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Abstract

This paper uses foreign exchange (FX) options with different strike prices and

maturities (“the term structure of volatility smiles”) to capture both market expectations

and perceived risks. Using daily options data for six major currency pairs, we show that

the cross section and term structure of options-implied standard deviation, skewness

and kurtosis consistently explain not only the conditional mean but also the entire

conditional distribution of subsequent currency excess returns for horizons ranging

from one week to twelve months. We also find that exchange rate movements, which

are notoriously difficult to model empirically, are in fact well-explained by the term

structures of forward premia and options-implied higher moments. The robust empirical

pattern is consistent with a representative expected utility maximizing investor who,

in addition to the mean and variance, also cares about higher moments in the return

distribution. The term structure linkage in turn provides support for an Epstein-Zin

type preference. Our results suggest that the perennial problems faced by the empirical

exchange rate literature are likely due to overly restrictive assumptions inherent in

the prevailing testing methods, which fail to properly account for the forward-looking

property of exchange rates and potential skewness or excess kurtosis in the conditional

distribution of FX movements.
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1 Introduction

The exchange rate economics literature has over the years faced many empirical puzzles.

As an example, although theory predicts that nominal exchange rates should depend on

current and expected future macroeconomic fundamentals, the consensus in the literature

is that exchange rates are essentially empirically “disconnected” from the macroeconomic

variables that are supposed to determine them. This empirical disconnect comes in the

form of low correlations between nominal exchange rates and their supposed macro-based

determinants and also in the form of poor performance of macro-based exchange rate models

in out-of-sample forecasting.1

A related empirical anomaly that has received considerable attention in the literature is

the uncovered interest parity (UIP) puzzle or the forward premium puzzle. The UIP puzzle

is the empirical irregularity showing that the forward exchange rate is a biased predictor of

future spot exchange rates. The UIP puzzle is taken seriously in the exchange rate literature

because the UIP condition is a property of most open-economy macroeconomic models.

One manifestation of this empirical (ir)regularity is that countries with higher interest

rates tend to see their currencies subsequently appreciate and a “carry-trade” strategy

exploiting this pattern, on average, delivers excess currency returns.2 This violation of the

UIP condition is commonly attributed to time-varying risk premia and biases in (measured)

market expectations. However, empirical proxies based on surveyed forecasts or standard

measures of risk - for instance, ones built from consumption growth, stock market returns,

or the Fama and French (1993) factors -have been unsuccessful in explaining the puzzle.3As

such, while recognizing the presence of risk, macroeconomic-based approaches to modeling

1 See Engel (2013) for a review.
2 A carry trade strategy is to borrow low-interest currencies and lend in high-interest currencies, or to

sell forward currencies that are at a premium and buy forward currencies with a forward discount.
3See, Engel (1996) for a survey of the forward premium literature, as well as recent studies such as

Burnside et al. (2011) and Bacchetta and van Wincoop (2009).
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exchange rates often ignore risk in empirical testing.4 5

This paper argues that the persistent empirical puzzles faced by the exchange rate

economics literature are most likely due overly restrictive preference and distributional

assumptions in conventional testing methods. For example, researchers typically assume

that exchange rate returns are normally distributed, or that investors’ utility functions

depend only on the mean and variance. We argue that these auxiliary assumptions often

inadequately account for either the forward-looking property of nominal exchange rates or

potential skewness and/or fat tails in the distribution of FX returns.

We empirically demonstrate that FX risks as captured by higher order moments of

perceived FX returns distributions of perceived FX return distributions, as well as expectations,

captured by the term structure of option prices, do really matter in explaining exchange rate

movements. We highlight the usefulness of capturing risks and expectations in stages. First,

we show that options-implied standard deviations, skewness and kurtosis of future exchange

rate movements are able to explain not only the conditional mean, but the entire conditional

distribution of excess currency returns. Second, we show that information extracted from

the term structure options-implied risk measures add substantial explanatory power for

excess currency returns. Finally, we show that quarterly exchange rate movements are well

explained by the term structure of 1st-4thmoments of options-implied returns distributions,

with adjusted R2s ranging from 58% for USDJPY to 84% for GBPUSD.

Simple derivatives such as the forwards and futures have been used extensively in explaining

excess currency returns or exchange rate movements.6 Payoffs from forward contracts,

however, are linear in the return on the underlying currency and as such do not contain as

4 ( See for instance, Engel and West (2005); Mark (1995))
5On the finance side, efforts aiming to identify portfolio return-based “risk factors” offer some empirical

success in explaining the cross-sectional distribution of excess FX returns, but have little to say about
bilateral exchange rate dynamics (see for example, Lustig et al. (2011); Verdelhan (2012)). Lustig et al.
(2011) and Verdelhan (2012) for example, identify a “carry factor” based on cross sections of interest
rate-sorted currency returns and a “dollar factor” based on cross sections of beta-sorted currency returns.

6See for example, Hansen and Hodrick (1980) and Clarida and Taylor (1997) among many others.
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useful a set of information as the non-linear contracts we examine. Conceptually, since payoffs

of option contracts depend on the uncertain future realization of the price of the underlying

asset, option prices must reflect market sentiments and beliefs about the probability of future

payoffs.

Our use of options price data and related empirical methodologies has a number of

motivating factors. First, options are forward-looking by construction, which means option

prices should therefore be able to incorporate information such as forthcoming regime switches

or the presence of a peso problem.7 Second, option prices are deeply rooted in market

participant behavior because they are based on what market participants do instead of

what they say.Furthermore, cross sections of option prices imply a subjective probability

distribution of future spot exchange rates, which captures both market participants’ beliefs

and preferences. 8Third, modern techniques such as the Vanna-Volga method 9 and the

methodology of Bakshi et al. (2003) facilitate elegant and model-free computation of options-implied

higher order moments of future exchange rate changes.

Our empirical findings in this paper have three implications. First, the exchange rate

model based on UIP is not that bad, and we can continue using it in open economy

macroeconomic models. However, we need to understand that if we put lognormal shocks,

they will not fit will. Quick improvements can be made by controlling for the term structure

of higher order moments, which can be obtained from option price data. Second, on the

financial side, concepts of risk which depend on only the mean and variance such as the

Sharpe ratio for portfolio performance evaluation, perhaps ought to be modified to account

for the importance of higher moment risks such as skewness and kurtosis.

7 The peso problem refers to the effects on inferences caused by low-probability events that do not occur
in the sample, which can lead to positive excess return.

8This distribution is commonly referred to as the “risk-neutral distribution”, though it does NOT
imply that the distribution is derived under risk-neutrality. On the contrary, it incorporates both the
expected physical probability distribution of future exchange rate realization as well as the risk premium, or
compensation required to bear the uncertainty.

9(See Castagna and Mercurio (2005))
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2 Why Higher Order Moments and Term Structure?

2.1 Forward Premium Puzzle and Excess Currency Returns

The efficient market condition for the foreign exchange markets, under rational expectations,

equates cross border interest differentials it − i∗t with the expected rate of home currency

depreciation, adjusted for the risk premium associated with currency holdings, ρt:
10

iτt − i
τ ,∗
t = Et∆st+τ + ρt+τ . (2.1)

This condition is expected to hold for all investment horizons τ , with interest rates that are

at matched maturities. Ignoring the risk premium term, numerous papers have tested this

equation since Fama (1984), and find systematical violations of this UIP condition:

st+τ − st = α + β(iτt − i
∗,τ
t ) + εt+τ ; Et[εt+τ ] = 0,∀ t,

H0 : β = 1
(2.2)

with an estimated β < 0 and R2s that are usually close to zero. This is the so-called

uncovered interest rate parity puzzle or the forward premium puzzle (see Engel (1996), for

a survey of the literature). To see the connection with forward rates, we note that the

covered interest parity condition, an empirically valid no-arbitrage condition, equates the

forward premium f t+τt − st, with interest differentials. The risk-neutral UIP condition above

thus implies that the forward rate should be an unbiased predictor for future spot rate:

Etst+τ = f t+τt or st+τ = f t+τt + ut+τ , where Et[ut+τ ] = 0∀ t.

We should next define FX excess returns as the rate of return across borders net of

currency movement, and one can see that the UIP or forward premium puzzle can be

10 In this paper, we define the exchange rate as the domestic price of foreign currency. A rise in the
exchange rate indicates a depreciation of the home currency. However, “home”does not have a geographical
significance but follow the FX market conventions. See table (1A)
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expressed as a non-zero averaged excess return over time:

xrt+τ = f t+τt − st+τ = (iτt − i
τ ,∗
t )−∆st+τ = ρt+τ + ut+τ (2.3)

It is natural then to note that the empirical failure of the risk-neutral UIP condition can be

attributable to either the presence of a time-varying risk premium, ρt+τ , or that expectation

error, ut, may not be i.i.d. mean zero over time. If the distribution of either of these is

not mean zero over the time series, empirical estimates of the slope coefficient in regression

equation (2.2) would likely suffer omitted variable bias or other complications.

2.2 Why higher order moments? 11

We show that in addition to risk neutrality and rational expectations assumptions, the UIP

condition also hinges on the rather restrictive auxiliary assumptions that FX returns are i.i.d.

normal over time and that investors have constant absolute risk aversion (CARA) utility.

The two additional assumptions have the effect of reducing the representative investor’s

optimal asset allocation problem to a mean-variance optimization problem.

We start with the problem of an investor who, in each period, allocates her portfolio

among risky assets with the goal of maximizing the expected utility of next period wealth.

In each period, the investor has n risky assets to choose from. The vector of gross returns is

given by rt+1 = (r1,t+1, ..., rn,t+1). If we suppose Wt is arbitrarily set to 1, then Wt+1 = α
′
trt+1

, where α is an n by 1 vector of portfolio weights.

The investors problem is to choose αt to maximize the expression

Et[U(Wt+1)] = Et[U(α
′
trt+1)]

=
∫
...
∫
U(Wt+1)f(rt+1)dr1,t+1dr2,t+1...drn,t+1

(2.4)

subject to the condition that
∑n

i=1 αi,t = 1, where f(rt+1) is the joint probability distribution

11Material in this subsection is from Mark (2001)
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of rt+1.

2.2.1 CARA and Normality reduce problem to mean-variance optimization

Let us further assume that the investor has CARA utility and that returns are conditionally

normally distributed. The CARA utility assumption means the utility is given by

U(Wt+1) = −e−γWt+1 , where γ ≥ 0 is the coefficient of absolute risk aversion. The

distributional assumption rt+1 ∼ N(µt+1,Σt+1) implies that Wt+1 ∼ N(µp,t+1, σ
2
p,t+1), where

µp,t+1 = α
′
tµt+1 and σ2

p,t+1 = α
′
tΣt+1αt

With the above two assumptions, expression (2.4) reduces to12

Et[U(Wt+1)] = −Et[e−γWt+1 ] = γµp,t+1 −
1

2
γ2σ2

p,t+1 (2.5)

Equation (2.5) demonstrates that under the assumptions of CARA utility function and

conditional normality of returns, the general portfolio allocation problem (2.4) reduces to

the mean-variance optimization problem.13

If we further assume that our investor has a 2-asset portfolio made up of a nominally

safe domestic bond and a foreign bond, and that she allocates a fraction α of her wealth to

the domestic bond, then next period wealth expressed in local currency units is given by

Wt+1 =

[
α(1 + it) + (1− α)(1 + i∗t )

St+1

St.

]
Wt (2.6)

In this 2-asset example and CARA utility and conditionally normal returns the expressions

12The second equality follows from the fact that e−γWt+1 ∼ LN(−γµp,t+1, γ
2σ2
p,t+1) , so Et[e−γWt+1 ] =

−γµp,t+1 + γ2σ2
p,t+1

13The quadratic utility function imply mean variance optimization for arbitrary return distribution.
However, the quadratic utility implies increasing absolute risk aversion and satiation (Jondeau et al. (2010),
page 352).
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for the conditional mean and variance of next period wealth are given by:

µp,t+1 =
[
α(1 + it) + (1− α)(1 + i∗t )

EtSt+1

St

]
Wt,

σ2
p,t+1 =

(1−α)2(1+i∗t )2V art(St+1)W 2
t

S2
t

(2.7)

Plugging the expressions in equation (2.7) into objective function (2.5), taking the first

order condition with respect to α and rearranging the first order condition yields the following

equation which implicitly determines the optimal α:

(1 + it)− (1 + i∗t )
EtSt+1

St
=
−γWt(1− α)(1 + i∗t )

2V art(St+1)

S2
t

. (2.8)

Equation (2.8) reduces to the UIP condition if we assume that all investors are risk-neutral

(γ = 0):14

1 + it
1 + i∗t

=
EtSt+1

St
. (2.9)

The Fama regression in equation (2.2) tests a logarithmic version of equation (2.9). The

key steps in deriving the testable restrictions in equation (2.9) are the joint assumptions of

CARA utility and conditional normality of next period wealth, which reduce the investor’s

optimization to mean-variance. The above discussion illustrates that deriving the UIP

equation tested through expression (2.2) depends on other assumptions beyond rational

expectations and risk-neutrality. If the normality assumption is dropped, for example, then

expression (2.9) will most likely include higher order moments. In fact, Jondeau et al. (2010)

note that under CARA utility, if we drop the normality assumptions, then the investor would

prefer positive skewness and low kurtosis, such that the investor’s objective function in

equation (2.5) will also include the third and fourth moments of the FX return distribution.

Scott and Horvath (1980) show that a strictly risk-averse individual who always prefers more

to less (U (1) > 0) and likes positive skewness at all wealth levels will necessarily dislike high

14UIP will also hold if α = 1, regardless of investors’ degree of risk Aversion.
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kurtosis.

2.2.2 Asset allocation under higher order moments15

We showed in subsection (2.2) that the assumptions of CARA utility and normality of returns

reduce the investor’s problem to mean-variance optimization. However, if the distribution

of portfolio returns is asymmetric, or the investor’s utility function is of a higher order

than the quadratic, or the mean and variance do not completely determine the distribution

of asset returns, then higher order moments and their signs must be taken into account

in the portfolio asset allocation problem. In this subsection we present a framework for

incorporating higher order moments into the asset allocation problem.

The objective in (2.4) can be intractable and it is usual to focus on approximation of (2.4)

based on higher order moments. Jondeau et al. (2010) consider a Taylor’s series expansion

of the utility function around expected utility up to the fourth order:

U(Wt+1) = U(EtWt+1) + U (1)(Wt+1)(Wt+1 − EtWt+1) + 1
2!
U (2)(Wt+1)(Wt+1 − EWt+1)2+

1
3!
U (3)(Wt+1)(Wt+1 − EtWt+1)3 + 1

4!
U (4)(Wt+1)(Wt+1 − EtWt+1)4,

(2.10)

where Un(.) denotes the nth derivative of the utility function with respect to next period

wealth. Taking the conditional expectation of expression ( 2.10) yields

Et[U(Wt+1)] ≈ U(EtWt+1) + U (1)(Wt+1)(Wt+1 − EtWt+1) + 1
2!
U (2)(Wt+1)(Wt+1 − EtWt+1)2+

1
3!
U (3)(Wt+1)(Wt+1 − EtWt+1)3 + 1

4!
U (4)(Wt+1)(Wt+1 − EtWt+1)4.

(2.11)

Under the assumption that the investor’s utility function is CARA, expression (2.11) reduces

to

Et[U(Wt+1)] ≈ −e−γµp
[
1 + γ2

2
σ2
p −

γ3

6
s3
p + γ4

24
k4
p

]
. (2.12)

15Material in this subsection is from Jondeau et al. (2010)
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In equation (2.12), s3
p and k4

p are the skewness and kurtosis of portfolio return. It is clear from

equation (2.12) that under CARA utility, investors prefer positive skewness and dislike high

variance and high kurtosis. Optimal portfolio weights can then be obtained by maximizing

expression (2.11) instead of the exact objective function shown in expression (2.4).

For CARA utility, the weight the investor puts on the higher order moments depends

on the degree of risk aversion parameter γ. In more general settings, however, the weight

on the nth moment depends on the nth derivative of the utility function, and the signs of

sensitivities of utility function to changes in higher moments cannot be easily pinned down.

If the moments are not orthogonal to each other, then the effect of utility of increasing one

moment might not be straight forward. Scott and Horvath (1980) establish some general

conditions for investor preference for skewness and kurtosis.

2.3 Why term structure of option-implied moments?

Rearranging the UIP relationship in equation (2.1) and iterating forward, we can show that

the nominal exchange rate depends on current and expected future interest rate differentials

as well as on expected future risk:

st = −
∞∑
j=0

Et(it+j − i∗t+j)︸ ︷︷ ︸
Expected future interest differentials

−
∞∑
j=0

Etρt+j︸ ︷︷ ︸
Expected Future FX risk

(2.13)

Expression (2.13) highlights the link between the exchange rate and macroeconomic

fundamentals. There is a huge literature linking the term structure of interest rate rates(yield

curve) to expected future dynamics of macroeconomic fundamentals such as monetary policy,

inflation and output by observing that short term interest rates are monetary policy variables

that depend on macroeconomic variables such as inflation and output while longer term yields

are risk-adjusted averages of expected future short rates.16 Chen and Tsang (2013) extend

16see Diebold et al. (2005) for a survey.
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this strand of literature to the open economy context by noting that the term structure

of interest rate differentials (relative yield curve) contain information about the expected

future dynamics of differences in macroeconomic fundamentals. We note that the relative

yield curve captures the same information about expected macroeconomic fundamentals as

the term structure of option-implied first moments of future exchange rate movements. We

extend the literature on yield curve-exchange rate linkage by investigating the ability of

entire option-implied distributions to explain exchange rate dynamics.

Writing the exchange rate in the form in equation (2.13) also demonstrates the importance

of capturing expectations and risk in the empirical modeling of exchange rate. Standard

empirical approaches usually impose distributional assumptions that reduce the sum of

expected future fundamentals to equal current fundamentals and also ignore risk. 17

There is also a strand of literature that document the empirical success of empirical

exchange rate models that capture information in the term structure of forward premia.Clarida

and Taylor (1997) and Clarida et al. (2003) show that even if the forward rate is a biased

predictor of future spot rate (the forward premium puzzles),the term structure of forward

premia still contains information useful for predicting subsequent exchange rate changes.

This line of literature is linked to Chen and Tsang (2013) by observing that through the

empirically valid covered interest parity (CIP) condition, the forward premium equals the

interest rate differential at all maturities.

3 Information Content of Currency Options

3.1 Volatility Smile and Term Structure of Option Prices

Breeden and Litzenberger (1978) show that in complete markets, the call option pricing

17see Engel and West (2005), Mark (1995).
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function (C) and the exercise price K are related as follows:

∂2C

∂K2
= e−r

dτπQt (St+τ ), (3.1)

where rd and rf are the domestic and foreign risk-free interest rates and πQt (St+τ ) is the

risk-neutral probability density function (pdf) of future spot rates. Equation (3.1) implies

that, in principle, we can estimate the whole pdf of time St+τ spot exchange rate from time

t volatility smile. Once the distribution is available, it becomes possible to get empirical

estimates of the standard deviation, skewness , kurtosis and even higher order moments of

the market perceived probability density of St+τ given information available at time t.

In addition to the Breeden and Litzenberger (1978) result in equation (3.1), we note that

although market participants can be treated as if they are risk-neutral for the purpose of

option-pricing, option prices theoretically contain information about both investor beliefs

and risk preferences, as shown from the following formula for the price of a European-style

call option:

C(t,K, T ) =

∫ ∞
K

Mt,T (ST −K)︸ ︷︷ ︸
Preferences

πPt (ST )︸ ︷︷ ︸
Beliefs

dST = e−r
dτ

∫ ∞
K

(ST −K) πQt (ST )︸ ︷︷ ︸
Both

dST . (3.2)

In equation (3.2), Mt,t+τ is the pricing kernel, which captures the investor’s degree of risk

aversion and πPt (St+τ ) is the physical probability density function of future spot exchange

rates 18.

A forward contract can in fact be viewed as a European-style call option with a strike

price of zero. To see this, we recall that, on one hand, the theoretical forward exchange rate

is given by the formula:

18 In the second expression, the pricing kernel is performing both the risk-adjustment and discounting

functions, while in the third expression these functions are divided between πQt and e−r
dτ .
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Ft,T = e−r
dτ

∫ ∞
0

STπ
Q
t (ST )dST = e−r

dτEQt (ST ). (3.3)

On the other hand, evaluating equation (3.2) at K=0 yields:

C(t, 0, T ) = e−r
dτ

∫ ∞
0

STπ
Q
t (ST )dST = Ft,T . (3.4)

The relationship between options and forwards in equation (3.4) suggests that the cross

section of option prices should, at a minimum, contain as much information about investor

beliefs and preferences as that contained in forward prices.

Moving on to the term structure of option prices, one way to motivate the theoretical

information content of the term structure of option prices is to start from equation (2.13):

st = −
∞∑
j=0

Et(it+j − i∗t+j)︸ ︷︷ ︸
Expected future interest differentials

−
∞∑
j=0

Etρt+j︸ ︷︷ ︸
Expected Future FX risk

. (3.5)

Now, under the empirically valid CIP condition, interest rate differential is equal to the

forward premium for all tenors j:19

it+j − i∗t+j = f t+jt − st = −rdτ + EQ
t

[
ln

(
St+j
St

)]
︸ ︷︷ ︸
First moment of πQt

+ ωt︸︷︷︸
Jensen’s inequality term

,∀ tenor j. (3.6)

Equation (3.6) thus says that, ignoring the Jensen’s inequality term ωt and the constant

term −rdτ , the interest rate differential equals the first moment of the option-implied

risk-neutral distribution of ln
(
St+j
St

)
for any given tenor j. The interest rates are monetary

policy variables and therefore depend on macroeconomic fundamentals such as unemployment

19The second equality follows from dividing (3.3) by St and taking logarithms
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and inflation. When combined, equations (3.6) and (3.5) demonstrate that just like the

yield curve, the term structure of the first moments of implied distributions also captures

information about current and expected future macroeconomic fundamentals.

A second motivation for the information content of the term structure of option prices

comes from the expectation hypothesis for implied volatility,that the term structure of

option-implied volatility contain information about the market’s perception about the future

dynamics of short term implied volatility. If the expectations hypothesis holds in the FX

market, then the implied volatility for long dated options should be consistent with the

implied volatility of short dated options quoted today and in the future. 20

3.2 Extracting Option-Implied Moments

We use the methodology of Bakshi et al. (2003) (henceforth BKM) to extract model-free

option-implied standard deviation, skewness and kurtosis from the volatility smile. Grad

(2010) and Jurek (2009) also use the BKM methodology to extract FX options-implied

higher order moments. 21 The BKM methodology rests on the results of Carr and Madan

(2001), which show that if we have an arbitrary claim with a pay-off function H[S] with finite

expectations, then H[S] can be replicated if we have a continuum of option prices. They also

show that if H[S] is twice-differentiable, then it can be spanned algebraically by the following

expression

H[S] = (H[S̄] + (S − S̄HS[S̄]) +

∫ ∞
S̄

HSS[K](S −K)+ +

∫ S̄

0

HSS[K](K − S)+dK, (3.7)

20For example, if the current six month implied volatility is 10% and the current three month implied
volatility is 5%, then, under the expectation hypothesis, then the three month implied volatility three
months from now should be 13.2% because

0.5(0.1)2 = 0.25(0.05)2 + 0.25(0.132)2.

21In this section we closely follow the exposition and notation in Grad (2010).

13



where HS = ∂H
∂S

and HSS = ∂2H
∂S2 . Assuming no arbitrage opportunities, the price of a claim

with pay-off H[S] is given by the expression

pt = (H[S̄]−S̄HS[S̄])e−r
dτ +HS[S̄]Se−r

dτ +

∫ ∞
S̄

HSS[K]C(t, τ ,K)+

∫ S̄

0

HSS[K]P (t, τ ,K)dK

(3.8)

where K is the strike price, C(t, τ ,K) and P (t, τ ,K) are, respectively, the prices of a

European-style call and put options. S̄ is some arbitrary constant, usually chosen to equal

current spot price.

Equation (3.8) indicates that any pay-off function H[S] can be replicated by a position

of (H[S̄] − S̄HS[S̄]) in the domestic risk-free bond, a position of H[S̄] in the stock, and

combinations of out-of-the-money calls and puts, with weights HSS[K]. Suppose we have

contracts with the following pay-off functions:22

H[S] =

[Rt(St+τ )]
2, Volatility Contract

[Rt(St+τ )]
3, Cubic Contract

[Rt(St+τ )]
4, Quartic Contract,

(3.9)

where Rt(St+τ ) = ln(St+τ
St

)
. BKM show that the variance, skewness and kurtosis of the

distribution of Rt+τ can be calculated using the following formulas:

Stdev(t, τ) =
√
erdτV (t, τ)− µ(t, τ)2 (3.10a)

Skew(t, τ) = er
dτW (t,τ)−3V (t,τ)µ(t,τ)er

dτ+2µ(t,τ)3

[erdτV (t,τ)−µ(t,τ)2]
3
2

(3.10b)

Kurt(t, τ) = er
dτX(t,τ)−4er

dτµ(t,τ)W (t,τ)+6er
dτµ(t,τ)2V (t,τ)−3µ(t,τ)4

[erdτV (t,τ)−µ(t,τ)2]2
, (3.10c)

22One can use the framework to price contracts with higher order payoffs and therefore extract moments
of order higher than 4. The point that we want to emphasize, that higher order moments matter, is
demonstrated even if we only stop at 4th order.
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where the expressions for V (t, τ),W (t, τ) and X(t, τ) and µ(t, τ) are given in appendix (A).

23

The BKM methodology described above requires a continuum of exercise prices. However,

in the OTC FX options market implied volatilities are observed for only a discrete number

of exercise prices. We therefore need a way to estimate the entire volatility smile from a few

(K−σ) pairs by interpolation and extrapolation. To this end, we use the Vanna Volga (VV)

method described in Castagna and Mercurio (2007). The procedure allows us to build the

entire volatility smile using only three points. Castagna and Mercurio (2007) note that if we

have three options with implied volatility σ1,σ2, σ3 and corresponding exercise prices K1,K2

and K3 such that K1 < K2 < K3, then the implied volatility of an option with arbitrary

exercise price K can be accurately approximated by the following expression:

σ(K) = σ2 +
−σ2 +

√
σ2

2 + d1(K)d2(K)(2σ2D1(K) +D2(K))

d1(K)d2(K)
, (3.11)

where

D1(K) =
ln
[
K2

K

]
ln
[
K3

K

]
ln
[
K2

K1

]
ln
[
K3

K1

]σ1 +
ln
[
K
K1

]
ln
[
K3

K

]
ln
[
K2

K1

]
ln
[
K3

K2

]σ2 +
ln
[
K
K1

]
ln
[
K
K2

]
ln
[
K3

K1

]
ln
[
K3

K2

]σ3 − σ2,

D2(K) =
ln
[
K2

K

]
ln
[
K3

K

]
ln
[
K2

K1

]
ln
[
K3

K1

]d1(K1)d2(K1)(σ1 − σ2)2 +
ln[ K

K1
]ln[ K

K2
]

ln[K3

K1
]ln[K3

K2
]
d1(K3)d2(K3)(σ3 − σ2)2

and

d1(x) =
log[St

x
] + (rd − rf + 1

2
σ2

2)τ

σ2

√
τ

, d2(x) = d1(x)− σ2

√
τ , x ∈ K,K1, K2, K3.

Expression (3.11) allows us to find the implied volatility of an option with an arbitrary strike

23Derivations of equations in (3.10) and expressions for µ(t, τ), V (t, τ),W (t, τ) and X(t, τ) can be found
in Bakshi et al. (2003) and Grad (2010).
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price. We use K1 = K25δp, K2 = KATM and K3 = K25δc. The VV methodology is preferable

because it is parsimonious as it uses only three option combinations to build an entire

volatility smile. 24 Furthermore,the VV method also has a solid it is based on a replication

argument in which an investor constructs a portfolio that, in addition to hedging against

movements in the price of the underlying asset (δ = ∂C
∂S

), also hedges against movements in

volatility of the underlying asset (V ega = ∂C
∂σ

).

3.3 Data Description

In the o-t-c market, the exchange rate is quoted as the domestic price of foreign currency,

so a fall in the exchange rate represents an appreciation of domestic currency.

Compared to exchange-traded options, there are several advantages that come with using

o-t-c data in our empirical analysis. First, most of the FX options trading is concentrated

in the o-t-c market. This means o-t-c currency options prices are more competitive and

therefore more likely to be representative of aggregate market beliefs compared to prices in

the less liquid exchange market. 25 A second advantage of using o-t-c option price data

is that fresh options for standard tenors are quoted each day, making it possible to obtain

a time series of FX option prices with constant maturities. Lastly,unlike American-style

options traded in the exchange market, European-style options that are traded in the o-t-c

market do not need to be adjusted for the possibility of early exercise.

We next explain some important OTC currency market quoting conventions. First,

option prices are given in terms of implied volatility instead of currency units while “moneyness”

is measured in terms of the delta of an option. The delta of an option is a measure of the

24This is the minimum number that can be used if one wants to capture the three most prominent
movements in the volatility smile: change in level, change in slope, and change in curvature.The ATM
straddle, VWB and the Risk Reversal capture these movements. See discussions in Castagna (2010) and
Malz (1998)

25Table (1C), obtained from the 2010 BIS Triennial Survey, shows that although the o-t-c options market
is small relative to the overall FX market, it is very liquid and rapidly growing when we look at it in absolute
terms.
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responsiveness of the option’s price with respect to a change in the price of the underlying

asset. If the prices of call and put options are given by Ct and Pt, then option price and

implied volatility are linked using the Black-Scholes formula applied to FX:

Ct = e−r
dτ
[
F t+τ
t Φ(d1)−KΦ(d2)

]
Pt = e−r

dτ
[
KΦ(−d2)− F t+τ

t Φ(−d1)
]

where

d1 =
log[St

K
] + (rd − rf + 1

2
σ2

2)τ

σ2

√
τ

, d2 = d1 − σ2

√
τ .

The expressions for call and put deltas are given by the expressions:

δc = e−r
f

Φ(d1) (3.12a)

δp = e−r
f

Φ(−d1), (3.12b)

where Φ(.) is the standard normal cumulative density function (cdf). The absolute values of

δc and δp are therefore between 0 and 1, while put-call parity implies that δp = δc − 1. 26

Lastly, in the FX o-t-c option market, prices are quoted in combinations rather than

simple call and put options. The most common option combinations are at-the-money

(ATM)27 straddle, risk reversals (RR), and Vega-weighted butterflies (VWB). An ATM

straddle is the sum of a base currency call and a base currency put, both struck at the

current forward rate. An RR is set up when one buys a base currency call and sells a base

currency put with a symmetric delta. Finally, a VWB is built by buying a symmetric delta

26The market convention is to quote a delta of magnitude x as a 100 ∗ x delta. For example, a put option
with a delta of -0.25 is referred to as a 25δ put.

27“ATM here means the delta of the option combination is zero. That is, the option combination is
“delta-neutral”
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strangle and selling an ATM straddle. 28 The 25δ combination is the most traded options

VWB.

29 The definitions of the three option combinations are as follows:30

σATM,τ = σ0δc,τ = σ50δc + σ50δp (3.13a)

σ25δRR,τ = σ25δc,τ − σ25δp,τ (3.13b)

σ25δvwb,τ =
σ25δc,τ + σ25δp,τ

2︸ ︷︷ ︸
Strangle

−σATM,τ (3.13c)

Equations (3.13) can be rearranged to get the implied volatility for 0δ call, 25δ call and 25δ

put. Expressions for backing out implied volatility of these“plain-vanilla” options from the

prices of traded option combinations are given below:

σ0δc,τ = σATM = σ50δc,τ + σ50δp,τ (3.14a)

σ25δc,τ = σATM + σ25δvwb,τ +
1

2
σ25δRR,τ (3.14b)

σ25δp,τ = σATM + σ25δvwb,τ −
1

2
σ25δRR,τ . (3.14c)

Finally, K25δp, KATM , K25δc, the exercise prices corresponding to σATM,τ , σ25δc,τ and σ25δp,τ

can be backed out by using the expression for option deltas given in equation (3.12 ). For

28In a strangle, you buy an out of the money call and an equally out of the money put
29 The ATM straddle, risk reversal and strangle are usually interpreted as short cut indicators of volatility,

skewness and kurtosis of the perceived conditional distribution of exchange rate movements. The profit
diagrams in figure (1) demonstrate why:

(i) the straddle becomes profitable if there is a movement in the underlying asset’s price

(ii) the risk-reversal makes profit if there is a movement in a particular direction

(iii) the strangle becomes profitable if there is a big movement in any direction in the underlying asset’s
price.

30Table (1B) contains sample option price quotes for standard combinations and standard maturities.
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example, to get KATM we use the fact that the ATM straddle has a delta of zero:

e−r
f τ

[
Φ

(
ln[ St

KATM
] + (rd − rf + 1

2
σ2
ATM)τ

σATM
√
τ

)
− Φ

(
−
ln[ St

KATM
] + (rd − rf + 1

2
σ2
ATM)τ

σATM
√
τ

)]
= 0.

(3.15)

Since Φ(.) is a monotone function, we can solve equation (3.15) for KATM to get:

KATM = Ste
(rd−rf+ 1

2
σ2
ATM )τ = F t+τ

t e
1
2
σ2
ATM . (3.16)

Using similar arguments, one can show that the expressions for K25δc and K25δp

K25δc = Ste
[−Φ−1( 1

4
er
dτ )σ25δc,τ

√
τ+(rd−rf+ 1

2
σ2
25δc)τ ] (3.17a)

K25δp = Ste
[Φ−1( 1

4
er
dτ )σ25δp,τ

√
τ+(rd−rf+ 1

2
σ2
25δp)τ ], (3.17b)

with K25δp < KATM < K25δc (Castagna and Mercurio (2007)).

Our options data consists of over the counter (o-t-c) option prices for the six currency

pairs listed in table (1A) and covering the period 1 January 2007 to April 19 2011.

The spot rates, forward rates and risk-free interest rates are obtained from Datastream.

4 Empirical Strategy and Main Results

4.1 Empirical properties of extracted option-implied moments

Time series plots of the extracted risk neutral moments of log ST
St

are shown in figure (2).

The extracted moments are very persistent, with AR(1) coefficients as high as 0.99. Zivot

and Andrews (1992) unit root tests, however, suggest that almost all the implied moments

are stationary,with structural breaks in the means on dates around late 2008 and early 2009.

There are also some outliers in some of the skewness and kurtosis series, especially for 9m
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and 12m tenor.31

INSERT FIGURE (2) HERE

4.2 Can the term structure of implied moments predict currency

returns?

For each currency pair i, we start by estimating the standard UIP regression

sit+τ − sit = α + β(f t+τt
i − sit) + εit+τ . (4.1)

We focus on model fit and joint significance rather than testing whether the β coefficient

is equal to 1. Fitted vs Actual plots of estimated regression (4.1) (with breaks) are shown

in figures 4(a)-4(e), while condensed results can be found in column A of table (3). For all

currency pairs, the forward premia coefficients are statistically significant at the 1% level,

and adjusted R2 of at least 10% for each currency pair.

We then consider the predictive ability of τ -period option-implied higher moments by

estimating the following augmented UIP regression:

sit+τ − sit = α + β1(f i,t+τt − st) + β2stdev
i,t+τ
t + β3skew

i,t+τ
t + β4kurt

i,t+τ
t + εi,t+τ (4.2)

Equation (4.2) therefore augments the standard UIP equation (4.1) by studying the predictive

ability of the 1st− 4th moments of the distribution of log
(
St+τ
St

)
. The condensed regressions

results are shown in column B table (3) . The adjusted R2s for the matched-frequency

augmented UIP regressions are consistently higher than those from the standard UIP specification

in column A, ranging from 26% to 67%. Coefficients on the higher order moments are always

jointly significant at the 1% level.

31Summary statistics of the extracted moments can be found in the online appendix to this paper.
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We next estimate a term structure modification of the standard UIP equation (4.1) that

uses information contained in the term structure of forward premia to predict exchange rate

movements:

sit+τ − sit = γ0,τ +
3∑
j=1

γ1,jPCjmeanTerm+ εit+τ . (4.3)

Condensed results from regression specification (4.3) are presented in column C of table (3).

Comparing columns A and C in table (3), we see that adding the whole term structure of

forward premia significantly improves the UIP regression fit. For example, the adjusted R2

jumps from 27% to 57% for AUDUSD, 15% to 40% for EURUSD and from 15% to 54% for

USDCAD.

Lastly, we regress exchange rate movements on the term structure of 1st − 4th moments:

sit+3M − sit = γ0,τ +
3∑
j=1

γ1,jPCjmeanTerm
i +

3∑
j=1

γ2,jPCjstdevTerm
i+

3∑
j=1

γ3,jPCjskewTerm
i +

3∑
j=1

γ4,jPCjkurtTerm
i + εit+3M .

(4.4)

Plots of actual versus fitted values from regressions (4.4) and (4.1) are shown in figures

(4). These plots show that considered with the standard UIP regression, accounting for

higher order moment risks and expectations substantially improves that model fit. The

condensed regression results for the higher moment term structure specification, shown in

column D of table (3) show that compared to the UIP specification in column A, accounting

of for higher moments and expectations,for example, increases adjusted R2 from 27% to 67%

for AUDUSD, 15% TO 53% for EURUSD and from 10% to 57% for USDJPY.

INSERT TABLE (3) AND FIGURE (4) HERE
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4.3 Can option-implied moments forecast FX excess returns?

4.3.1 Matched Frequency Analysis: Predictive ability of the volatility smile

For each currency pair i, we start by investigating the predictive ability of τ − period

option-implied measures of standard deviation, skewness and kurtosis for subsequent excess

currency returns32:

f i,t+τt − Et(sit+τ ) = γ0,τ + γ1,τstdev
i,t+τ
t + γ2,τskew

i,t+τ
t + γ3,τkurt

i,t+τ
t + ui,t+τ . (4.5)

Under rational expressions, f i,t+τt −Et(sit+τ ) is also equal to the risk premium. Gereben (2002)

and Malz (1997) also estimate regression specification (4.5) and interpret the results in light

of the time-varying risk premia explanation of the UIP puzzle. Gereben (2002) argues that

if the forward bias is due to time-varying risk premia, then variables that capture the nature

of FX risk should be able to explain the dynamics of the forward bias. The option-implied

moments on the RHS in regression equation 4.5), which capture perceived FX volatility, tail

and crash risk should therefore be able to explain the forward bias. Malz (1997) also argues

that statistical significance of the coefficient on skewt+τt can be interpreted as providing

support for the peso problem explanation of the UIP puzzle.

Going back to expression 4.5), we note that Et(st+τ ) is not observable. If we assume that

market participants have rational expectations, then Et(st+τ ) and st+τ will only differ by a

forecast error νt+1 that is uncorrelated with all variables that use information at time t, such

that

st+τ = Et(st+τ ) + νt+1. (4.6)

Plugging equation (4.6) into equation (4.5) and rearranging gives us the following estimable

32Excess returns are a component of the expected exchange rate movements since Et(sit+τ ) − sit can be

decomposed into excess returns −(f i,t+τt −Et(sit+τ )) and the interest differential, which equals ft− st under
CIP.
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regression equation:

xrt+τ = γ0,τ + γ1,τstdev
t+τ
t + γ2,τskew

t+τ
t + γ3,τkurt

t+τ
t + εt+τ (4.7)

where the error term εt+τ = ut+τ + νt+τ and xrt+τ is ex-post excess returns defined in

expression (2.3).

To provide intuition regarding expected coefficient signs in the regression equation (4.7),

we take the point view of a domestic investor who invests in domestic bonds using money

borrowed from abroad. As shown in equation (2.3), such an investor benefits from higher

domestic interest rates as well as appreciation of domestic currency. Let’s also assume that

the home currency is riskier, such that our investor would demand higher excess returns for

higher stdev and kurtosis in the exchange rate. If investors are averse to high variance and

kurtosis, they would require higher excess returns for holding bonds denominated in units

of the riskier domestic and we would expect the coefficients on stdev and kurtosis to be

both positive. We expect the skew coefficient to be positive for investor’s with preference

for positive skewness. Such an investor will require higher compensation for an increase in

skew, which represents a higher perceived likelihood of domestic currency depreciation.

Given the discussion in subsection (2.2.2), however, we note that pinning down the

coefficient signs a priori is impossible without making further assumptions about the investor’s

utility function or orthogonality of the moments. In our regression analysis, we therefore

focus mainly on joint significance of the explanatory variables and model fit rather than on

significance and signs of individual coefficients.

Sub-sample analyses suggest the presence of structural breaks in the matched-frequency

regression relationships for the majority of currency pairs and tenors. We use the Bai and

Perron (2003) structural break test to identify the date for the most prominent break 33 and

33We only focus on the major breaks, and therefore do not choose the number of breaks according to
information criteria such as AIC.
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estimate a modification of regression equation (4.7) that includes interactions with structural

break indicator variable:

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
i,t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εit+τ .

(4.8)

where D1i,τ is an indicator variable that is zero before the break date and equal to one

otherwise.

The matched-frequency results, shown in tables 5(a)-5(f), demonstrate a consistent ability

of options-based measures of FX standard deviation, skewness and kurtosis-proxying to

explain excess currency returns. The coefficients on the six non-intercept terms are always

jointly significant at the 1% level. The adjusted R2s for example, range from 13% (USDJPY)

to 28% for 1 month tenor and from 20%(USDJPY) to 42% (EURJPY) for the 3M tenor.

We next go beyond OLS regression, which models the conditional mean of the the

dependent variable given the explanatory variables, by using quantile regression analysis

(QR) to investigate the predictive ability of options-based FX risk measures for the entire

distribution of ex-post excess currency returns. By modeling the entire distribution of the

dependent variable, QR allows us to get a more complete picture of the predictive ability

of the option-implied moments. QR also has a further advantage over OLS in that it is

robust to outliers in the dependent variable and does not impose restrictive distributional

assumptions on the error terms.

We estimate the following linear quantile regression model, modified to include one break:

Qxr
i (θ|.) = γ0,τ + γ1,τSTDEV

i,t+τ
t + γ2,τSKEW

i,t+τ
t + γ3,τKURT

i,t+τ
t + εi,t+τ , (4.9)

where Qxr
i (θ|.) is the θth quantile of excess returns given information available at time t.34

Matched-frequency quantile regression results for 3M tenor are shown in tables (7a)-

34We estimate the quantile regression model using the same break dates obtained in the OLS analysis

24



(7f). We find that the coefficients on non-intercept terms are always jointly significant

across quantiles for all currency pairs. Adjusted R2s range from 13% to 44% for AUDUSD,

and 12% to 30% for USDJPY for example. Another consistent pattern across currency pairs

and tenors is that option-implied moments have more predictive ability for lower and upper

quantiles of excess returns than the middle quantiles.

INSERT TABLES (7a)- (7f)HERE

4.3.2 Can the term structure of implied moments predict excess currency returns?

We first extend regression equation (4.7) by regressing 3M bilateral excess returns on 1M,

3M and 12M option-implied moments. That is, for each currency pair i, we estimate the

following OLS regression:

xrit+3M = γ0,3M +
∑
j

γ1,τ j
stdev

t+τ j ,i
t +

∑
j

γ2,τ j
skew

t+τ j ,i
t +

∑
j

γ3,τ j
kurt

t+τ j ,i
t +εit+3M , (4.10)

where j ∈ {1M, 3M, 12M}. Similar to the matched-frequency analysis in subsection (4.3.1),

our final term structure regression model is a modification of (4.10) in which we include

interactions with a structural break indicator variableD1. Regression results from specification

(4.10) (with break ) are shown in column B of table (2). Compared to the matched frequency

results presented in column A, we see a huge increase in the adjusted R2s. For example,

adjusted R2 increases from 33% to 62% for AUDUSD, 34% to 49% for EURUSD, and from

20% to 36% for USDJPY.

In column C of table (2) , we present condensed results of regressions that incorporate

information from all tenors (not just 1M,3M and 12M) by using principal components

extracted from all tenors.

Column C therefore contains results from the following regression:
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xrit+3M = γ0,τ +
3∑
j=1

γ2,jPCjstdevTerm
i +

3∑
j=1

γ3,jPCjskewTerm
i+

3∑
j=1

γ4,jPCjkurtTerm
i + εit+3M .

(4.11)

In equation (4.11), PCjxxxxTerm
i refers to the jth principal component extract from

the currency i term structure of option-implied moment xxxx. Results from estimation

regression equation (4.11) are in column C of table (2).

Lastly, we extend the specification in (4.11) by adding information from the term structure

of first moments as additional regressors:

xrit+3M = γ0,τ +
3∑
j=1

γ1,jPCjmeanTerm
i +

3∑
j=1

γ2,jPCjstdevTerm
i+

3∑
j=1

γ3,jPCjskewTerm
i +

3∑
j=1

γ4,jPCjkurtTerm
i + εit+3M .

(4.12)

The term structure of first moments captures expectations of the dynamics of future

macroeconomic fundamentals. We use the term structure of interest rate differentials to

extract the principal components of the term structure of first moments of log
(
St+τ
St

) .35

Using yield curve data to extract the term structure of first moments has the advantage of

allowing us to also use interest rate differentials for tenors not covered by our option price

data. As with our previous regressions, we estimate a version of regression model (4.12) that

includes interactions with a structural break indicator variable.

The condensed results from estimating equation (4.12) with breaks are presented in

column (D) of table (2). Actual vs fitted plots from this regression are shown in figures

35As noted earlier,the forward premium, which is the theoretical mean of the risk-neutral probability

density of log
(
St+τ
St

)
is equal to the interest differential iτ − i∗,τ .
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(3(a)-3(e)).

INSERT FIGURE (3) AND TABLE (2) HERE

Compared to the matched frequency regressions column A of table (2), inclusinf the term

structure of 1st − 4th moments increases the adjusted R2 from 33% to 66% for AUDUSD,

34% TO 51% for EURUSD, 48% to 83% for GBPUSD, 48% to 62% for USDCAD and from

20% to 57% for USDJPY. These dramatic improvements in the model fit further highlight

the importance of properly accounting for expectations and higher moment risks.

5 Conclusion

This paper has documented a robust ability of options-implied measures of FX higher

moment risks to explain subsequent excess currency returns and FX returns. We also find

that the term structure of such risks, capturing forward-looking property of the exchange

rate, add further explanatory power. Our findings suggest that expectation and risk should

be given more careful consideration in the structural modeling and empirical testing of

exchange rate models.

This paper can be extended in several directions that are useful to academics,monetary

policy officials and investment professionals. First, how useful is the option-based information

for out-of-sample forecasting of exchange rate. The ability to accurately forecast exchange

rates movements for many purposes, including determining the future value of foreign denominated

debt payments and for hedging for investment managers exploiting international investment

opportunities. Second, an empirical analysis of the macroeconomic variables and events that

drive the option-implied moments would further shed light on the link between exchange

rates and fundamentals. Lastly, it might be worthwhile to
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Figure 1: Profit diagrams for options strategies

(a) Profit Function of a Straddle (b) Profit Function of a Risk Reversal

(c) Profit Function of a Strangle (d) Profit Function of a Butterfly

Note: Straddle,Risk Reversal,Strangle and Butterfly are as defined in subsection (3.3)
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Figure 2: Time Series Evolution Of Option Implied Moments

(a) AUDUSD STDEV

(b) AUDUSD SKEWNESS

(c) AUDUSD KURTOSIS
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Figure 2: Time Series Evolution Of Option Implied Moments

(d) EURJPY STDEV

(e) EURJPY SKEWNESS

(f) EURJPY KURTOSIS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).
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Figure 2: Time Series Evolution Of Option Implied Moments

(g) EURUSD STDEV

(h) EURUSD SKEWNESS

(i) EURUSD KURTOSIS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).
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Figure 2: Time Series Evolution Of Option Implied Moments

(j) GBPUSD STDEV

(k) GBPUSD SKEWNESS

(l) GBPUSD KURTOSIS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).
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Figure 2: Time Series Evolution Of Option Implied Moments

(m) USDCAD STDEV

(n) USDCAD SKEWNESS

(o) USDCAD KURTOSIS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).
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Figure 2: Time Series Evolution Of Option Implied Moments

(p) USDJPY STDEV

(q) USDJPY SKEWNESS

(r) USDJPY KURTOSIS

Note: Moments extracted using the methodology developed in Bakshi et al. (2003).

38



Figure 3: Quarterly FX Excess Returns on Term Structure of 1st to 4th Moments+Break

(a) AUDUSD 3M

(b) EURUSD 3M

(c) GBPUSD 3M

Note: Fitted vs Actual plots from the regression of 3M excess return, as defined in expression (2.3), on

the first three principal components from the term structure of extracted moments of πQt

(
lnSTSt

)
(Regression

specification in expression (4.12). Condensed regression results are in column D of table (2) .
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Figure 3: Quarterly FX Excess Returns on Term Structure of 1st to 4th Moments+Break

(d) USDCAD 3M

(e) USDJPY 3M

Note: Fitted vs Actual plots from the regression of 3M excess return, as defined in expression (2.3), on

the first three principal components from the term structure of extracted moments of πQt

(
lnSTSt

)
(Regression

specification in expression (4.12). Condensed regression results are in column D of table (2) .
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Figure 4: Quarterly FX Movements on Term Structure of 1st to 4th Moments+Break

(a) AUDUSD 3M RET

(b) EURUSD 3M RET

(c) GBPUSD 3M RET

Fitted vs Actual plots from the regression of 3M log
(
ST
St

)
on the first three principal components from the

term structure of extracted moments of πQt

(
lnSTSt

)
(Regression specification in expression (4.4). Condensed

regression results are in column D (3) .
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Figure 4: Quarterly FX Movements on Term Structure of 1st to 4th Moments+Break

(d) USDCAD 3M RET

(e) USDJPY 3M RET

Fitted vs Actual plots from the regression of 3M log
(
ST
St

)
on the first three principal components from the

term structure of extracted moments of πQt

(
lnSTSt

)
(Regression specification in expression (4.4). Condensed

regression results are in column D of table (3) .
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Figure 5: Quarterly FX Movements on Term Structure of Global Risk+Break

(a) AUDUSD 3M RET

(b) EURUSD 3M RET

(c) GBPUSD 3M RET

Fitted vs Actual plots from the regression of 3M log
(
ST
St

)
on the first three principal components from the

term structure of extracted moments of πQt

(
lnSTSt

)
(Regression specification in expression (4.4). Condensed

regression results are in column D (3) .
43



Figure 5: Quarterly FX Movements on Term Structure of 1st to 4th Moments+Break

(d) USDCAD 3M RET

(e) USDJPY 3M RET

Fitted vs Actual plots from the regression of 3M log
(
ST
St

)
on the first three principal components from the

term structure of extracted moments of πQt

(
lnSTSt

)
(Regression specification in expression (4.4). Condensed

regression results are in column D of table (3) .
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Table 2: Higher Moment & Term Structure Predictors of Quarterly FX Excess
Returns

A B C D

AUDUSD
# of observations 1122 1120 1106 1039

Adjusted R2 0.33 0.6243 0.5693 0.6621
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]

Break Date 1/29/2009 6/30/2008 5/12/2008 5/30/2008

EURUSD
# of observations 1117 1105 1093 1093

Adjusted R2 0.34 0.4895 0.4704 0.5104
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]

Break Date 2/4/2009 1/29/2009 1/29/2009 2/2/2009

GBPUSD
# of observations 1121 1055 1050 980

Adjusted R2 0.48 0.7217 0.653 0.8334
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]

Break Date 10/24/2008 10/24/2008 10/24/2008 5/27/2008

USDCAD
# of observations 1116 1095 1092 1016

Adjusted R2 0.48 0.5968 0.5824 0.6151
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.00,0.00]

Break Date 2/5/2009 5/5/2008 5/5/2008 5/2/2008

USDJPY
# of observations 1121 1107 1099 1099

Adjusted R2 0.2 0.3605 0.3673 0.5668
P(F-stat) 0.00 [0.00,0.00,0.00] [0.00,0.00,0.00] [0.00,0.00,0.01,0.00]

Break Date 7/4/2008 7/22/2008 7/21/2008 7/22/2008

Note: In all equations, dependent variable is quarterly excess currency returns, as defined in
equation (2.3). All regressions are estimated with interactions with a break indicator variable D1.
Breakdate for each equation found using Bai and Perron (2003) method. Column A is from the
matched-frequency regression in equation (4.7): Column B is regression from column A but with
1M and 12M stdev, skew and kurt added as additional regressors ( see equation 4.10 ). Three P
values are for Wald tests for the null that coefficients on each group of moments [stdev,skew,kurt]
are all zero. In column C we use the first three principal components extracted from each of
stdev,skew and kurt for all tenors( equation 4.11). Column D is regression from column C but
with the first three principal components from relative yields (proxying for first moment for the
term stucture of first moments) added as additional regressors. In column D (equation 4.12), P
values are for the null that coefficients on each group of principal components for [mean, stdev,
skew , kurtosis] are jointly zero. Actual vs Fitted plots for the regressions in column D can be
found in figures 3(a)-3(e).
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Table 3: Higher Moment and Term Structure Predictors of Quarterly FX Returns

A B C D

AUDUSD
# of observations 1122 1122 1054 1039

Adjusted R2 0.2656 0.3457 0.564 0.6704
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]

Break Date 10/6/2008 1/29/2009 1/13/2009 5/30/2008

EURUSD
# of observations 1117 1117 1093 1093

Adjusted R2 0.148 0.366 0.3996 0.5302
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]

Break Date 3/10/2008 2/4/2009 5/16/2008 2/2/2008

GBPUSD
# of observations 1116 1121 1045 980

Adjusted R2 0.5254 0.6682 0.6349 0.839
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]

Break Date 7/1/2008 6/30/2008 7/7/2008 5/27/2008

USDCAD
# of observations 1121 1116 1037 1016

Adjusted R2 0.1561 0.493 0.5359 0.6234
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.00,0.00]

Break Date 9/11/2007 2/5/2009 10/15/2008 5/2/2008

USDJPY
# of observations 1121 1121 1112 1099

Adjusted R2 0.1033 0.2619 0.2846 0.5774
P(F-stat) 0.00 0.00 0.00 [0.00,0.00,0.01,0.00]

Break Date 7/4/2008 7/4/2008 7/4/2008 7/22/2008

Note: In all equations, dependent variable is quarterly currency returns,ln
(
St+3M

St

)
. All

regressions are estimated with interactions with a break indicator variable D1. Breakdate for each
equation found using Bai and Perron (2003) method. Column A is from the standard UIP
regression ( equation (4.1)) :

sit+τ − sit = α0 + α1 ∗D1i,τ + β1(f t+τ ,it − sit) + β2D1i,τ ∗ (f t+τ ,it − sit) + εit+τ

P values in column A are for the null hypothesis that β1 = β2 = 0 . Column B is column A with
quarterly stdev, skew and kurt also added(equation (4.2,with break) In Column C (equation (4.3 )
) , we extract the first 3 Principal components from relative yields and use them as regressors
(term structure of first moments as regressors). In column D ( equation 4.4) we extract principal
components from each of stdev,skew, kurtosis, and use them as additional regressors from the
specification in column C (Term structure of 1st-4th moments). Actual vs Fitted plots for
specification in columns A and D are in figures 4(a)-4(e).
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Table 4: Global Risk XR Regressions

A B C D

Matched Frequency XR Term Structure XR Matched Frequency RET Term Structure RET
AUDUSD
# of obs. 1109 976 1109 976
Adj. R2 0.614 0.632 0.622 0.64
P(F-stat) 0 0 0 0

Break date 5/9/2008 10/6/2008 5/9/2008 10/6/2008
EURUSD
# of obs. 1109 976 1109 976
Adj. R2 0.452 0.486 0.255 0.495
P(F-stat) 0 0 0 0

Break date 4/16/2010 5/3/2010 10/22/2009 5/3/2010
GBPUSD
# of obs. 1109 976 1109 976
Adj. R2 0.591 0.664 0.602 0.674
P(F-stat) 0 0 0 0

Break date 10/24/2008 12/17/2008 10/24/2008 12/17/2008
USDCAD
# of obs. 1109 976 1109 976
Adj. R2 0.651 0.638 0.656 0.64
P(F-stat) 0 0 0 0

Break date 7/4/2008 1/30/2009 7/4/2008 1/30/2009
USDJPY
# of obs. 1109 976 1109 976
Adj. R2 0.552 0.572 0.556 0.573
P(F-stat) 0 0 0 0

Break date 7/4/2008 7/4/2008 7/4/2008 7/4/2008

Note: In column A, for each quarterly excess return, we use the first three principal

components extracted from the 3-month risk-neutral moments of all currencies as regressors.

In column B, For each quarterly excess return, we use the first three principal components

extracted from each moments for all tenors and all currencies as regressors. In column C,

for each quarterly exchange rate change, we use the first three principal components

extracted from the 3-month risk-neutral moments of all currencies as regressors. In column

D, for each quarterly exchange rate change , we use the first three principal components

extracted from each moments for all tenors and all currencies as regressors. Newey-West

standard deviations are reported in brackets, with asterisks indicating significance at 1%

(***), 5% (**), and 10% (*) level. F-stats and P value below are based on the Wald test of

the null that the coefficients on all principal components are zero.48



Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(a) AUDUSD

Eq Name: 1WK 1M 2M 3M 6M 9M 12M

Dep. Var: XR XR XR XR XR XR XR

C 0.022 0.06 0.11 0.133 0.779 0.403 -0.17
[0.0089]** [0.0220]*** [0.0342]*** [0.0497]*** [0.2588]*** [0.1084]*** [0.0716]**

D1 -0.018 0.015 0.054 0.133 -0.594 0.019 0.611
[0.0100]* [0.0328] [0.0498] [0.0671]** [0.2613]** [0.1219] [0.1012]***

STDEV 0.082 0.672 0.393 -0.135 -4.031 0.172 4.111
[0.1959] [0.2120]*** [0.2325]* [0.2968] [1.9442]** [0.8341] [0.5854]***

SKEW 0.02 0.064 0.095 0.158 0.409 0.394 0.063
[0.0088]** [0.0283]** [0.0414]** [0.0641]** [0.0541]*** [0.0224]*** [0.0183]***

KURT -0.004 -0.008 -0.005 0.012 0.028 0.041 0.005
[0.0020]* [0.0068] [0.0090] [0.0129] [0.0174] [0.0030]*** [0.0014]***

D1*AUDUSD -0.33 -2.366 -2.896 -2.899 1.94 -3.376 -7.133
[0.2228] [0.4441]*** [0.4650]*** [0.4956]*** [1.9658] [0.8902]*** [0.6805]***

D1*SKEW -0.027 -0.056 -0.057 -0.092 -0.429 -0.371 0.021
[0.0102]*** [0.0317]* [0.0463] [0.0687] [0.0650]*** [0.0413]*** [0.0412]

D1*KURT 0.001 0.004 0.002 -0.017 -0.038 -0.05 -0.004
[0.0023] [0.0073] [0.0095] [0.0136] [0.0188]** [0.0075]*** [0.0062]

Observations: 1109 1120 1122 1122 1122 1119 1122
Adj. R-squared: 0.0535 0.2429 0.2997 0.3215 0.5973 0.8029 0.8158

Prob(F-stat) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 3/2/2009 2/17/2009 2/2/2009 1/29/2009 10/6/2008 8/29/2008 8/1/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.8):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(b) EURJPY

Eq Name: 1WK 1M 2M 3M 6M 9M 12M

Dep. Var: XR XR XR XR XR XR XR

C -0.007 -0.021 -0.062 -0.122 -0.087 -0.066 -0.08
[0.0057] [0.0131] [0.0166]*** [0.0306]*** [0.0207]*** [0.0241]*** [0.0356]**

D1 0.015 0.08 0.18 0.287 0.65 0.812 0.705
[0.0080]* [0.0205]*** [0.0311]*** [0.0475]*** [0.0483]*** [0.0421]*** [0.0549]***

STDEV 0.356 -0.927 -0.48 -2.331 -0.482 -0.975 0.07
[0.2487] [0.3203]*** [0.3608] [0.4297]*** [0.3192] [0.3360]*** [0.3748]

SKEW 0.005 -0.028 -0.008 -0.26 -0.073 -0.074 -0.026
[0.0053] [0.0166]* [0.0259] [0.0443]*** [0.0212]*** [0.0205]*** [0.0162]

KURT 0.001 0.004 0.013 -0.006 0.001 0 0
[0.0011] [0.0028] [0.0036]*** [0.0041] [0.0011] [0.0004] [0.0002]

D1*AUDUSD -0.508 0.389 -0.926 0.687 -2.645 -2.237 -2.241
[0.2946]* [0.4215] [0.4913]* [0.6062] [0.4532]*** [0.3877]*** [0.4146]***

D1*SKEW -0.005 -0.065 -0.2 0.074 0.258 0.267 0.18
[0.0064] [0.0330]** [0.0576]*** [0.0752] [0.0450]*** [0.0258]*** [0.0257]***

D1*KURT -0.003 -0.024 -0.049 -0.028 0.01 0.004 0.004
[0.0016]* [0.0049]*** [0.0087]*** [0.0104]*** [0.0056]* [0.0013]*** [0.0013]***

Observations: 1111 1122 1122 1122 1122 1122 1122
Adj. R-squared: 0.0199 0.1812 0.3135 0.4294 0.6292 0.7392 0.5976

Prob(F-stat) 0.64 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 10/22/2008 8/8/2008 8/8/2008 8/8/2008 4/1/2008 1/4/2008 10/4/2007

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.8):

xrit+τ = γ0,τ +D1i,τ + γ00,τD1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(c) EURUSD

Eq Name: 1WK 1M 2M 3M 6M 9M 12M

Dep. Var: XR XR XR XR XR XR XR

C -0.011 0.063 0.125 0.132 0.151 -0.099 -0.709
[0.0051]** [0.0295]** [0.0387]*** [0.0426]*** [0.0366]*** [0.0774] [0.1240]***

D1 0.007 -0.031 -0.028 0.062 0.206 0.531 1.07
[0.0060] [0.0346] [0.0477] [0.0573] [0.0566]*** [0.0948]*** [0.1362]***

STDEV 0.66 -0.046 -0.487 -0.861 -1.216 3.596 9.624
[0.3078]** [0.3193] [0.2954]* [0.2385]*** [0.4558]*** [0.8086]*** [1.3159]***

SKEW 0.005 0.078 0.119 0.125 -0.018 0.102 0.004
[0.0037] [0.0184]*** [0.0220]*** [0.0205]*** [0.0210] [0.0129]*** [0.0128]

KURT 0.001 -0.003 -0.001 0.005 -0.021 0.009 0.005
[0.0007] [0.0035] [0.0026] [0.0026]** [0.0048]*** [0.0008]*** [0.0008]***

D1*AUDUSD -0.612 -0.476 -0.705 -1.441 -2.194 -6.123 -10.893
[0.3149]* [0.4404] [0.5252] [0.5641]** [0.6068]*** [0.9402]*** [1.3655]***

D1*SKEW -0.008 -0.092 -0.133 -0.134 0.084 -0.033 0.073
[0.0042]* [0.0201]*** [0.0243]*** [0.0241]*** [0.0240]*** [0.0287] [0.0244]***

D1*KURT 0 -0.003 -0.009 -0.016 0.023 -0.019 -0.017
[0.0011] [0.0042] [0.0034]** [0.0037]*** [0.0051]*** [0.0049]*** [0.0044]***

Observations: 1101 1108 1117 1117 1118 1120 1119
Adj. R-squared: 0.0283 0.1465 0.256 0.34 0.5075 0.6878 0.6529

Prob(F-stat) 0.21 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 10/21/2008 2/13/2009 1/19/2009 2/4/2009 2/26/2008 8/11/2008 8/8/2011

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.8):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(d) GBPUSD

Eq Name: 1WK 1M 2M 3M 6M 9M 12M

Dep. Var: XR XR XR XR XR XR XR

C -0.005 -0.058 0.085 -0.039 0.067 -0.242 -0.063
[0.0045] [0.0218]*** [0.0231]*** [0.0432] [0.0861] [0.0426]*** [0.0294]**

D1 0.01 0.047 0.009 -0.021 -0.035 0.447 0.348
[0.0068] [0.0234]** [0.0325] [0.0455] [0.0925] [0.0543]*** [0.0560]***

STDEV 0.459 2.705 0.534 2.861 2.308 6.538 4.242
[0.2319]** [0.4286]*** [0.2153]** [0.4514]*** [0.9282]** [0.7318]*** [0.4385]***

SKEW 0.004 0.041 0.067 0.078 0.083 -0.005 0
[0.0039] [0.0168]** [0.0241]*** [0.0260]*** [0.0232]*** [0.0024]** [0.0001]

KURT 0.001 0.006 -0.003 0.007 0.004 0 0
[0.0008] [0.0020]*** [0.0029] [0.0017]*** [0.0010]*** [0.0000]* [0.0000]

D1*AUDUSD -0.429 -1.862 0.666 -1.085 -1.463 -6.963 -5.302
[0.2872] [0.4747]*** [0.5100] [0.5168]** [1.0195] [0.7824]*** [0.5746]***

D1*SKEW -0.003 -0.048 -0.113 -0.111 -0.06 0.062 0.071
[0.0051] [0.0242]** [0.0310]*** [0.0329]*** [0.0309]* [0.0161]*** [0.0157]***

D1*KURT -0.003 -0.012 -0.037 -0.023 -0.02 -0.013 -0.007
[0.0012]*** [0.0026]*** [0.0069]*** [0.0039]*** [0.0037]*** [0.0025]*** [0.0022]***

Observations: 1116 1122 1122 1121 1122 1116 1056
Adj. R-squared: 0.0554 0.2825 0.4025 0.4848 0.5927 0.7281 0.7338

Prob(F-stat) 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 11/11/2008 10/22/2008 3/19/2009 10/24/2008 10/21/2008 8/22/2008 8/8/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.8):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(e) USDCAD

Eq Name: 1WK 1M 2M 3M 6M 9M 12M

Dep. Var: XR XR XR XR XR XR XR

C 0.027 -0.137 -0.124 -0.224 0.419 0.419 0.526
[0.0112]** [0.0435]*** [0.0388]*** [0.0500]*** [0.0609]*** [0.1517]*** [0.0640]***

D1 -0.025 0.14 0.07 0.148 -0.853 -0.792 -0.834
[0.0127]** [0.0445]*** [0.0418]* [0.0526]*** [0.0671]*** [0.1554]*** [0.0740]***

STDEV -1.512 3.496 0.242 1.135 -4.887 -6.294 -6.563
[0.5275]*** [0.8439]*** [0.3404] [0.4719]** [0.6124]*** [1.3438]*** [0.5914]***

SKEW 0.003 -0.013 -0.088 -0.155 0.048 0.004 0.048
[0.0091] [0.0213] [0.0220]*** [0.0351]*** [0.0258]* [0.0398] [0.0135]***

KURT -0.001 0.017 0.012 0.007 -0.003 -0.001 0.002
[0.0025] [0.0042]*** [0.0061]* [0.0089] [0.0044] [0.0044] [0.0017]

D1*AUDUSD 1.447 -3.398 0.301 -0.558 7.907 8.611 8.508
[0.5512]*** [0.8679]*** [0.4093] [0.5129] [0.6574]*** [1.3592]*** [0.6118]***

D1*SKEW 0.001 0.05 0.056 0.122 0.109 0.043 -0.043
[0.0094] [0.0233]** [0.0248]** [0.0363]*** [0.0296]*** [0.0421] [0.0170]**

D1*KURT 0.002 -0.018 0.001 0.008 0.039 0.029 0.015
[0.0028] [0.0045]*** [0.0064] [0.0090] [0.0061]*** [0.0060]*** [0.0050]***

Observations: 1110 1110 1116 1116 1113 1111 1105
Adj. R-squared: 0.0792 0.1319 0.3255 0.4806 0.6812 0.7595 0.7929

Prob(F-stat) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 10/21/2008 10/15/2007 2/24/2009 2/5/2009 2/27/2008 8/8/2008 7/25/2008

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.8):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 5: FX EXCESS RETURNS MATCHED FREQUENCY OLS REGRESSIONS

(f) USDJPY

Eq Name: 1WK 1M 2M 3M 6M 9M 12M

Dep. Var: XR XR XR XR XR XR XR

C 0 -0.014 -0.042 -0.003 0.057 0.131 0.13
[0.0057] [0.0138] [0.0134]*** [0.0242] [0.0256]** [0.0202]*** [0.0091]***

D1 0.024 0.145 0.243 0.172 0.24 0.169 0.155
[0.0082]*** [0.0260]*** [0.0313]*** [0.0448]*** [0.0401]*** [0.0298]*** [0.0288]***

STDEV 0.082 0.356 0.727 -0.761 -0.945 -1.651 -1.005
[0.1894] [0.2029]* [0.2008]*** [0.3523]** [0.2229]*** [0.2829]*** [0.1620]***

SKEW 0.004 -0.005 -0.01 -0.043 -0.026 -0.016 -0.001
[0.0073] [0.0167] [0.0121] [0.0146]*** [0.0154]* [0.0081]** [0.0003]**

KURT 0.001 0.001 0.003 0.002 0.001 0 0
[0.0006] [0.0007]** [0.0008]*** [0.0005]*** [0.0005]* [0.0002]** [0.0000]**

D1*AUDUSD -0.828 -2.11 -3.25 -0.624 -0.962 0.345 -0.112
[0.2876]*** [0.4784]*** [0.4696]*** [0.5732] [0.3293]*** [0.3133] [0.2243]

D1*SKEW -0.002 -0.001 -0.04 -0.015 0.002 0.066 0.008
[0.0080] [0.0201] [0.0190]** [0.0232] [0.0214] [0.0145]*** [0.0093]

D1*KURT -0.003 -0.016 -0.021 -0.02 -0.017 -0.005 -0.009
[0.0012]*** [0.0023]*** [0.0025]*** [0.0030]*** [0.0027]*** [0.0012]*** [0.0014]***

Observations: 1114 1120 1121 1121 1122 1116 1109
Adj. R-squared: 0.0339 0.1238 0.2201 0.2044 0.3829 0.4531 0.3254

Prob(F-stat) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Break Date 1/20/2009 1/8/2009 12/15/2008 7/4/2008 4/23/3008 1/4/2008 10/4/2007

Note: “XR” is excess currency returns as defined in equation(2.3). Regression is the one in
equation (4.8):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

D1 = break date selected by Bai and Perron (2003) test, allowing for maximum of one
break. F-stats report Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0.
Newey-West Standard errors are reported in brackets. Asterisks indicate significance at 1 %
(***), 5% (**), and 10% (*) level.
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Table 6: FX QUARTERLY EXCESS RETURNS MATCHED FREQUENCY ROBUST LS

Eq Name: AUDUSD EURJPY EURUSD GBPUSD USDCAD USDJPY

Dep. Var: XR XR XR XR XR XR

C -0.043 -0.1 0.075 -0.14 -0.126 -0.005
[0.0110]*** [0.0137]*** [0.0171]*** [0.0134]*** [0.0139]*** [0.0126]

D3M 0.297 0.23 0.095 0.079 0.053 0.224
[0.0209]*** [0.0187]*** [0.0252]*** [0.0148]*** [0.0168]*** [0.0215]***

STDEV 0.253 -1.904 -0.588 2.685 0.015 -0.742
[0.0850]*** [0.2153]*** [0.1213]*** [0.1857]*** [0.1258] [0.1556]***

SKEW 0.046 -0.204 0.098 0.016 -0.079 -0.042
[0.0196]** [0.0167]*** [0.0085]*** [0.0088]* [0.0086]*** [0.0088]***

KURT 0.008 -0.004 0.007 0.008 0.013 0.002
[0.0046]* [0.0017]*** [0.0012]*** [0.0013]*** [0.0018]*** [0.0004]***

D3M*STDEV -3.23 0.843 -1.457 -0.359 0.529 -1.392
[0.1817]*** [0.2559]*** [0.2883]*** [0.2155]* [0.1675]*** [0.2671]***

D3M*SKEW 0.022 0.128 -0.108 -0.066 0.049 -0.033
[0.0227] [0.0279]*** [0.0107]*** [0.0114]*** [0.0106]*** [0.0121]***

D3M*KURT -0.012 -0.015 -0.017 -0.033 0.002 -0.023
[0.0049]** [0.0041]*** [0.0018]*** [0.0020]*** [0.0021] [0.0016]***

Observations: 1122 1122 1117 1121 1116 1121
Adj. Rw-squared: 0.39 0.43 0.36 0.59 0.58 0.32

Prob(F-stat)

Note: The dependent variable is excess currency returns as defined in equation(2.3). Regression is
the one in equation (4.8):

xrit+τ = γ0,τ + γ00,τD1i,τ +D1i,τ ∗ γ1,τstdev
i,t+τ
t +D1i,τ ∗ γ2,τskew

i,t+τ
t +D1i,τ∗

γ3,τkurt
t+τ
t + γ4,τstdev

i,t+τ
t + γ5,τskew

i,t+τ
t + γ6,τkurt

i,t+τ
t + εi,t+τ .

The breakdate D1 the same as the one selected in (5) . We use MM-estimation. F-stats report
Wald test of the null that γ1,τ = γ2,τ = γ3,τ = γ4,τ = γ5,τ = γ6,τ = 0. Adj. R2

w is the gooness of fit
statistic introduced in Renaud and Victoria-Fraser (2010). Huber type II standard errors are in
brackets. A quick introduction to robust regression analysis is in Eviews (2013)
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A Expressions for Option-Implied Risk-Neutral Moments

In this section, we give the expressions for V (t, τ),W (t, τ), X(t, τ) and µ(t, τ)used in equation

(3.10). Derivations can be found in Bakshi et al. (2003) and Grad (2010).

V (t, τ) =

∫ ∞
S̄

2(1− ln[K
S̄

])

K2
C(t, τ ,K)dK +

∫ S̄

0

2(1 + ln[ S̄
K̄

])

K2
P (t, τ ,K)dK (A.1)

W (t, τ) =

∫ ∞
S̄

6ln[K
S̄

]− 3(ln[K
S̄

])2

K2
C(t, τ ,K)dK −

∫ S̄

0

6ln[ S̄
K

] + 3(ln[ S̄
K̄

])2

K2
P (t, τ ,K)dK

(A.2)

X(t, τ) =

∫ ∞
S̄

12(ln[K
S̄

])2 − 4(ln[K
S̄

])2

K3
C(t, τ ,K)dK +

∫ S̄

0

12ln[ S̄
K

] + 4(ln[ S̄
K̄

])3

K2
P (t, τ ,K)dK

(A.3)

where

µ(t, τ) = Et
(
ln

[
St+τ
St

])
= er

dτ − 1− er
dτ

2
V (t, τ)− er

dτ

6
W (t, τ)− er

dτ

24
X(t, τ). (A.4)
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