From imitation to innovation: Where is all that Chinese R&D going?

Michael König Zheng (Michael) Song Kjetil Storesletten Fabrizio Zilibotti

> ABFER May 24, 2017

Business enterprise expenditure on R&D (in % of GDP).

Source: OECD Science, Technology and Industry Outlook (latest available year).

R&D Misallocation?

- Does R&D investment translate into productivity growth?
- Is the allocation of R&D investment efficient?
 - E.g., SOE vs. DPE, connected firms, etc.
- More general question:
 - Which firms do R&D?
 - What is R&D misallocation? Is it quantitatively important?

China: R&D Investments Enhance Firms' TFP Growth

Hsieh-Klenow TFP (robust to Olley-Pakes TFP)

R&D, TFP, and Misallocation

Three strands of literature:

- Technological convergence through innovation/imitation is an important determinant of growth and cross-country productivity differences (Acemoglu, Aghion and Zilibotti 2006)
- Misallocation: Hsieh and Klenow (2009) misallocation of resources is important to understand development
 - In Hsieh and Klenow: distribution of TFP across firms is exogenous
- 3. Theories of firm productivity dynamics: study which firms invest in the adoption of better technologies (Perla and Tonetti 2014; Lucas and Moll 2015; König, Lorenz, and Zilibotti 2016)

How do policy/market distortions affect the allocation of R&D and technological change?

Example: targeted R&D subsidies and industrial policies can increase aggregate R&D but possibly induce the wrong firms to invest in R&D

Today's presentation

• Some facts on R&D from Chinese and Taiwanese firm-level data

A theoretical model

Model estimation and policy counterfactuals

Stylized facts

- 1. Growth rates for non-R&D firms is falling in TFP
 - Roughly the same rate of decline in China and Taiwan
- 2. R&D firms grow faster than non-R&D firms.
 - The gap is growing in the TFP level.
- 3. R&D firms grow faster in Taiwan than in China.
 - Especially so for high TFP firms
- 4. R&D probability is increasing in TFP.
 - More steeply so in Taiwan
- 5. R&D probability is increasing in revenue.
 - Similar pattern in China and Taiwan

Conceptual Framework on R&D Decision

- A model with both innovation and imitation (cf. AAZ 2006, KLZ 2016)
- R&D proxies for investment in innovation
 - Simplification: R&D is an extensive margin (binary) choice
- Distance to *local* frontier determines imitation success rate
 - Implication: high-TFP firms invest in R&D because of low return on imitation
- Adding firm heterogeneity
 - (i) wedges; (ii) innovation capacities; (iii) R&D costs ...
- Obtain predictions about which firms do R&D and how fast they grow

The Economy (KLZ, 2016)

- Each variety is produced by a firm (monopolist), whose profit increases in its TFP.
- TFP growth through two channels: (i) Doing R&D + Passive Imitation;
 (ii) Active Imitation (cannot do both)
- Active imitation: Firms improve TFP by imitating more productive firms through a random matching process.
 - Passive Imitation: Learning efficiency discounted by $\delta.$

Firms' Life Cycle

- Firms are run by two-period lived OLG of (non-altruistic) entrepreneurs
- Firms are transmitted from parents to children (cf. SSZ 2011)
 - Young entrepreneurs decide on R&D-imitation
 - Old entrepreneurs choose input optimally, run the production process, earn a profit, consume and die
 - Imperfect TFP transmission
- R&D decisions only depend on CURRENT productivity distribution
 - Simplified framework eases estimation...
 - ... though the theory does not hinge on this assumption

Active Imitation

- Firm TFP distribution: f(A).
- If the firm chooses active imitation:
 - The probability of meeting a more productive firm: 1 F(A).
 - Imitation success (with probability q): the firm will improve its TFP by μ percent.
 - Imitation failure (with probability 1-q): its TFP remains unchanged.
- The value of active imitation for a young entrepreneur:

$$\beta \begin{bmatrix} q(1-F(A))\pi((1+\mu)A) \\ +(1-q(1-F(A)))\pi(A) \end{bmatrix}$$

R&D

- If the firm chooses R&D:
 - Innovation success (with probability p): the firm will improve its TFP by μ percent.
 - Innovation failure (with probability 1 p):
 - Passive imitation success (with probability $\delta q (1 F(A))$), the firm will improve its TFP by μ percent.
- The value of R&D:

$$-c + \beta \begin{bmatrix} \left(p + (1-p)\delta q \left(1 - F(A)\right)\right) \pi \left((1+\mu)A\right) \\ + \left((1-p)\left(1 - \delta q \left(1 - F(A)\right)\right)\right) \pi(A) \end{bmatrix}$$

Firm Decision

R&D/Active Imitation choice:

$$argmax \begin{cases} \beta \begin{bmatrix} q(1-F(A))\pi((1+\mu)A) \\ +(1-q(1-F(A)))\pi(A) \end{bmatrix} & Active \\ Imitation \end{cases}$$

$$-c + \beta \begin{bmatrix} (p+(1-p)\delta q(1-F(A)))\pi((1+\mu)A) \\ +((1-p)(1-\delta q(1-F(A))))\pi(A) \end{bmatrix} & R\&D \end{cases}$$

The TFP-R&D Profile

The Fraction of R&D Firms in KLZ

The Stationary TFP Distribution

"Traveling waves"

Adding Heterogeneities

- Output wedges: τ_i
 - $\pi(\tau_i, A_i)$ will be specified later
- Heterogeneous R&D chances: p_i
- Heterogeneous R&D costs: c_i

Heterogeneity in technology and wedges: TFP-R&D Profile

The Fraction of R&D Firms w/o heterogeneity (KLZ 2016)

The Fraction of R&D Firms with heterogeneity

Stylized facts Revisited

- Growth rates for non-R&D firms is falling in TFP
 - Roughly the same rate of decline in China and Taiwan
- 2. R&D firms grow faster than non-R&D firms.
 - The gap is growing in the TFP level.
- 3. R&D firms grow faster in Taiwan than in China.
 - Especially so for high TFP firms
- 4. R&D probability is increasing in TFP.
 - More steeply so in Taiwan
- 5. R&D probability is increasing in revenue.
 - Similar pattern in China and Taiwan

Data

- Industrial Firm Survey Data for China and Taiwan (census)
- Taiwan: 1999-2004 balanced panel with 11,000 firms (truncated by China's firm size standard)
 - Taiwan is used for the benchmark estimation
- Later, China: 2001-2007 balanced panel with 78,000 firms.
- Analysis based on data after removing industry fixed effects

TFP and Wedges

• Final good production: $Y(t) = \left(\int_0^1 Y_i(t)^{1-\eta} di\right)^{\frac{1}{1-\eta}}$

• This yields iso-elastic demands for each good: $P_i(t) = \left(\frac{Y_i(t)}{Y(t)}\right)^{-\eta}$

Production function of each good is Cobb-Douglas

$$Y_i(t) = A_i(t)K_i(t)^{\alpha}L_i(t)^{1-\alpha}$$

Towards estimating the model

STEP 1: infer wedges and TFP

• Given info about firms' revenue and wage bill, retrieve TFP and output wedges

$$1 - \tau_i \propto \frac{1}{\left(\frac{P_i Y_i}{K_i}\right)^{\alpha} \left(\frac{P_i Y_i}{w L_i}\right)^{1-\alpha}}$$

$$A_i \propto \frac{(P_i Y_i)^{\frac{1}{1-\eta}}}{K_i^{\alpha} (wL_i)^{1-\alpha}}$$

• Retrieve empirical joint distribution of τ and A (adjusting for classical measurement error to deal with "division bias")

Towards estimating the model

STEP 2: derive moments

- Sort firms on estimated TFP (A_i) . For each TFP percentile, calculate
 - 1) R&D probability (extensive margin)
 - 2) TFP growth rate conditional on zero R&D
 - 3) TFP growth rate conditional on R&D > 0
- Sort firms on revenue $((A_i(1-\tau_i))^{\frac{1}{\eta}})$. For each percentile, calculate
 - 4) R&D probability (extensive margin)

Taiwan data

-0.5

China data

Estimating the model (SMM)

Estimate model by Simulated Method of Moments (for Taiwan)

- Estimate four parameters:
 - q (imitation efficiency)
 - p distribution (probability of success of innovation), assume uniform distribution on $[0, \bar{p}]$
 - δ (passive imitation parameter)
 - c (R&D cost) level (no heterogeneity)
- Target 16 (-400) moments, efficient weighting (percentiles of distributions in 4 panels above)

Estimates for Taiwan: Constant c

	Estimates for Taiwan
q	0.45
δ	0.40
$ar{p}$	0.25
c_0	0.52

Estimates for Taiwan: Heteogeneous c

	Estimates for Taiwan
q	0.45
δ	0.50
$ar{p}$	0.26
mean of c	0.75
std of c	0.59

China Benchmark (Taiwan Based, Reestimating c Level)

	Estimates for Taiwan
q	0.45
δ	0.40
$ar{p}$	0.25
	Re-estimated for China
c_0	1.50

China Benchmark (Taiwan Based, Reestimating c Level)

	Estimates for Taiwan
q	0.45
δ	0.50
$ar{p}$	0.26
std of c	0.59
	Re-estimated for China
mean of c	2.25

Counterfactuals

A. Quantitative failure of Taiwan model for China:

- i. Model predicts that R&D firms grow faster than in the data
- ii. Model predicts steeper selection into R&D by TFP than in the data

B. Candidate additional mechanisms

- 1. Policy distortions scramble decisions (increased dispersion in c)
- 2. Scarcity of innovative talent in China (relative to Taiwan, lower)
- 3. Moral hazard in R&D

China Attempt 1: Scrambling (Estimating *c* Distribution)

51

91 99

91 99

11

-0.4

11

	Estimates for Taiwan
q	0.45
δ	0.50
$ar{p}$	0.26
	Re-estimated for China
mean of c	7.50
std of c	7.60

China Attempt 2: Talent Scarcity (Reestimating c and p distributions)

	Estimates for Taiwan
q	0.45
δ	0.50
	Re-estimated for China
$ar{p}$	0.15
mean of c	2.00
std of c	2.40

Moral Hazard in R&D

- Assume $C_i = c + \hat{c}_i$, where \hat{c}_i is a tax/subsidy to R&D
- Moral hazard: Firms can fake R&D
 - cash a subsidy and do imitation instead (avoiding cost and benefits of R&D)
 - Note: firms with low p and negative ϵ are likely to fake R&D
- Allow ε_i to be correlated with A_i and τ_i :

$$\hat{c}_i = \varepsilon_i + c_1 \log A_i + c_2 \log (1 - \tau_i).$$

- $c_1 > 0$: Government supports more productive firms (subsidizes R&D in high-A firms)
- $c_2 > 0$: Government supports its darlings (subsidizes R&D in low- τ firms, e.g. SOE)

China Attempt 3: Moral Hazard in R&D

	Estimates for Taiwan
q	0.45
δ	0.40
$ar{p}$	0.25
	Re-estimated for China
mean of c	3.50
	Fake R&D
mean of ϵ	0.50
std of ϵ	0.95
c_1	-0.21
c_2	-0.23

Fake R&D Firms

Robustness Check (Re-estimating All Parameters for China)

	Estimates for China
q	0.45
δ	0.90
$ar{p}$	0.05
mean of c	2.20
std of c	2.40

Effects of Removing R&D Distortions

• Removing R&D distortion (constant c re-estimated): TFP growth up by 0.8 percentage points

• Using Taiwan's c for China: TFP growth up by 1.4 percentage points

Conclusion

- Document evidence on firm-level distribution of R&D and growth in manufacturing industries in China and Taiwan
- Develop a theory of innovation (driven by R&D), imitation, and growth, with a focus on R&D misallocation
- Estimate the model using firm-level data from Taiwan and China
- Evaluate counterfactual: remove R&D distortions in China relative to Taiwan
- Next: extend analysis to Western economies (use data for Norway)