeconomic-based approaches to modeling

1 See [Engel (2013) for a review.

2 A carry trade strategy is to borrow low-interest currencies and lend in high-interest currencies, or to
sell forward currencies that are at a premium and buy forward currencies with a forward discount.

3See, Engel (1996 for a survey of the forward premium literature, as well as recent studies such as
Burnside et al.| (2011) and Bacchetta and van Wincoop| (2009)).



exchange rates often ignore risk in empirical testingﬁﬁ

This paper argues that the persistent empirical puzzles faced by the exchange rate
economics literature are most likely due overly restrictive preference and distributional
assumptions in conventional testing methods. For example, researchers typically assume
that exchange rate returns are normally distributed, or that investors’ utility functions
depend only on the mean and variance. We argue that these auxiliary assumptions often
inadequately account for either the forward-looking property of nominal exchange rates or
potential skewness and/or fat tails in the distribution of FX returns.

We empirically demonstrate that FX risks as captured by higher order moments of
perceived FX returns distributions of perceived FX return distributions, as well as expectations,
captured by the term structure of option prices, do really matter in explaining exchange rate
movements. We highlight the usefulness of capturing risks and expectations in stages. First,
we show that options-implied standard deviations, skewness and kurtosis of future exchange
rate movements are able to explain not only the conditional mean, but the entire conditional
distribution of excess currency returns. Second, we show that information extracted from
the term structure options-implied risk measures add substantial explanatory power for
excess currency returns. Finally, we show that quarterly exchange rate movements are well
explained by the term structure of 1%*-4*moments of options-implied returns distributions,
with adjusted R%s ranging from 58% for USDJPY to 84% for GBPUSD.

Simple derivatives such as the forwards and futures have been used extensively in explaining
excess currency returns or exchange rate movementsﬁ Payoffs from forward contracts,

however, are linear in the return on the underlying currency and as such do not contain as

4 ( See for instance, [Engel and West| (2005); [Mark] (1995))

5On the finance side, efforts aiming to identify portfolio return-based “risk factors” offer some empirical
success in explaining the cross-sectional distribution of excess FX returns, but have little to say about
bilateral exchange rate dynamics (see for example, [Lustig et al.| (2011); Verdelhan| (2012)). [Lustig et al.
(2011) and |[Verdelhan| (2012)) for example, identify a “carry factor” based on cross sections of interest
rate-sorted currency returns and a “dollar factor” based on cross sections of beta-sorted currency returns.

6See for example, Hansen and Hodrick| (1980) and |Clarida and Taylor| (1997) among many others.



useful a set of information as the non-linear contracts we examine. Conceptually, since payoffs
of option contracts depend on the uncertain future realization of the price of the underlying
asset, option prices must reflect market sentiments and beliefs about the probability of future
payoffs.

Our use of options price data and related empirical methodologies has a number of
motivating factors. First, options are forward-looking by construction, which means option
prices should therefore be able to incorporate information such as forthcoming regime switches
or the presence of a peso problemﬂ Second, option prices are deeply rooted in market
participant behavior because they are based on what market participants do instead of
what they say.Furthermore, cross sections of option prices imply a subjective probability
distribution of future spot exchange rates, which captures both market participants’ beliefs
and preferences. E[Third, modern techniques such as the Vanna-Volga method ﬂ and the
methodology of Bakshi et al.| (2003)) facilitate elegant and model-free computation of options-implied
higher order moments of future exchange rate changes.

Our empirical findings in this paper have three implications. First, the exchange rate
model based on UIP is not that bad, and we can continue using it in open economy
macroeconomic models. However, we need to understand that if we put lognormal shocks,
they will not fit will. Quick improvements can be made by controlling for the term structure
of higher order moments, which can be obtained from option price data. Second, on the
financial side, concepts of risk which depend on only the mean and variance such as the
Sharpe ratio for portfolio performance evaluation, perhaps ought to be modified to account

for the importance of higher moment risks such as skewness and kurtosis.

7 The peso problem refers to the effects on inferences caused by low-probability events that do not occur
in the sample, which can lead to positive excess return.

8This distribution is commonly referred to as the “risk-meutral distribution”, though it does NOT
imply that the distribution is derived under risk-neutrality. On the contrary, it incorporates both the
expected physical probability distribution of future exchange rate realization as well as the risk premium, or
compensation required to bear the uncertainty.

9(See [Castagna and Mercurio| (2005))



2 Why Higher Order Moments and Term Structure?

2.1 Forward Premium Puzzle and Excess Currency Returns

The efficient market condition for the foreign exchange markets, under rational expectations,
equates cross border interest differentials ¢ — ¢ with the expected rate of home currency

depreciation, adjusted for the risk premium associated with currency holdings, ptF_G]
i7 — iy = EASiir + pror (2.1)

This condition is expected to hold for all investment horizons 7, with interest rates that are
at matched maturities. Ignoring the risk premium term, numerous papers have tested this

equation since Fama (1984)), and find systematical violations of this UIP condition:

St4r — 5t = a4 Bif —i7) + €rrs Bileyr] = 0,V
HO . B =1

(2.2)

with an estimated f < 0 and R?s that are usually close to zero. This is the so-called
uncovered interest rate parity puzzle or the forward premium puzzle (see [Engel (1996)), for
a survey of the literature). To see the connection with forward rates, we note that the
covered interest parity condition, an empirically valid no-arbitrage condition, equates the
forward premium f/T7 — s,, with interest differentials. The risk-neutral UIP condition above
thus implies that the forward rate should be an unbiased predictor for future spot rate:
Eisir = fI77 or 5047 = fIT7 + wyyr, where Ejfuy,,] = 0Vt

We should next define FX excess returns as the rate of return across borders net of

currency movement, and one can see that the UIP or forward premium puzzle can be

10 Tn this paper, we define the exchange rate as the domestic price of foreign currency. A rise in the
exchange rate indicates a depreciation of the home currency. However, “home”does not have a geographical
significance but follow the FX market conventions. See table (TJA)



expressed as a non-zero averaged excess return over time:
__ fitT — (2T ;T —
Trepr = [ = S = (i —i17) = ASppr = pryr + Urir (2.3)

It is natural then to note that the empirical failure of the risk-neutral UIP condition can be
attributable to either the presence of a time-varying risk premium, p,, ., or that expectation
error, u;, may not be i.i.d. mean zero over time. If the distribution of either of these is
not mean zero over the time series, empirical estimates of the slope coefficient in regression

equation ([2.2) would likely suffer omitted variable bias or other complications.

2.2 Why higher order moments? [']

We show that in addition to risk neutrality and rational expectations assumptions, the UIP
condition also hinges on the rather restrictive auxiliary assumptions that FX returns are i.i.d.
normal over time and that investors have constant absolute risk aversion (CARA) utility.
The two additional assumptions have the effect of reducing the representative investor’s
optimal asset allocation problem to a mean-variance optimization problem.

We start with the problem of an investor who, in each period, allocates her portfolio
among risky assets with the goal of maximizing the expected utility of next period wealth.
In each period, the investor has n risky assets to choose from. The vector of gross returns is
given by rip1 = (r1441, .o, Tnet1). 1f we suppose W is arbitrarily set to 1, then Wiy = a;rtﬂ
, where « is an n by 1 vector of portfolio weights.

The investors problem is to choose a; to maximize the expression

E:[U(Wii)] = Et[U(O‘:&Tt-i-l)]

= f f U(Wtﬂ)f(rt+1)d7”1,t+1d'f’2,t+1---dTn,tH

(2.4)

subject to the condition that )" ;= 1, where f(ry1) is the joint probability distribution

HMaterial in this subsection is from Mark (2001)



of Tta1-

2.2.1 CARA and Normality reduce problem to mean-variance optimization

Let us further assume that the investor has CARA utility and that returns are conditionally
normally distributed. The CARA utility assumption means the utility is given by

UWiy1) = —e ™1 where v > 0 is the coefficient of absolute risk aversion. The
distributional assumption req ~ N (g1, Xeq1) implies that Wiy ~ N (g, 41,05 ,,1), Where
Hpiy1 = O‘;MtJrl and nga,t+1 = a; Y

With the above two assumptions, expression (2.4) reduces tﬂ

L oo

5720-;),1&4-1 (25)

Ei[U(Wis1)] = —Eyle 4] = Vhp 41 —

Equation ([2.5) demonstrates that under the assumptions of CARA utility function and

conditional normality of returns, the general portfolio allocation problem ([2.4) reduces to
the mean-variance optimization problem.ﬁ

If we further assume that our investor has a 2-asset portfolio made up of a nominally

safe domestic bond and a foreign bond, and that she allocates a fraction « of her wealth to

the domestic bond, then next period wealth expressed in local currency units is given by

St
Si.

Wi = |a(l +14¢) + (1 — a)(1 +4f) W, (2.6)

In this 2-asset example and CARA utility and conditionally normal returns the expressions

12The second equality follows from the fact that e =YW+ ~ LN (=, Hl,’yQaf, th1) > 0 Eyflem W] =
. 2 2 ’ ’

VHpt+1 TV 0p 41

13The quadratic utility function imply mean variance optimization for arbitrary return distribution.
However, the quadratic utility implies increasing absolute risk aversion and satiation (Jondeau et al.| (2010)),
page 352).



for the conditional mean and variance of next period wealth are given by:

s = |a(1+) + (1= a)(1+ ) 252 | W, .
o2 (=eP4ip)Var (S W? '
pt+1 — 5152

Plugging the expressions in equation ([2.7)) into objective function ({2.5)), taking the first
order condition with respect to a and rearranging the first order condition yields the following

equation which implicitly determines the optimal a:

E.S —~AWi(1 — 1442V S
(1+lt) . (1-}-1:) tSH-l _ 7 t( Oé)( S_I; Zt) CLTt( t+1)' (28)
t t

Equation ({2.8) reduces to the UIP condition if we assume that all investors are risk-neutral

(v =0

L+iy  EySin

1+i S

(2.9)

The Fama regression in equation tests a logarithmic version of equation (2.9). The
key steps in deriving the testable restrictions in equation (2.9) are the joint assumptions of
CARA utility and conditional normality of next period wealth, which reduce the investor’s
optimization to mean-variance. The above discussion illustrates that deriving the UIP
equation tested through expression depends on other assumptions beyond rational
expectations and risk-neutrality. If the normality assumption is dropped, for example, then
expression will most likely include higher order moments. In fact, |Jondeau et al.[ (2010)
note that under CARA utility, if we drop the normality assumptions, then the investor would
prefer positive skewness and low kurtosis, such that the investor’s objective function in
equation will also include the third and fourth moments of the FX return distribution.
Scott and Horvath| (1980) show that a strictly risk-averse individual who always prefers more

to less (UM > 0) and likes positive skewness at all wealth levels will necessarily dislike high

HMUIP will also hold if o = 1, regardless of investors’ degree of risk Aversion.



kurtosis.

2.2.2 Asset allocation under higher order momentg"|

We showed in subsection that the assumptions of CARA utility and normality of returns
reduce the investor’s problem to mean-variance optimization. However, if the distribution
of portfolio returns is asymmetric, or the investor’s utility function is of a higher order
than the quadratic, or the mean and variance do not completely determine the distribution
of asset returns, then higher order moments and their signs must be taken into account
in the portfolio asset allocation problem. In this subsection we present a framework for
incorporating higher order moments into the asset allocation problem.

The objective in ([2.4]) can be intractable and it is usual to focus on approximation of
based on higher order moments. [Jondeau et al| (2010) consider a Taylor’s series expansion

of the utility function around expected utility up to the fourth order:

UWis1) = U(EWi41) + U(l)(Wt+1)(Wt+1 —EWi) + %U@)(Wt-i-l)(wt-i-l —EWi1)*+

FUOWy ) Wiy — EWi 1) + UG (Wyp) Wi — E,Wiga)?,
(2.10)

where U"(.) denotes the n' derivative of the utility function with respect to next period

wealth. Taking the conditional expectation of expression ([2.10]) yields

Eo[U(Wisr)] = U(EWip1) + UD (W) Wia — W) + %U@)(Wtﬂ)(WtH — E W)+

FUO W) Wiy — EWi 1) + UG (Wipr) Wigr — B, W)
(2.11)

Under the assumption that the investor’s utility function is CARA, expression (2.11]) reduces
to

Ei[U(Wip)] m —e™ [1 + %Uf) — %382 + %kﬂ . (2.12)

15Material in this subsection is from [Jondeau et al. (2010)



In equation , 32 and k;;} are the skewness and kurtosis of portfolio return. It is clear from
equation that under CARA utility, investors prefer positive skewness and dislike high
variance and high kurtosis. Optimal portfolio weights can then be obtained by maximizing
expression instead of the exact objective function shown in expression ([2.4)).

For CARA utility, the weight the investor puts on the higher order moments depends
on the degree of risk aversion parameter 7. In more general settings, however, the weight
on the n'® moment depends on the n'* derivative of the utility function, and the signs of
sensitivities of utility function to changes in higher moments cannot be easily pinned down.
If the moments are not orthogonal to each other, then the effect of utility of increasing one
moment might not be straight forward. Scott and Horvath (1980)) establish some general

conditions for investor preference for skewness and kurtosis.

2.3 Why term structure of option-implied moments?

Rearranging the UIP relationship in equation (2.1)) and iterating forward, we can show that
the nominal exchange rate depends on current and expected future interest rate differentials

as well as on expected future risk:

si= =Y Bulig;—ir;)  — D Eipy, (2.13)
=0 =0

J/

Expected future interest differentials  Expected Future FX risk
Expression highlights the link between the exchange rate and macroeconomic
fundamentals. There is a huge literature linking the term structure of interest rate rates(yield
curve) to expected future dynamics of macroeconomic fundamentals such as monetary policy,
inflation and output by observing that short term interest rates are monetary policy variables
that depend on macroeconomic variables such as inflation and output while longer term yields

are risk-adjusted averages of expected future short ratesE] Chen and Tsang| (2013)) extend

165ee |Diebold et al.| (2005) for a survey.



this strand of literature to the open economy context by noting that the term structure
of interest rate differentials (relative yield curve) contain information about the expected
future dynamics of differences in macroeconomic fundamentals. We note that the relative
yield curve captures the same information about expected macroeconomic fundamentals as
the term structure of option-implied first moments of future exchange rate movements. We
extend the literature on yield curve-exchange rate linkage by investigating the ability of
entire option-implied distributions to explain exchange rate dynamics.

Writing the exchange rate in the form in equation also demonstrates the importance
of capturing expectations and risk in the empirical modeling of exchange rate. Standard
empirical approaches usually impose distributional assumptions that reduce the sum of
expected future fundamentals to equal current fundamentals and also ignore risk. [/

There is also a strand of literature that document the empirical success of empirical
exchange rate models that capture information in the term structure of forward premia.Clarida
and Taylor (1997) and Clarida et al. (2003) show that even if the forward rate is a biased
predictor of future spot rate (the forward premium puzzles),the term structure of forward
premia still contains information useful for predicting subsequent exchange rate changes.
This line of literature is linked to (Chen and Tsang (2013) by observing that through the
empirically valid covered interest parity (CIP) condition, the forward premium equals the

interest rate differential at all maturities.

3 Information Content of Currency Options

3.1 Volatility Smile and Term Structure of Option Prices

Breeden and Litzenberger (1978) show that in complete markets, the call option pricing

7see [Engel and West| (2005), Mark! (1995).

10



function (C') and the exercise price K are related as follows:

P20 .
OK2 =e€ TrtQ(StJrT)? (31)

where ¢ and r/ are the domestic and foreign risk-free interest rates and 72(S,,,) is the
risk-neutral probability density function (pdf) of future spot rates. Equation implies
that, in principle, we can estimate the whole pdf of time S;,, spot exchange rate from time
t volatility smile. Once the distribution is available, it becomes possible to get empirical
estimates of the standard deviation, skewness , kurtosis and even higher order moments of
the market perceived probability density of S;,, given information available at time .

In addition to the Breeden and Litzenberger| (1978) result in equation , we note that
although market participants can be treated as if they are risk-neutral for the purpose of
option-pricing, option prices theoretically contain information about both investor beliefs
and risk preferences, as shown from the following formula for the price of a European-style

call option:

C(t, K, T) = / Mt,T(ST — K) Wf(ST) dST == €_TdT/ (ST - K) 7TtQ<ST> dST (32)
K S————" K ——

Preferences Beliefs Both

In equation , M, 1+~ is the pricing kernel, which captures the investor’s degree of risk
aversion and 7! (S;,,) is the physical probability density function of future spot exchange
rates [

A forward contract can in fact be viewed as a European-style call option with a strike
price of zero. To see this, we recall that, on one hand, the theoretical forward exchange rate

is given by the formula:

18 In the second expression, the pricing kernel is performing both the risk-adjustment and discounting

functions, while in the third expression these functions are divided between ’ﬂ'? and e

—’I‘dT

11



For=e"" / Sr@(Sr)dSr = e " TEQ(Sy). (3.3)
0

On the other hand, evaluating equation (3.2)) at K=0 yields:
C(t, 0, T) = erT/ STW?<ST)dST = Fth. (34)
0

The relationship between options and forwards in equation suggests that the cross
section of option prices should, at a minimum, contain as much information about investor
beliefs and preferences as that contained in forward prices.

Moving on to the term structure of option prices, one way to motivate the theoretical

information content of the term structure of option prices is to start from equation ([2.13)):

si= =Y Bl —iry) = D By (3.5)
. J=0 B j=0

Expected future interest differentials  Expected Future FX risk

Now, under the empirically valid CIP condition, interest rate differential is equal to the

forward premium for all tenors j{]

Tipj — zjfﬂ- = ffﬂ — s =—rir + EtQ {ln (;_Jj + Wi ,V tenor 7. (3.6)
~~ ~  Jensen’s inequality term

First moment of 7rtQ

Equation (3.6) thus says that, ignoring the Jensen’s inequality term w; and the constant

d

term —r?r, the interest rate differential equals the first moment of the option-implied

risk-neutral distribution of In (%—:7) for any given tenor j. The interest rates are monetary

policy variables and therefore depend on macroeconomic fundamentals such as unemployment

The second equality follows from dividing (3.3) by S; and taking logarithms

12



and inflation. When combined, equations and demonstrate that just like the
yield curve, the term structure of the first moments of implied distributions also captures
information about current and exzpected future macroeconomic fundamentals.

A second motivation for the information content of the term structure of option prices
comes from the expectation hypothesis for implied volatility,that the term structure of
option-implied volatility contain information about the market’s perception about the future
dynamics of short term implied volatility. If the expectations hypothesis holds in the FX
market, then the implied volatility for long dated options should be consistent with the

implied volatility of short dated options quoted today and in the future. m

3.2 Extracting Option-Implied Moments

We use the methodology of Bakshi et al.| (2003) (henceforth BKM) to extract model-free
option-implied standard deviation, skewness and kurtosis from the volatility smile. (Grad
(2010) and [Jurek (2009) also use the BKM methodology to extract FX options-implied
higher order moments. Ef] The BKM methodology rests on the results of |Carr and Madan
(2001), which show that if we have an arbitrary claim with a pay-off function H[S] with finite
expectations, then H[S| can be replicated if we have a continuum of option prices. They also
show that if H[S] is twice-differentiable, then it can be spanned algebraically by the following

expression

o0 g
HI[S] = (H[S]+(S—5Hs[5])+/s Hss[K](S—K)++/O Hss|K](K — S)TdK, (3.7)

20For example, if the current six month implied volatility is 10% and the current three month implied
volatility is 5%, then, under the expectation hypothesis, then the three month implied volatility three
months from now should be 13.2% because

0.5(0.1)% = 0.25(0.05)% + 0.25(0.132).

2Tn this section we closely follow the exposition and notation in |Grad| (2010).

13



where Hg = and Hgg = 22 Assuming no arbitrage opportunities, the price of a claim

with pay-off H[S] is given by the expression

p: = (H[S]—SHs[S))e - T+ Hg[S it / Hgs|K t,T,K)—i—/S Hgs[K|P(t, 7, K)dK

i (3.8)

where K is the strike price, C(¢,7,K) and P(t,7,K) are, respectively, the prices of a

European-style call and put options. S is some arbitrary constant, usually chosen to equal
current spot price.

Equation indicates that any pay-off function H[S| can be replicated by a position

of (H[S] — SHs[S]) in the domestic risk-free bond, a position of H[S] in the stock, and

combinations of out-of-the-money calls and puts, with weights Hgs[K]|. Suppose we have

contracts with the following pay-off functions@

[R:(Si4-)]?, Volatility Contract
H[S] = [Ry(Si.+)]?, Cubic Contract (3.9)

[R¢(St-)]*, Quartic Contract,

where R;(Si1,) = ln(%) . BKM show that the variance, skewness and kurtosis of the

distribution of R;,, can be calculated using the following formulas:

Stdev(t,7) = \/erV(t,7) — pu(t, 7)? (3.10a)
d
Skew(t, 7) = LWV ubre utr)? 3.10b
(&7) e TV (tm)—n(t.)?) 2 (3.100)
erdTX t,T —4erd" t,T)W (t,7)+6e" T u(t, )2V (t,7)—3u(t,7)*
Kurt(t’ 7—) = (t,7) M([er)TV((t 7_)) ” tT)M§2 )2V (7)) =3u(t,T) 7 (310C)

220ne can use the framework to price contracts with higher order payoffs and therefore extract moments
of order higher than 4. The point that we want to emphasize, that higher order moments matter, is
demonstrated even if we only stop at 4" order.

14



where the expressions for V' (t,7),W (¢, 7) and X (¢,7) and u(t,7) are given in appendix ({A).
&

The BKM methodology described above requires a continuum of exercise prices. However,
in the OTC FX options market implied volatilities are observed for only a discrete number
of exercise prices. We therefore need a way to estimate the entire volatility smile from a few
(K — o) pairs by interpolation and extrapolation. To this end, we use the Vanna Volga (VV)
method described in [Castagna and Mercurio (2007). The procedure allows us to build the
entire volatility smile using only three points. Castagna and Mercurio| (2007)) note that if we
have three options with implied volatility o1,02, 03 and corresponding exercise prices K1,/
and K3 such that K; < Ky < K3, then the implied volatility of an option with arbitrary

exercise price K can be accurately approximated by the following expression:

—09 4+ /03 + di(K)day(K) (209D, (K) + Da(K))

o(K) = 79 + NI , (3.11)
where
] m (%) |l ][]
Di(K) = - P o1+ p pa o2 + pa PRGNS
In [Fﬂ in [E] In [E} In [72] In [E} n [E}
Dy(K) = ;: {[;] EZ {? dy (K1) do (K ) (01 — 02)? + mgmgd1<K3)d2(K3)(03 o)
and

- log[%] +(rd =7l + %O’%)T

d
1(55 0'2\/F

ydo(z) = di(x) — 0aV/T, 7w € K, Ky, K>, K.

Expression (3.11)) allows us to find the implied volatility of an option with an arbitrary strike

ZDerivations of equations in (3.10) and expressions for u(t, ),V (t,7), W(t,7) and X (¢,7) can be found
in [Bakshi et al.| (2003) and |Grad| (2010).
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price. We use Ky = Kossp, Ko = Kary and K3 = Kass.. The VV methodology is preferable

because it is parsimonious as it uses only three option combinations to build an entire

volatility smile. @ Furthermore,the VV method also has a solid it is based on a replication

argument in which an investor constructs a portfolio that, in addition to hedging against
aC

movements in the price of the underlying asset (0 = %), also hedges against movements in

volatility of the underlying asset (Vega = %).

3.3 Data Description

In the o-t-¢c market, the exchange rate is quoted as the domestic price of foreign currency,
so a fall in the exchange rate represents an appreciation of domestic currency.

Compared to exchange-traded options, there are several advantages that come with using
o-t-¢ data in our empirical analysis. First, most of the FX options trading is concentrated
in the o-t-c market. This means o-t-c currency options prices are more competitive and
therefore more likely to be representative of aggregate market beliefs compared to prices in
the less liquid exchange market. E A second advantage of using o-t-c option price data
is that fresh options for standard tenors are quoted each day, making it possible to obtain
a time series of FX option prices with constant maturities. Lastly,unlike American-style
options traded in the exchange market, European-style options that are traded in the o-t-c
market do not need to be adjusted for the possibility of early exercise.

We next explain some important OTC currency market quoting conventions. First,
option prices are given in terms of implied volatility instead of currency units while “moneyness”

is measured in terms of the delta of an option. The delta of an option is a measure of the

24This is the minimum number that can be used if one wants to capture the three most prominent
movements in the volatility smile: change in level, change in slope, and change in curvature.The ATM
straddle, VWB and the Risk Reversal capture these movements. See discussions in |Castagnal (2010) and
Malz| (1998])

“Table (1/C), obtained from the 2010 BIS Triennial Survey, shows that although the o-t-c options market
is small relative to the overall FX market, it is very liquid and rapidly growing when we look at it in absolute
terms.
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responsiveness of the option’s price with respect to a change in the price of the underlying
asset. If the prices of call and put options are given by C; and P;, then option price and

implied volatility are linked using the Black-Scholes formula applied to FX:

Cy = e [Ftt+7q)(d1) - Ké(d?ﬂ

d

P o= ¢ [K@(—d2) — Ftt+7@(—d1)}

where
loal5St 4 (rd — f_|_l 2
dy = OQ[K] -y 2UQ)T,Olz:dl — 09V/T.
O'Q\/F

The expressions for call and put deltas are given by the expressions:

5. =e " (dy) (3.12a)

5, = e B(—dy), (3.12b)

where ®(.) is the standard normal cumulative density function (cdf). The absolute values of
). and 9, are therefore between 0 and 1, while put-call parity implies that , = . — 1. ﬁ
Lastly, in the FX o-t-c option market, prices are quoted in combinations rather than
simple call and put options. The most common option combinations are at-the-money
(ATM)P straddle, risk reversals (RR), and Vega-weighted butterflies (VWB). An ATM
straddle is the sum of a base currency call and a base currency put, both struck at the
current forward rate. An RR is set up when one buys a base currency call and sells a base

currency put with a symmetric delta. Finally, a VWB is built by buying a symmetric delta

26The market convention is to quote a delta of magnitude x as a 100 * = delta. For example, a put option
with a delta of -0.25 is referred to as a 250 put.

27«ATM here means the delta of the option combination is zero. That is, the option combination is
“delta-neutral”
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strangle and selling an ATM straddle. ¥ The 256 combination is the most traded options
VWB.

P’ The definitions of the three option combinations are as follows{"|

TATM,r = 005c,r = 0506 + 0500p (3.13a)
O0256RR,r — 0256c,r — O256p,7 (313b)
O955¢,r + O256p,r
0 256vwb,r — 5 —O0ATM,r (313(})
Strangle

Equations (3.13)) can be rearranged to get the implied volatility for 06 call, 256 call and 256
put. Expressions for backing out implied volatility of these“plain-vanilla” options from the

prices of traded option combinations are given below:

O0sc,r = OATM = O508c,r T O508p,7 (3.14a)
1

O956cr = OATM + O2560wh,r + 50256 RR.r (3.14b)
1

O25op.r = OATM + O256vwbs — 5025RR.r- (3.14c)

Finally, Kassp, Karnr, Kaosse, the exercise prices corresponding to o ararr, 02sscr and oassp -

can be backed out by using the expression for option deltas given in equation (3.12|). For

28In a strangle, you buy an out of the money call and an equally out of the money put

29 The ATM straddle, risk reversal and strangle are usually interpreted as short cut indicators of volatility,
skewness and kurtosis of the perceived conditional distribution of exchange rate movements. The profit
diagrams in figure demonstrate why:

(i) the straddle becomes profitable if there is a movement in the underlying asset’s price
(ii) the risk-reversal makes profit if there is a movement in a particular direction

(iii) the strangle becomes profitable if there is a big movement in any direction in the underlying asset’s
price.

30Table 1I= contains sample option price quotes for standard combinations and standard maturities.
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example, to get K a7y we use the fact that the ATM straddle has a delta of zero:

S S
e In[2=] + (1 =11 + 50% 0T In[g2=] + (1 =11 + 50% 0T B
e P - | — =
o aTMNT T arMNT

(3.15)

Since ®(.) is a monotone function, we can solve equation (3.15) for Karys to get:
Kary = St@(rd_rf"'%a,%xTM)T = Ftt+T€%0-124T]M' (316)

Using similar arguments, one can show that the expressions for Koss. and Kossp

Kosg, = Syel=@ (Ge Momsse rv/mH(ri—rT 4 Jo3s5)7] (3.17a)
Kassp = Ste[q’_l(ierdf)”%éwﬁ*(?“d*”*%Ugsap)ﬂ, (3.17b)

with Kossp < Karm < Kasse (Castagna and Mercurio| (2007))).
Our options data consists of over the counter (o-t-c) option prices for the six currency
pairs listed in table (1JA) and covering the period 1 January 2007 to April 19 2011.

The spot rates, forward rates and risk-free interest rates are obtained from Datastream.

4 Empirical Strategy and Main Results

4.1 Empirical properties of extracted option-implied moments

Time series plots of the extracted risk neutral moments of logg—f are shown in figure 1}

The extracted moments are very persistent, with AR(1) coefficients as high as 0.99. Zivot
and Andrews (1992) unit root tests, however, suggest that almost all the implied moments
are stationary,with structural breaks in the means on dates around late 2008 and early 20009.

There are also some outliers in some of the skewness and kurtosis series, especially for 9m

19

0.



and 12m tenor 1

INSERT FIGURE HERE

4.2 Can the term structure of implied moments predict currency

returns?

For each currency pair ¢, we start by estimating the standard UIP regression
3i+7 —sp=a+B(fiTT -5 + €i+7- (4.1)

We focus on model fit and joint significance rather than testing whether the [ coefficient
is equal to 1. Fitted vs Actual plots of estimated regression (4.1)) (with breaks) are shown
in figures [d(a)44(e), while condensed results can be found in column A of table (3)). For all
currency pairs, the forward premia coefficients are statistically significant at the 1% level,
and adjusted R? of at least 10% for each currency pair.

We then consider the predictive ability of 7-period option-implied higher moments by

estimating the following augmented UIP regression:

st — st =a+ B (fITT — s;) + Bystdevy™ + Byskewy™ T 4 Bikurty™ T + ey, (4.2)

Equation (4.2) therefore augments the standard UIP equation (4.1]) by studying the predictive

ability of the 1% — 4"* moments of the distribution of log (%—T) The condensed regressions
results are shown in column B table (3) . The adjusted R%s for the matched-frequency
augmented UIP regressions are consistently higher than those from the standard UIP specification
in column A, ranging from 26% to 67%. Coefficients on the higher order moments are always

jointly significant at the 1% level.

31Summary statistics of the extracted moments can be found in the online appendix to this paper.
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We next estimate a term structure modification of the standard UIP equation (4.1]) that
uses information contained in the term structure of forward premia to predict exchange rate
movements:

3
Stir—S; =", + Z v1,;,PCymeanTerm + €. (4.3)
j=1

Condensed results from regression specification are presented in column C of table (3]).
Comparing columns A and C in table , we see that adding the whole term structure of
forward premia significantly improves the UIP regression fit. For example, the adjusted R?
jumps from 27% to 57% for AUDUSD, 15% to 40% for EURUSD and from 15% to 54% for
USDCAD.

Lastly, we regress exchange rate movements on the term structure of 1%* — 4 moments:

3 3
Siian — S = Yor + Z WlﬁjPijeanTermi + Z ’yQJPC'jstdevTe’r’mi—i-
j=1 j=1
3 3
Z V3 PCjskewTerm’ + Z V4 ;PCikurtTerm' + €, 3,

j=1 7j=1

(4.4)

Plots of actual versus fitted values from regressions and are shown in figures
(). These plots show that considered with the standard UIP regression, accounting for
higher order moment risks and expectations substantially improves that model fit. The
condensed regression results for the higher moment term structure specification, shown in
column D of table show that compared to the UIP specification in column A, accounting
of for higher moments and expectations,for example, increases adjusted R? from 27% to 67%

for AUDUSD, 15% TO 53% for EURUSD and from 10% to 57% for USDJPY.

INSERT TABLE AND FIGURE HERE
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4.3 Can option-implied moments forecast FX excess returns?
4.3.1 Matched Frequency Analysis: Predictive ability of the volatility smile

For each currency pair ¢, we start by investigating the predictive ability of 7 — period
option-implied measures of standard deviation, skewness and kurtosis for subsequent excess

currency return@:

i, t+T

b t4+T i . s i t4T
JiT = Bu(sir) = Y0, + 11 p5tdey;

+ Yo shew, " + 737Tk:urti’t+7 + Ui pr (4.5)

Under rational expressions, fi'"" —E,(s! +-) is also equal to the risk premium. |Gereben| (2002)
and Malz (1997)) also estimate regression specification and interpret the results in light
of the time-varying risk premia explanation of the UIP puzzle. |Gereben! (2002) argues that
if the forward bias is due to time-varying risk premia, then variables that capture the nature
of FX risk should be able to explain the dynamics of the forward bias. The option-implied
moments on the RHS in regression equation , which capture perceived FX volatility, tail
and crash risk should therefore be able to explain the forward bias. Malz| (1997) also argues
that statistical significance of the coefficient on skew!™™ can be interpreted as providing
support for the peso problem explanation of the UIP puzzle.

Going back to expression , we note that E,(s,;,) is not observable. If we assume that
market participants have rational expectations, then E;(s;;,) and sy, will only differ by a

forecast error vy, that is uncorrelated with all variables that use information at time ¢, such

that

Stpr = Ee(Se47) + viga (4.6)

Plugging equation (4.6 into equation (4.5 and rearranging gives us the following estimable

32Excess returns are a component of the expected exchange rate movements since E;(s}, ) — si can be

decomposed into excess returns —( Z T E¢(s},,)) and the interest differential, which equals f, — s, under

CIP.
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regression equation:

Tlipr = Yor + V1,5tdevy ™ 4y, skew™ + v kurty™™ + ey (4.7)

where the error term €., = us, + vy, and xry, is ex-post excess returns defined in
expression ([2.3]).

To provide intuition regarding expected coefficient signs in the regression equation ,
we take the point view of a domestic investor who invests in domestic bonds using money
borrowed from abroad. As shown in equation , such an investor benefits from higher
domestic interest rates as well as appreciation of domestic currency. Let’s also assume that
the home currency is riskier, such that our investor would demand higher excess returns for
higher stdev and kurtosis in the exchange rate. If investors are averse to high variance and
kurtosis, they would require higher excess returns for holding bonds denominated in units
of the riskier domestic and we would expect the coefficients on stdev and kurtosis to be
both positive. We expect the skew coefficient to be positive for investor’s with preference
for positive skewness. Such an investor will require higher compensation for an increase in
skew, which represents a higher perceived likelihood of domestic currency depreciation.

Given the discussion in subsection , however, we note that pinning down the
coefficient signs a priori is impossible without making further assumptions about the investor’s
utility function or orthogonality of the moments. In our regression analysis, we therefore
focus mainly on joint significance of the explanatory variables and model fit rather than on
significance and signs of individual coefficients.

Sub-sample analyses suggest the presence of structural breaks in the matched-frequency
regression relationships for the majority of currency pairs and tenors. We use the Bai and

Perron| (2003)) structural break test to identify the date for the most prominent break ﬁ and

33We only focus on the major breaks, and therefore do not choose the number of breaks according to
information criteria such as AIC.
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estimate a modification of regression equation (4.7) that includes interactions with structural

break indicator variable:

Ty = Yor + Yoo, D177 + D177 % fyl’Tstde'Ui’HT + D157 % 72’Tskewi’t+7 + D1"7x

(4.8)

i, t+T i,t+T i, t+T i, t+T 7
Vs kurty "+ pstdevy T + 5 skew, T + g kurty T 4 6y

where D1%" is an indicator variable that is zero before the break date and equal to one
otherwise.

The matched-frequency results, shown in tables[5|(a){5|(f), demonstrate a consistent ability
of options-based measures of FX standard deviation, skewness and kurtosis-proxying to
explain excess currency returns. The coefficients on the six non-intercept terms are always
jointly significant at the 1% level. The adjusted R?s for example, range from 13% (USDJPY)
to 28% for 1 month tenor and from 20%(USDJPY) to 42% (EURJPY) for the 3M tenor.

We next go beyond OLS regression, which models the conditional mean of the the
dependent variable given the explanatory variables, by using quantile regression analysis
(QR) to investigate the predictive ability of options-based FX risk measures for the entire
distribution of ex-post excess currency returns. By modeling the entire distribution of the
dependent variable, QR allows us to get a more complete picture of the predictive ability
of the option-implied moments. QR also has a further advantage over OLS in that it is
robust to outliers in the dependent variable and does not impose restrictive distributional
assumptions on the error terms.

We estimate the following linear quantile regression model, modified to include one break:
Q7" (01) = 7o, + 11, STDEV T 47, SKEW;™ T 473 KURTY'™ + €07, (49)

where Q?7(6)|.) is the 8" quantile of excess returns given information available at time t.

Matched-frequency quantile regression results for 3M tenor are shown in tables )—

34We estimate the quantile regression model using the same break dates obtained in the OLS analysis
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(7f). We find that the coefficients on non-intercept terms are always jointly significant
across quantiles for all currency pairs. Adjusted R?s range from 13% to 44% for AUDUSD,
and 12% to 30% for USDJPY for example. Another consistent pattern across currency pairs
and tenors is that option-implied moments have more predictive ability for lower and upper

quantiles of excess returns than the middle quantiles.

INSERT TABLES (%h)- (@)HERE

4.3.2 Can the term structure of implied moments predict excess currency returns?

We first extend regression equation (4.7)) by regressing 3M bilateral excess returns on 1M,
3M and 12M option-implied moments. That is, for each currency pair ¢, we estimate the

following OLS regression:

xri+3M = 70,3M‘|‘Z 71,Tj3tdevz+%i+z 72,Tj3k€w§+7j7i+z V3,75 kurt?Tj’i‘f"fijL:sMa (4.10)
J J J

where j € {1M,3M,12M}. Similar to the matched-frequency analysis in subsection ,
our final term structure regression model is a modification of in which we include
interactions with a structural break indicator variable D1. Regression results from specification
([4.10) (with break ) are shown in column B of table (2). Compared to the matched frequency
results presented in column A, we see a huge increase in the adjusted R%s. For example,
adjusted R? increases from 33% to 62% for AUDUSD, 34% to 49% for EURUSD, and from
20% to 36% for USDJPY.

In column C of table , we present condensed results of regressions that incorporate
information from all tenors (not just 1M,3M and 12M) by using principal components
extracted from all tenors.

Column C therefore contains results from the following regression:
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3 3
xr§+3M = Yo, t+ Z VQ,jPsttdevTermi + Z 737jPstkewT6rmi+
j=1 j=1

; (4.11)
Z 747jPCj kurtTerm' + ef;+3M.

j=1

In equation (4.11), PCjxzzxzTerm’ refers to the j principal component extract from
the currency 7 term structure of option-implied moment zzxx. Results from estimation
regression equation (4.11]) are in column C of table .

Lastly, we extend the specification in (4.11)) by adding information from the term structure

of first moments as additional regressors:

3 3
xr§+3M =Y, + Z 'yl’jPC’jmeanTermi + Z ’yZ,jPsttdevTermi—l—
j=1 j=1

5 . (4.12)
Z 737jPstkewTermi + Z 747jPCjkurtTermi + € -

j=1 j=1

The term structure of first moments captures expectations of the dynamics of future
macroeconomic fundamentals. We use the term structure of interest rate differentials to
extract the principal components of the term structure of first moments of log<sg,—+;).
Using yield curve data to extract the term structure of first moments has the advantage of
allowing us to also use interest rate differentials for tenors not covered by our option price
data. As with our previous regressions, we estimate a version of regression model that
includes interactions with a structural break indicator variable.

The condensed results from estimating equation (4.12) with breaks are presented in

column (D) of table (2). Actual vs fitted plots from this regression are shown in figures

35As noted earlier,the forward premium, which is the theoretical mean of the risk-neutral probability

St+7’
St

density of log( ) is equal to the interest differential i™ — ¢*7.
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(Bl2)Ble)-
INSERT FIGURE (3) AND TABLE (@) HERE

Compared to the matched frequency regressions column A of table , inclusinf the term
structure of 1% — 4" moments increases the adjusted R? from 33% to 66% for AUDUSD,
34% TO 51% for EURUSD, 48% to 83% for GBPUSD, 48% to 62% for USDCAD and from
20% to 57% for USDJPY. These dramatic improvements in the model fit further highlight

the importance of properly accounting for expectations and higher moment risks.

5 Conclusion

This paper has documented a robust ability of options-implied measures of FX higher
moment risks to explain subsequent excess currency returns and FX returns. We also find
that the term structure of such risks, capturing forward-looking property of the exchange
rate, add further explanatory power. Our findings suggest that expectation and risk should
be given more careful consideration in the structural modeling and empirical testing of
exchange rate models.

This paper can be extended in several directions that are useful to academics,monetary
policy officials and investment professionals. First, how useful is the option-based information
for out-of-sample forecasting of exchange rate. The ability to accurately forecast exchange
rates movements for many purposes, including determining the future value of foreign denominated
debt payments and for hedging for investment managers exploiting international investment
opportunities. Second, an empirical analysis of the macroeconomic variables and events that
drive the option-implied moments would further shed light on the link between exchange

rates and fundamentals. Lastly, it might be worthwhile to
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Figure 1: Profit diagrams for options strategies

(a) Profit Function of a Straddle

(b) Profit Function of a Risk Reversal
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Note: Straddle, Risk Reversal,Strangle and Butterfly are as defined in subsection
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Figure 2: Time Series Evolution Of Option Implied Moments

(a) AUDUSD STDEV
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Figure 2: Time Series Evolution Of Option Implied Moments

(d) EURJPY STDEV
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Figure 2: Time Series Evolution Of Option Implied Moments

(g) EURUSD STDEV

Time Series Plots of EURUSD Option-lmplied Standard Deviations
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Note: Moments extracted using the methodology developed in |Bakshi et al.| 420031).
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Figure 2: Time Series Evolution Of Option Implied Moments
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Note: Moments extracted using the methodology developed in |Bakshi et al.| 420031).
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Figure 2: Time Series Evolution Of Option Implied Moments
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Note: Moments extracted using the methodology developed in |Bakshi et al.| 420031).

37



Figure 2: Time Series Evolution Of Option Implied Moments
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Note: Moments extracted using the methodology developed in|Bakshi et al| (2005).
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Figure 3: Quarterly FX Excess Returns on Term Structure of 1% to 4 Moments+Break
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Figure 3: Quarterly FX Excess Returns on Term Structure of 1% to 4 Moments+Break
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Note: Fitted vs Actual plots from the regression of 3M excess return, as defined in expression , on
the first three principal components from the term structure of extracted moments of 7T'? (ln%) (Regression
specification in expression . Condensed regression results are in column D of table @) .
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Figure 4: Quarterly FX Movements on Term Structure of 1% to 4 Moments+Break
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Figure 4: Quarterly FX Movements on Term Structure of 1% to 4* Moments+Break
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Fitted vs Actual plots from the regression of 3M log (%—T) on the first three principal components from the

t
term structure of extracted moments of W? %;z%f) (Regression specification in expression . Condensed

regression results are in column D of table
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Figure 5: Quarterly FX Movements on Term Structure of Global Risk+Break
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Fitted vs Actual plots from the regression of 3M log (%) on the first three principal components from the
term structure of extracted moments of 7rtQ (ln%) (ﬁiggression specification in expression . Condensed

regression results are in column D (@) .



Figure 5: Quarterly FX Movements on Term Structure of 1% to 4* Moments+Break
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Table 2: Higher Moment & Term Structure Predictors of Quarterly FX Excess

Returns
A B C D
AUDUSD
# of observations 1122 1120 1106 1039
Adjusted R2 0.33 0.6243 0.5693 0.6621
P(F-stat) 0.00 [0.00,0.00,0.00]  [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
Break Date  1/29/2009 6/30,/2008 5/12/2008 5/30/2008
EURUSD
# of observations 1117 1105 1093 1093
Adjusted R2 0.34 0.4895 0.4704 0.5104
P(F-stat) 0.00 [0.00,0.00,0.00]  [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
Break Date  2/4/2009 1/29/2009 1/29/2009 2/2/2009
GBPUSD
# of observations 1121 1055 1050 980
Adjusted R2 0.48 0.7217 0.653 0.8334
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
Break Date 10/24/2008 10/24,/2008 10/24/2008 5/27/2008
USDCAD
# of observations 1116 1095 1092 1016
Adjusted R2 0.48 0.5968 0.5824 0.6151
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]
Break Date  2/5/2009 5/5/2008 5/5/2008 5/2/2008
USDJPY
# of observations 1121 1107 1099 1099
Adjusted R2 0.2 0.3605 0.3673 0.5668
P(F-stat) 0.00 [0.00,0.00,0.00]  [0.00,0.00,0.00] [0.00,0.00,0.01,0.00]
Break Date  7/4/2008 7/22/2008 7/21/2008 7/22/2008

Note: In all equations, dependent variable is quarterly excess currency returns, as defined in
equation . All regressions are estimated with interactions with a break indicator variable D1.
Breakdate for each equation found using |Bai and Perron (2003) method. Column A is from the
matched-frequency regression in equation : Column B is regression from column A but with
IM and 12M stdev, skew and kurt added as additional regressors ( see equation ). Three P
values are for Wald tests for the null that coefficients on each group of moments [stdev,skew,kurt]
are all zero. In column C we use the first three principal components extracted from each of
stdev,skew and kurt for all tenors( equation . Column D is regression from column C but
with the first three principal components from relative yields (prozying for first moment for the
term stucture of first moments) added as additional regressors. In column D (equation , P
values are for the null that coefficients on each group of principal components for [mean, stdev,
skew , kurtosis| are jointly zero. Actual vs Fitted plots for the regressions in column D can be

found in figures [J(a){3(e).
46



Table 3: Higher Moment and Term Structure Predictors of Quarterly FX Returns

A B C D
AUDUSD
# of observations 1122 1122 1054 1039
Adjusted R2 0.2656 0.3457 0.564 0.6704
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]
Break Date 10/6/2008 1/29/2009 1/13/2009 5/30/2008
EURUSD
# of observations 1117 1117 1093 1093
Adjusted R2 0.148 0.366 0.3996 0.5302
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]
Break Date 3/10/2008 2/4/2009  5/16/2008 2/2/2008
GBPUSD
# of observations 1116 1121 1045 980
Adjusted R2 0.5254 0.6682 0.6349 0.839
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]
Break Date 7/1/2008 6/30/2008  7/7/2008 5/27/2008
USDCAD
# of observations 1121 1116 1037 1016
Adjusted R2 0.1561 0.493 0.5359 0.6234
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]
Break Date 9/11/2007 2/5/2009 10/15/2008 5/2/2008
USDJPY
# of observations 1121 1121 1112 1099
Adjusted R2 0.1033 0.2619 0.2846 0.5774
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.01,0.00]
Break Date  7/4/2008  7/4/2008 7/4/2008 7/22/2008

Note: In all equations, dependent variable is quarterly currency returns,in (St:;ifM) . All

regressions are estimated with interactions with a break indicator variable D1. Breakdate for each
equation found using |Bai and Perron (2003) method. Column A is from the standard UIP

regression ( equation ({.1))) :
Sipr — 8t = a0+ a1 x DU 4 By (f;77 = s}) + ByDUT % (f7 — 5}) + el

P values in column A are for the null hypothesis that 5, = By =0 . Column B is column A with
quarterly stdev, skew and kurt also added(equation with break) In Column C (equation )
), we extract the first 3 Principal components from relative yields and use them as regressors
(term structure of first moments as regressors). In column D ( equation we extract principal
components from each of stdev,skew, kurtosis, and use them as additional regressors from the
specification in column C (Term structure of 15¢-4"" moments). Actual vs Fitted plots for
specification in columns A and D are in figures[{(a){{|(e).
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Table 4: Global Risk XR Regressions

A

B

C

D

AUDUSD
# of obs.
Adj. R2
P(F-stat)

Break date

EURUSD
# of obs.
Adj. R2
P(F-stat)

Break date

GBPUSD
# of obs.
Adj. R2
P(F-stat)

Break date

USDCAD
# of obs.
Adj. R2
P(F-stat)

Break date

USDJPY
# of obs.
Adj. R2
P(F-stat)

Break date

Matched Frequency XR,  Term Structure XR  Matched Frequency RET

1109
0.614
0
5/9,/2008

1109
0.452
0
4/16/2010

1109
0.591
0
10/24,/2008

1109
0.651
0
7/4/2008

1109
0.552
0
7/4/2008

976
0.632
0
10/6/2008

976
0.486
0
5/3/2010

976
0.664
0
12/17/2008

976
0.638
0
1/30,/2009

976
0.572
0
7/4/2008

1109
0.622
0
5/9/2008

1109
0.255
0
10/22/2009

1109
0.602
0
10/24/2008

1109
0.656
0
7/4/2008

1109
0.556
0
7/4/2008

Term Structure RET

976
0.64
0
10/6,/2008

976
0.495
0
5/3/2010

976
0.674
0
12/17/2008

976
0.64
0
1/30,/2009

976
0.573
0
7/4/2008

Note: In column A, for each quarterly excess return, we use the first three principal

components extracted from the 3-month risk-neutral moments of all currencies as regressors.

In column B, For each quarterly excess return, we use the first three principal components

extracted from each moments for all tenors and all currencies as regressors. In column C,

for each quarterly exchange rate change, we use the first three principal components

extracted from the 3-month risk-neutral moments of all currencies as regressors. In column

D, for each quarterly exchange rate change , we use the first three principal components

extracted from each moments for all tenors and all currencies as regressors. Newey- West

standard deviations are reported in brackets, with asterisks indicating significance at 1%

(***), 5% (**), and 10% (*) level. F-stats and P value below are based on the Wald test of

the null that the coefficients on all principal Zc‘@mponents are zero.



Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(a) AUDUSD
Eq Name: 1WK 1M 2M 3M 6M IM 12M
Dep. Var: XR XR XR XR XR XR XR
C 0.022 0.06 0.11 0.133 0.779 0.403 -0.17
[0.0089]**  [0.0220]***  [0.0342]***  [0.0497]***  [0.2588]*** [0.1084]***  [0.0716]**
D1 -0.018 0.015 0.054 0.133 -0.594 0.019 0.611
[0.0100]* [0.0328] [0.0498] [0.0671]**  [0.2613]** [0.1219] [0.1012]***
STDEV 0.082 0.672 0.393 -0.135 -4.031 0.172 4.111
[0.1959] [0.2120]***  [0.2325]* [0.2968] [1.9442]** [0.8341] [0.5854]***
SKEW 0.02 0.064 0.095 0.158 0.409 0.394 0.063
[0.0088]**  [0.0283]**  [0.0414]**  [0.0641]**  [0.0541]*** [0.0224]*** [0.0183]***
KURT -0.004 -0.008 -0.005 0.012 0.028 0.041 0.005
[0.0020]* [0.0068] [0.0090] [0.0129] [0.0174] [0.0030]***  [0.0014]***
D1*AUDUSD -0.33 -2.366 -2.896 -2.899 1.94 -3.376 -7.133
[0.2228] [0.4441]*%%  [0.4650]***  [0.4956]*** [1.9658] [0.8902]***  [0.6805]***
D1*SKEW -0.027 -0.056 -0.057 -0.092 -0.429 -0.371 0.021
[0.0102]***  [0.0317]* [0.0463] [0.0687] [0.0650]***  [0.0413]*** [0.0412]
D1*KURT 0.001 0.004 0.002 -0.017 -0.038 -0.05 -0.004
[0.0023] [0.0073] [0.0095] [0.0136] [0.0188]**  [0.0075]*** [0.0062]
Observations: 1109 1120 1122 1122 1122 1119 1122
Adj. R-squared: 0.0535 0.2429 0.2997 0.3215 0.5973 0.8029 0.8158
Prob(F-stat) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 3/2/2009  2/17/2009  2/2/2009  1/29/2009 10/6/2008  8/29/2008  8/1/2008

Note: “XR” is excess currency returns as defined in equation. Regression is the one in

equation (@

Tri,, = Yor + 7007TD1i’T + D17 « 71’Tstdevi’t+T + D1%" % 72’Tskewi’t+T + D197

i, t4+T

t+7 i,t+T
Vs kurty + vy stdev,

i, t4+T
+ 75 ket

+ Yo kurty " + €y

D1 = break date selected by|Bai and Perron (2005) test, allowing for mazimum of one
break. F-stats report Wald test of the null that v, . = Vo, = V3, = V4r = V5. = Vo.r = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(b) EURJPY
Eq Name: 1WK 1M 2M 3M 6M IM 12M
Dep. Var: XR XR XR XR XR XR XR
C -0.007 -0.021 -0.062 -0.122 -0.087 -0.066 -0.08
[0.0057] [0.0131] [0.0166]***  [0.0306]*** [0.0207]*** [0.0241]***  [0.0356]**
D1 0.015 0.08 0.18 0.287 0.65 0.812 0.705
[0.0080]* [0.0205)***  [0.0311]***  [0.0475]*** [0.0483]*** [0.0421]*** [0.0549]***
STDEV 0.356 -0.927 -0.48 -2.331 -0.482 -0.975 0.07
[0.2487] [0.3203])*** [0.3608] [0.4297]*** [0.3192] [0.3360]*** [0.3748]
SKEW 0.005 -0.028 -0.008 -0.26 -0.073 -0.074 -0.026
[0.0053] [0.0166]* [0.0259] [0.0443]*F%*%  [0.0212]***  [0.0205]*** [0.0162]
KURT 0.001 0.004 0.013 -0.006 0.001 0 0
[0.0011] [0.0028] [0.0036]*** [0.0041] [0.0011] [0.0004] [0.0002]
D1*AUDUSD -0.508 0.389 -0.926 0.687 -2.645 -2.237 -2.241
[0.2946]* [0.4215] [0.4913]* [0.6062] [0.4532]*F*  [0.3877]*** [0.4146]***
D1*SKEW -0.005 -0.065 -0.2 0.074 0.258 0.267 0.18
[0.0064] [0.0330]**  [0.0576]*** [0.0752] [0.0450]**%*  [0.0258]***  [0.0257]***
D1*KURT -0.003 -0.024 -0.049 -0.028 0.01 0.004 0.004
[0.0016]* [0.0049]***  [0.0087]*** [0.0104]***  [0.0056]*  [0.0013]*** [0.0013]***
Observations: 1111 1122 1122 1122 1122 1122 1122
Adj. R-squared: 0.0199 0.1812 0.3135 0.4294 0.6292 0.7392 0.5976
Prob(F-stat) 0.64 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 10/22/2008 8/8/2008 8/8/2008 8/8/2008 4/1/2008 1/4/2008  10/4/2007

Note: “XR” is excess currency returns as defined in equatz’on. Regression is the one in

equation (4.8):

BTty = Yo + D17+ 7500, D177 5y, _stdev,

i, t+T

Vs kurt;T + 747Tstdevi’t+T + 75 - skew,

i, t4+7

+ D17 s 7y skew,™ 4+ D177

i, t4+T
+ Ve kurty ™ + €igg

D1 = break date selected by |Bai and Perron| (2003) test, allowing for mazimum of one
break. F-stats report Wald test of the null that v, . = Vo, = V3, = Var = V5.» = Vor = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %

(**%), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(¢c) EURUSD
Eq Name: 1WK 1M 2M 3M 6M IM 12M
Dep. Var: XR XR XR XR XR XR XR
C -0.011 0.063 0.125 0.132 0.151 -0.099 -0.709
[0.0051]** [0.0295]*%*%  [0.0387]*** [0.0426]*** [0.0366]*** [0.0774] [0.1240]***
D1 0.007 -0.031 -0.028 0.062 0.206 0.531 1.07
[0.0060] [0.0346] [0.0477] [0.0573] [0.0566])***  [0.0948]***  [0.1362]***
STDEV 0.66 -0.046 -0.487 -0.861 -1.216 3.596 9.624
[0.3078]** [0.3193] [0.2954]*  [0.2385]***  [0.4558]***  [0.8086]***  [1.3159]***
SKEW 0.005 0.078 0.119 0.125 -0.018 0.102 0.004
[0.0037] [0.0184]***  [0.0220]***  [0.0205]*** [0.0210] [0.0129]*** [0.0128]
KURT 0.001 -0.003 -0.001 0.005 -0.021 0.009 0.005
[0.0007] [0.0035] [0.0026] [0.0026]**  [0.0048]***  [0.0008]***  [0.0008]***
D1*AUDUSD -0.612 -0.476 -0.705 -1.441 -2.194 -6.123 -10.893
[0.3149]* [0.4404] [0.5252] [0.5641]%F  [0.6068]***  [0.9402]***  [1.3655]***
D1*SKEW -0.008 -0.092 -0.133 -0.134 0.084 -0.033 0.073
[0.0042]* [0.0201]***  [0.0243]***  [0.0241]*** [0.0240]*** [0.0287] [0.0244]***
D1*KURT 0 -0.003 -0.009 -0.016 0.023 -0.019 -0.017
[0.0011] [0.0042] [0.0034]**  [0.0037]***  [0.0051]***  [0.0049]***  [0.0044]***
Observations: 1101 1108 1117 1117 1118 1120 1119
Adj. R-squared: 0.0283 0.1465 0.256 0.34 0.5075 0.6878 0.6529
Prob(F-stat) 0.21 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 10/21/2008  2/13/2009  1/19/2009 2/4/2009  2/26/2008  8/11/2008 8/8/2011

Note: “XR” is excess currency returns as defined in equatz’on. Regression is the one in

equation (4.8):

xri-&—‘r =Y, t 'Yoo,TDli’T + D17 % V1, Stdev,

Vs kurt;T + 747Tstdevi’t+T + 75 . skew,

i, t+7

i,t4+7

+ D17 s 7y skew,™ T 4+ D177

i, t4+T
+ Ve kurty ™ + €igag

D1 = break date selected by |Bai and Perron| (2003) test, allowing for mazimum of one
break. F-stats report Wald test of the null that v, . = Vo, = V3, = Var = V5.- = Vor = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %

(**%), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(d) GBPUSD
Eq Name: 1WK 1M 2M 3M 6M IM 12M
Dep. Var: XR XR XR XR XR XR XR
C -0.005 -0.058 0.085 -0.039 0.067 -0.242 -0.063
[0.0045] [0.0218]***  [0.0231]*** [0.0432] [0.0861] [0.0426]***  [0.0294]**
D1 0.01 0.047 0.009 -0.021 -0.035 0.447 0.348
[0.0068] [0.0234]** [0.0325] [0.0455] [0.0925] [0.0543]***  [0.0560]***
STDEV 0.459 2.705 0.534 2.861 2.308 6.538 4.242
[0.2319]**  [0.4286]***  [0.2153]**  [0.4514]***  [0.9282]**  [0.7318]*** [0.4385]***
SKEW 0.004 0.041 0.067 0.078 0.083 -0.005 0
[0.0039] [0.0168]**  [0.0241]***  [0.0260]***  [0.0232]***  [0.0024]** [0.0001]
KURT 0.001 0.006 -0.003 0.007 0.004 0 0
[0.0008] [0.0020]*** [0.0029] [0.0017]***  [0.0010]*** [0.0000]* [0.0000]
D1*AUDUSD -0.429 -1.862 0.666 -1.085 -1.463 -6.963 -5.302
[0.2872] [0.4747]*%* [0.5100] [0.5168]** [1.0195] [0.7824]*F*F*  [0.5746]***
D1*SKEW -0.003 -0.048 -0.113 -0.111 -0.06 0.062 0.071
[0.0051] [0.0242]**F  [0.0310]***  [0.0329]*** [0.0309]* [0.0161]*F*  [0.0157]***
D1*KURT -0.003 -0.012 -0.037 -0.023 -0.02 -0.013 -0.007
[0.0012]***  [0.0026]***  [0.0069]*** [0.0039]***  [0.0037]*** [0.0025]*** [0.0022]***
Observations: 1116 1122 1122 1121 1122 1116 1056
Adj. R-squared: 0.0554 0.2825 0.4025 0.4848 0.5927 0.7281 0.7338
Prob(F-stat) 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 11/11/2008 10/22/2008 3/19/2009 10/24/2008 10/21/2008  8/22/2008 8/8/2008

i, t+7

i,t4+7

Note: “XR” is excess currency returns as defined in equatz’on. Regression is the one in

equation (4.8):

xriM =Y.t fyOOJDli’T + D157 Y1 Stdev, " + D157 % 72,Tskewi’t” + D17 %

t T it
73,Tkurtt+7 + ’747T8td61}t T+ ’)/577_81{?611% + 76,7kurtt T+ Cittr-

D1 = break date selected by |Bai and Perron| (2003) test, allowing for mazimum of one
break. F-stats report Wald test of the null that v, . = Vo, = V3, = Var = V5.- = Vor = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %

(**%), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(e) USDCAD
Eq Name: 1WK 1M 2M 3M 6M IM 12M
Dep. Var: XR XR XR XR XR XR XR
C 0.027 -0.137 -0.124 -0.224 0.419 0.419 0.526
[0.0112]*%*F  [0.0435]***  [0.0388]*** [0.0500]*** [0.0609]*** [0.1517]*** [0.0640]***
D1 -0.025 0.14 0.07 0.148 -0.853 -0.792 -0.834
[0.0127]**  [0.0445]*** [0.0418]*  [0.0526]*** [0.0671]*** [0.1554]*** [0.0740]***
STDEV -1.512 3.496 0.242 1.135 -4.887 -6.294 -6.563
[0.5275])***  [0.8439]*** [0.3404] [0.4719]**  [0.6124]***  [1.3438]***  [0.5914]***
SKEW 0.003 -0.013 -0.088 -0.155 0.048 0.004 0.048
[0.0091] [0.0213] [0.0220]**%*  [0.0351]***  [0.0258]* [0.0398] [0.0135]***
KURT -0.001 0.017 0.012 0.007 -0.003 -0.001 0.002
[0.0025] [0.0042]*** [0.0061]* [0.0089] [0.0044] [0.0044] [0.0017]
D1*AUDUSD 1.447 -3.398 0.301 -0.558 7.907 8.611 8.508
[0.5512]*%F*  [0.8679]*** [0.4093] [0.5129] [0.6574]* %% [1.3592]*** [0.6118]***
D1*SKEW 0.001 0.05 0.056 0.122 0.109 0.043 -0.043
[0.0094] [0.0233]** [0.0248]**  [0.0363]***  [0.0296]*** [0.0421] [0.0170]**
D1*KURT 0.002 -0.018 0.001 0.008 0.039 0.029 0.015
[0.0028] [0.0045]*** [0.0064] [0.0090] [0.0061]***  [0.0060]***  [0.0050]***
Observations: 1110 1110 1116 1116 1113 1111 1105
Adj. R-squared: 0.0792 0.1319 0.3255 0.4806 0.6812 0.7595 0.7929
Prob(F-stat) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 10/21/2008 10/15/2007  2/24/2009 2/5/2009  2/27/2008 8/8/2008  7/25/2008

Vs kurt;T + 747Tstdevi’t+T + 75 . skew,

i, t+7

i,t4+7

Note: “XR” is excess currency returns as defined in equatz’on. Regression is the one in

equation (4.8):

xriM =Y.t fyOOJDli’T + D157 Y1 Stdev, " + D157 % 72,Tskewi’t” + D17 %

i, t4+T
+ Ve kurty ™ + €igag

D1 = break date selected by |Bai and Perron| (2003) test, allowing for mazimum of one
break. F-stats report Wald test of the null that v, . = Vo, = V3, = Var = V5.- = Vor = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %

(**%), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(f) USDJPY
Eq Name: 1WK 1M 2M 3M 6M IM 12M
Dep. Var: XR XR XR XR XR XR XR
C 0 -0.014 -0.042 -0.003 0.057 0.131 0.13
[0.0057] [0.0138] [0.0134]*** [0.0242] [0.0256]**  [0.0202]***  [0.0091]***
D1 0.024 0.145 0.243 0.172 0.24 0.169 0.155
[0.0082]***  [0.0260]***  [0.0313]***  [0.0448]*** [0.0401]*** [0.0298]***  [0.0288]***
STDEV 0.082 0.356 0.727 -0.761 -0.945 -1.651 -1.005
[0.1894] [0.2029]* [0.2008]***  [0.3523]**  [0.2229]***  [0.2829]***  [0.1620]***
SKEW 0.004 -0.005 -0.01 -0.043 -0.026 -0.016 -0.001
[0.0073] [0.0167] [0.0121] [0.0146]***  [0.0154]* [0.0081]**  [0.0003]**
KURT 0.001 0.001 0.003 0.002 0.001 0 0
[0.0006] [0.0007]**  [0.0008]***  [0.0005]***  [0.0005]* [0.0002]**  [0.0000]**
D1*AUDUSD -0.828 -2.11 -3.25 -0.624 -0.962 0.345 -0.112
[0.2876]**F*  [0.4784]***  [0.4696]*** [0.5732] [0.3293]*** [0.3133] [0.2243]
D1*SKEW -0.002 -0.001 -0.04 -0.015 0.002 0.066 0.008
[0.0080] [0.0201] [0.0190]** [0.0232] [0.0214] [0.0145]*%* [0.0093]
D1*KURT -0.003 -0.016 -0.021 -0.02 -0.017 -0.005 -0.009
[0.0012]*** [0.0023]***  [0.0025]*** [0.0030]***  [0.0027]*** [0.0012]*** [0.0014]***
Observations: 1114 1120 1121 1121 1122 1116 1109
Adj. R-squared: 0.0339 0.1238 0.2201 0.2044 0.3829 0.4531 0.3254
Prob(F-stat) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 1/20/2009 1/8/2009 12/15/2008  7/4/2008  4/23/3008  1/4/2008  10/4/2007

Vs kurt;T + 747Tstdevi’t+T + 75 . skew,

i, t+7

i,t4+7

Note: “XR” is excess currency returns as defined in equatz’on. Regression is the one in

equation (4.8):

xriM =Y.t fyOOJDli’T + D157 Y1 Stdev, " + D157 % 72,Tskewi’t” + D17 %

i, t4+T
+ Ve kurty ™ + €igag

D1 = break date selected by |Bai and Perron| (2003) test, allowing for mazimum of one
break. F-stats report Wald test of the null that v, . = Vo, = V3, = Var = V5.- = Vor = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %

(**%), 5% (**), and 10% (*) level.
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Table 6: FX QUARTERLY EXCESS RETURNS MATCHED FREQUENCY ROBUST LS

Eq Name: AUDUSD EURJPY EURUSD GBPUSD USDCAD  USDJPY
Dep. Var: XR XR XR XR XR XR
C -0.043 -0.1 0.075 -0.14 -0.126 -0.005
[0.0110]%**  [0.0137]*** [0.0171]*** [0.0134]*** [0.0139]*** [0.0126]
D3M 0.297 0.23 0.095 0.079 0.053 0.224
[0.0209]***  [0.0187]*** [0.0252]*** [0.0148]*** [0.0168]*** [0.0215]***
STDEV 0.253 -1.904 -0.588 2.685 0.015 -0.742
[0.0850]***  [0.2153]***  [0.1213]*** [0.1857]*** [0.1258] [0.1556]***
SKEW 0.046 -0.204 0.098 0.016 -0.079 -0.042
[0.0196]**  [0.0167]*** [0.0085]***  [0.0088]*  [0.0086]*** [0.0088]***
KURT 0.008 -0.004 0.007 0.008 0.013 0.002
[0.0046]*  [0.0017]*** [0.0012]*** [0.0013]*** [0.0018]*** [0.0004]***
D3M*STDEV -3.23 0.843 -1.457 -0.359 0.529 -1.392
[0.1817]*FF*  [0.2559]***  [0.2883]***  [0.2155]*  [0.1675]*** [0.2671]***
D3M*SKEW 0.022 0.128 -0.108 -0.066 0.049 -0.033
[0.0227] [0.0279]***  [0.0107])*** [0.0114]*** [0.0106]*** [0.0121]***
D3M*KURT -0.012 -0.015 -0.017 -0.033 0.002 -0.023
[0.0049]**  [0.0041]*** [0.0018]***  [0.0020]*** [0.0021] [0.0016]***
Observations: 1122 1122 1117 1121 1116 1121
Adj. Rw-squared: 0.39 0.43 0.36 0.59 0.58 0.32

Prob(F-stat)

Note: The dependent variable is excess currency returns as defined in equation. Regression is
the one in equation @

ary, . = Yor + 'yOOJDl"’T + D17 % 71,-8tdev,

i, t4+7
t

737Tk:urt§+7 + 74 rstdev

i, t+T

Lyt
+ 75 - skewy T

+ D157 % nyJSk:ewi’HT + D157«

i, t4+7
+ V6, kurt, + € ttr

The breakdate D1 the same as the one selected in (@ . We use MM-estimation. F-stats report
Wald test of the null that vy ; = Yo, = Y3, = Yar = V5 = V6,r = 0. Adj. R2 is the gooness of fit
statistic introduced in |Renaud and Victoria-Fraser (2010). Huber type II standard errors are in
brackets. A quick introduction to robust regression analysis is in |Fviews (2015)
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A Expressions for Option-Implied Risk-Neutral Moments
In this section, we give the expressions for V (¢, 7),W(t,7), X (¢, 7) and u(t, 7)used in equation
(3.10]). Derivations can be found in Bakshi et al. (2003)) and |Grad, (2010)).

V(t,T)= /Soo M_TT[!SSDC(LT,K)OZK + /05 2(1+TZZ[%DP(LT,K)CZK (A.1)

wier) = [ O o - g - / OGSO gy

S
(A.2)

X(t,7) = /Oo 12(In[%])? — 4(In[%])?

_ K3 C(t,7, K)dK + /g 12ln[%] - 4(ln[%])3
S

O = P(t,7, K)dK

u(t,7) =E; <ln [StJFT]) =T -1 V(t,T)— 66 Wi(t,T)— 624 X(t,7). (A4
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