
A Primer on Machine Learning

ABFER 2017 – Singapore

Masterclass part II

Matt Taddy

ML is fast semiparametric prediction with

Bayesian heuristics to avoid overfit

2

What is ML?

ML combines flexible semiparametric models with fast estimation

algorithms and tools that ensure out-of-sample validity.

Supervised ML is trained to minimize loss on a small set of

outcomes ‘y’. Unsupervised ML loss is defined over all variables.

ML discovers patterns in the DGP.

It’s backwards looking: predicts a future that behaves like the past.

3

The plan

Out-of-Sample vs In-Sample performance

Regularization paths, the lasso, and penalty selection

Trees, forests, and regularization via the bootstrap

4

Example: Semiconductor Manufacturing Processes

Very complicated operation

Little margin for error.

Hundreds of diagnostics

Useful or debilitating?

We want to focus reporting and

better predict failures.

x is 200 input signals, y has 100/1500 failures.

Logistic regression for failure of chip i is

pi = p(faili |xi) = eα+xiβ/(1 + eα+xiβ)

5

Semiconductor FDR Control

The full model has R2 = 0.56 (based on binomial deviance).

The p-values for these 200 coefficients:

p−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

50

Some are clustered at zero, the rest sprawl out to one.

FDR of q = 0.1 yields α = 0.0122 p-value rejection cut-off.

Implies 25 ‘significant’, of which approx 22-23 are true signals.

6

semiconductors

A cut model, using only these 25 signals, has R2
cut = 0.18.

This is much smaller than the full model’s R2
full = 0.56.

In-Sample (IS) R2 always increases with more covariates.

This is exactly what MLE β̂ is fit to maximize.

But how well does each model predict new data?

An out-of-sample (OOS) experiment

I split the data into 10 random subsets (‘folds’).

I Do 10x: fit model β̂ using only 9/10 of data,

and record R2 on the left-out subset.

These OOS R2 give us a sense of how well each

model can predict data that it has not already seen.

7

OOS experiment for semiconductor failure

We gain predictive accuracy by dropping variables.

full cut

-1
5

-1
0

-5
0

model

R
2

Cut model has mean OOS R2 of 0.09, about 1/2 in-sample R2.

The full model is terrible. It is overfit and worse than ȳ .

Negative R2 are more common than you might expect.

8

OOS experimentation

All that matters is Out-of-Sample R2.

We don’t care about In Sample R2.

Using OOS experiments to choose the best model is called cross

validation. It will be a big part of our big data lives.

Selection of ‘the best’ model is at the core of all big data.

But before getting to selection, we first need strategies to

build good sets of candidate models to choose amongst.

9

Naive forward stepwise regression

The step() function in R executes a common routine:

I Fit all univariate models. Choose that with highest (IS) R2

and put that variable – say x(1) – in your model.

I Fit all bivariate models including x(1) (y ∼ β(1)x(1) + βjxj),

and add xj from one with highest R2 to your model.

I Repeat: max R2 by adding one variable to your model.

You stop when some model selection rule (AIC) is lower for the

current model than for any of the models that add one variable.

10

The problem with Subset Selection

step() is very slow (e.g., 90 sec for tiny semiconductors)

This is true in general with subset selection (SS):

Enumerate candidate models by applying maximum likelihood

estimation for subsets of coefficients, with the rest set to zero.

SS is slow because adding one variable to a regression can change

fit dramatically: each model must be fit from scratch.

A related subtle (but massively important) issue is stability.

MLEs have high sampling variability: they change a lot from one

dataset to another. So which MLE model is ‘best’ changes a lot.

⇒ you won’t know where to stop stepping.

11

Regularization

The key to contemporary statistics is regularization:

depart from optimality to stabilize a system.

Common in engineering: I wouldn’t drive on an optimal bridge.

We minimize deviance

plus a cost on the size of coefficients.

min− 2

n
log LHD(β)

+λ
∑
k

|βk |

This particular cost gives the ‘lasso’: the new least squares.

12

Regularization

The key to contemporary statistics is regularization:

depart from optimality to stabilize a system.

Common in engineering: I wouldn’t drive on an optimal bridge.

We minimize deviance plus a cost on the size of coefficients.

min− 2

n
log LHD(β)+λ

∑
k

|βk |

This particular cost gives the ‘lasso’: the new least squares.

12

Decision theory: Cost in Estimation

Decision theory is based on the idea that choices have costs.

Estimation and hypothesis testing: what are the costs?

Estimation:

Deviance is the cost of distance between data and the model.

Recall:
∑

i (yi − ŷi)
2 or −

∑
i yi log(p̂i)− (1− yi) log(1− p̂i).

Testing:

Since β̂j = 0 is safe, it should cost us to decide otherwise.

⇒ The cost of β̂ is deviance plus a penalty away from zero.

13

[Sparse] Regularized Regression

min

{
−2

n
log LHD(β) + λ

∑
j

c(βj)

}

λ > 0 is the penalty weight, c is a cost (penalty) function.

c(β) will be lowest at β = 0 and we pay more for |β| > 0.

-20 0 20

0
20
0

40
0

ridge

beta

be
ta
^2

-20 0 20

0
5

15

lasso

beta

ab
s(
be
ta
)

-20 0 20
0

20
40

60

elastic net

beta

ab
s(

be
ta

) +
 0

.1
 *

 b
et

a^
2

-20 0 20

0.
5
1.
5
2.
5

log

beta

lo
g(

1
+

ab
s(

be
ta

))

Options: ridge β2, lasso |β|, elastic net αβ2 + |β|, log(1 + |β|).

14

Penalization can yield automatic variable selection

The minimum of a smooth + pointy function can be at the point.

-1.0 0.0 1.0 2.0

0
1

2
3

4

β̂

de
vi
an
ce

-1.0 0.0 1.0 2.0
0.
0

0.
5

1.
0

1.
5

2.
0

β̂

pe
na
lty

-1.0 0.0 1.0 2.0

1
2

3
4

5
6

β̂

de
vi

an
ce

 +
 p

en
al

ty

Anything with an absolute value (e.g., lasso) will do this.

There are MANY penalty options and far too much theory.

Think of lasso as a baseline, and others as variations on it.

15

Lasso Regularization Paths

The lasso fits β̂ to minimize − 2
n log LHD(β) + λ

∑
j |βj |.

We’ll do this for a sequence of penalties λ1 > λ2... > λT .

Then we can apply model selection tools to choose best λ̂.

Path estimation:

Start with big λ1 so big that β̂ = 0.

For t = 2 . . .T : update β̂ to be optimal under λt < λt−1.

Since estimated β̂ changes smoothly along this path:

I It’s fast! Each update is easy.

I It’s stable: optimal λt may change a bit from sample to

sample, but that won’t affect the model much.

It’s a better version of forward stepwise selection.

16

Path plots

The whole enterprise is easiest to understand visually.

The algorithm moves right to left.

The y -axis is β̂ (each line a different β̂j) as a function of λt .
17

Example: Comscore web browser data

The previous plot is household log-online-spend regressed onto %

of time spent on various websites (each βj a different site).

Comscore (available via WRDS) records info on browsing

and purchasing behavior for annual panels of households.

I’ve extracted 2006 data for the 1000 most heavily trafficked

websites and for 10,000 households that spent at least 1$.

Why do we care? Predict consumption from browser history.

e.g., to control for base-level spending, say, in estimating

advertising effectiveness. You’ll see browser history of users when

they land, but likely not what they have bought.

18

Lasso Software

There are many packages for fitting lasso regressions in R.

glmnet is most common. gamlr is my contribution.

These two are very similar, and they share syntax.

Big difference is what they do beyond a simple lasso:.

glmnet does an ‘elastic net’: c(β) = |β|+ νβ2.

gamlr does a ‘gamma lasso’: c(β) ≈ log(ν + |β|).

Since we stick mostly to lasso, they’re nearly equivalent for us.

gamlr just makes it easier to apply some model selection rules.

Both use the Matrix library representation for sparse matrices.

19

Running a lasso

Once you have your x and y, running a lasso is easy.

spender <- gamlr(xweb, log(yspend))

plot(spender) # nice path plot

spender$beta[c("mtv.com","zappos.com"),]

And you can do logistic lasso regression too

gamlr(x=SC[,-1], y=SC$FAIL, family="binomial")

You should make sure that y is numeric 0/1 here, not a factor.

See ?gamlr for details and help.

20

Size Matters

Penalization means that scale matters. e.g., xβ has the same

effect as (2x)β/2, but |β| is twice as much penalty as |β/2|.

You can multiply βj by sd(xj) in the cost function to standardize.

That is, minimize − 2
n log LHD(β) + λ

∑
j sd(xj)|βj |.

⇒ βj ’s penalty is calculated per effect of 1SD change in xj .

gamlr and glmnet both have standardize=TRUE by default.

You only use standardize=FALSE if you have good reason.

21

Regularization and Selection

The lasso minimizes − 2
n log LHD(β) + λ

∑
j |βj |.

This ‘sparse regularization’ auto-selects the variables.

Sound too good to be true? You need to choose λ.

Think of λ > 0 as a signal-to-noise filter: like squelch on a radio.

We’ll use cross validation or information criteria to choose.

Path algorithms are key to the whole framework:

? They let us quickly enumerate a set of candidate models.

? This set is stable, so selected ‘best’ is probably pretty good.

22

Model Selection: it is all about prediction.

A recipe for model selection.

1. Find a manageable set of candidate models

(i.e., such that fitting all models is fast).

2. Choose amongst these candidates the one with

best predictive performance on unseen data.

1. is what the lasso paths provide.

2. Seems impossible! But it’s not . . .

First, define predictive performance via ‘deviance’.

Then, we need to estimate deviance for a fitted model applied to

new independent observations from the true data distribution.

23

Out-of-sample prediction experiments

We already saw an OOS experiment with the semiconductors.

Implicitly, we were estimating predictive deviance (via R2).

The procedure of using such experiments to do model selection is

called Cross Validation (CV). It follows a basic algorithm:

For k = 1 . . .K ,

I Use a subset of nk < n observations to ‘train’ the model.

I Record the error rate for predictions from

this fitted model on the left-out observations.

We’ll usually measure ‘error rate’ as deviance. But alternatives

include MSE, misclass rate, integrated ROC, or error quantiles.

You care about both average and spread of OOS error.

24

K -fold Cross Validation

One option is to just take

repeated random samples.

It is better to ‘fold’ your data.

• Sample a random ordering of the data

(important to avoid order dependence)

• Split the data into K folds: 1st 100/K%, 2nd 100/K%, etc.

• Cycle through K CV iterations with a single fold left-out.

This guarantees each observation is left-out for validation,

and lowers the sampling variance of CV model selection.

Leave-one-out CV, with K = n, is nice but takes a long time.

K = 5 to 10 is fine in most applications.

25

CV Lasso

The lasso path algorithm minimizes − 2
n log LHD(β) + λt

∑
j |βj |

over the sequence of penalty weights λ1 > λ2 . . . > λT .

This gives us a path of T fitted coefficient vectors, β̂1 . . . β̂T , each

defining deviance for new data: − log p(ynew | Xnew β̂t).

Set a sequence of penalties λ1 . . . λT .

Then, for each of k = 1 . . .K folds,

I Fit the path β̂
k
1 . . . β̂

k
T on all data except fold k .

I Get fitted deviance on left-out data: − log p(yk | Xk β̂t).

This gives us K draws of OOS deviance for each λt .

Finally, use the results to choose the ‘best’ λ̂, then re-fit the model

to all of the data by minimizing − 2
n log LHD(β) + λ̂

∑
j |βj |.

26

CV Lasso

Both gamlr and glmnet have functions to wrap this all up.

The syntax is the same; just preface with cv.

cv.spender <- cv.gamlr(xweb, log(yspend))

Then, coef(cv.spender) gives you β̂t at the ‘best’ λt

I select="min" gives λt with min average OOS deviance.

I select="1se" defines best as biggest λt with average OOS

deviance no more than 1SD away from the minimum.

1se is default, and balances prediction against false discovery.

min is purely focused on predictive performance.

27

CV Lasso

Again, the routine is most easily understood visually.

Both selection rules are good; 1se has extra bias for simplicity.
28

Alternatives to CV: Information Criteria

Many ‘Information Criteria’ out there: AICc, AIC, BIC, ...

These approximate distance between a model and ‘the truth’.

You can apply them by choosing the model with minimum IC.

Most common is Akaike’s AIC = Deviance + 2df .

df = ‘degrees of freedom’ used in your model fit.

For lasso and MLE, this is just the # of nonzero β̂j .

29

AIC overfits in high dimensions

The AIC is atually estimating OOS deviance: what your deviance

would be on another independent sample of size n.

IS deviance is too small, since the model is tuned to this data.

Some deep theory shows that IS - OOS deviance ≈ 2df .

⇒ AIC ≈ OOS deviance.

Its common to claim this approx (i.e., AIC) is good for ‘big n’.

Actually, its only good for big n/df .

In Big Data, df (# parameters) can be huge. Often df ≈ n.

In this case the AIC will be a bad approximation: it overfits!

30

AIC corrected: AICc

AIC approximates OOS deviance, but does a bad job for big df .

In linear regression an improved approx to OOS deviance is

AICc = Deviance + 2dfE

[
σ2

σ̂2

]
= Deviance + 2df

n

n − df − 1

This is the corrected AIC, or AICc.

It also works nicely in logistic regression, or for any glm.

Notice that for big n/df , AICc ≈ AIC. So always use AICc.

31

gamlr uses AICc

It’s marked on the path plot

−6 −5 −4 −3 −2

−
1.

5
0.

0
1.

0

log lambda

co
ef

fic
ie

nt
873 603 226 40 1

And it is the default for coef.gamlr

B <- coef(spender)[-1,]

B[c(which.min(B),which.max(B))]

cursormania.com shopyourbargain.com

-0.998143 1.294246

32

Another option: Bayes IC

The BIC is Deviance + log(n)× df .

This looks just like AIC, but comes from a very different place.

BIC ≈ − log p(Mb|data), the ‘probability that model b is true’.

p(Mb|data) =
p(data,Mb)

p(data)
∝ p(data|Mb)︸ ︷︷ ︸

LHD

p(Mb)︸ ︷︷ ︸
prior

The ‘prior’ is your probability that a model is true before you saw

any data. BIC uses a ‘unit-info’ prior: N
[
β̂, 2nvar(β̂)−1

]
AIC[c] tries to approx OOS deviance.

BIC is trying to get at the ‘truth’.

33

IC and CV on the Comscore Data

-6 -5 -4 -3 -2

2.
5

2.
6

2.
7

2.
8

log lambda

m
ea

n
sq

ua
re

d
er

ro
r

873 603 226 40 1

-6 -5 -4 -3 -2

0.
90

0.
95

1.
00

log lambda

IC
/n

AICc
AIC
BIC

The take home message: AICc curve looks like CV curve.

In practice, BIC works more like the 1se CV rule.

But with big n it chooses too simple models (it underfits).

34

IC and CV on the Comscore Data

−6 −5 −4 −3 −2

−
1.

5
0.

0
1.

0

log lambda

co
ef

fic
ie

nt
873 603 226 40 1

AICc
AIC
BIC
CV.min
CV.1se

With all of these selection rules, you get a range of answers.

If you have time, do CV. But AICc is fast and stable.

If you are worried about false discovery, tend towards BIC/1se.

35

Decision Trees

Trees are great: nonlinearity, deep interactions, heteroskedasticity.

Sunny

Cloudy

Wake Up

>70% Rain

<70% Rain

<30% Rain

>30% Rain

No Umbrella

Umbrella

Umbrella

No Umbrella

The ‘optimal’ decision tree is a statistic we care about (s.w.c.a).

36

CART: greedy growing with optimal splits

Given node {xi , yi}ni=1 and DGP weights θ, find x to minimize

|θ|σ2(x ,θ) =
∑

k∈left(x)

θk(yk − µleft(x))2

+
∑

k∈right(x)

θk(yk − µright(x))2

for a regression tree. Classification impurity can be Gini, etc.

37

Trees are awesome

They automatically learn non-linear response functions

and will discover interactions between variables.

Example: Motorcycle Crash Test Dummy Data

x is time from impact, y is acceleration on the helmet.

|
times < 27.4

times < 16.5

times < 15.1 times < 24.4

times < 19.5

times < 35
times < 29.8

 -4.357 -39.120

 -86.310-114.700 -42.490

 10.250 40.720 3.291

10 20 30 40 50

-1
00

-5
0

0
50

times

ac
ce
l

38

Unfortunately, deep tree structure is so unstable that optimal

depth is not easily chosen via cross validation

I tree predictions are non-smooth wrt the tuning parameter

(tree depth).

I Breiman 2001: Cross-validation fails for such tuning

39

Instead, we can average over a bootstrapped sample of trees:

I repeatedly re-sample the data, with-replacement,

to get a ‘jittered’ dataset of n observations.

I for each resample, fit a CART tree.

I when you want to predict y for some x,

take the average prediction from this forest of trees.

Real structure that persists across datasets shows up in the

average. Noisy useless signals will average out to have no effect.

This is a Random Forest

40

Random Forests

• Sample B subsets of the data + variables:

e.g., observations 1, 5, 20, ... and inputs 2, 10, 17, ...

• Fit a tree to each subset, to get B fitted trees is Tb.

• Average prediction across trees:

- for regression average E[y |x] = 1
B

∑B
b=1 Tb(x).

- for classification let {Tb(x)}Bb=1 vote on ŷ .

The observation resample is usually with-replacement, so that this

is taking the average of bootstrapped trees (i.e., ‘bagging’)

41

Understanding Random Forests

Recall how CART is used in practice.

I Split to lower deviance until leaves hit minimum size.

I Create a set of candidate trees by pruning back from this.

I Choose the best among those trees by cross validation.

Random Forests avoid the need for CV.

Each tree ‘b’ is not overly complicated because

you only work with a limited set of variables.

Your predictions are not ‘optimized to noise’ because

they are averages of trees fit to many different subsets.

RFs are a great go-to model for nonparametric prediction.

42

Deeper: Distribution-free Bayesian nonparametrics

Find some statistic of the DGP that you care about:

I derive from first principles, e.g. moment conditions

I an algorithm that we know works, e.g. CART

I think about geometric projections, e.g. OLS

Call this statistic θ(g) where g(z) is the DGP (e.g., for z = [x, y]).

Then you write down a flexible model for the DGP g , and study

properties of the posterior on θ(g) induced by the posterior over g .

43

A flexible model for the DGP

Say z = [x, y] is a single independent data point.

Each data point assumes one of a finite number of possible values,

[ζ1 . . . ζL], with probabilities proportional to [θ1 . . .θL].

g(z) =
1

|θ|

L∑
l=1

θl1[z=ζl]

We complete specification with a conjugate prior on the weights:

θ

|θ|
∼ Dir(a) ∝ 1

|θ|L(a−1)
∏
l

θa−1l where a, θl > 0.

This is the Dirichlet-multinomial sampling model (Ferguson 1973).

44

Now you’ve observed some data, say Z = {z1 . . . zn}.
(say every zi = [xi , yi] is unique).

The posterior over weights has θl
ind∼ Exp

(
a + 1[ζl∈Z]

)
.

A convenient limiting case

a→ 0 leads to p(θl = 0) = 1 for ζ l /∈ Z.

In this case, we can focus on only the observed support and write

the posterior for our DGP

g(z) = 1
|θ|

n∑
i=1

θi1[z = zi], θi
iid∼ Exp(1).

This is just the Bayesian bootstrap. (Rubin 1981)

45

Bayesian Forests: a posterior for CART trees

For b = 1 . . .B:

• draw θb iid∼ Exp(1)

• run weighted-sample CART to get Tb = T (θb)

one tree posterior mean

Random Forest ≈ Bayesian forest ≈ posterior over CART fits.

46

Random Forests in R

R has the randomForest package,

which works essentially the same as tree

spamrf <- randomForest(spam ~ ., data=xemail)

For big datasets, use x = x, y = y like in gamlr.

Unfortunately, you lose the interpretability of a single tree.

However, if you set importance=TRUE, Random Forest will

evaluate each Tb’s performance on the left-out sample (recall each

tree is fit on a sub-sample). This yields nice OOS stats.

They can be slow (due to many tree fits) but

they can also be fit in parallel or on distributed data...

47

Fitting CART to sampled-with-replacement data is equivalent to

randomly weighting your observations in the deviance calculations.

(size proportional to weight in this picture).

48

Random Trees for the Motorcycle Data

10 20 30 40 50

-1
50

-5
0

0
50

10
0

times

ac
ce
l

If you fit to random subsets of the data,

you get a slightly different tree each time.

49

Model Averaging with Random Forests

10 20 30 40 50

-1
00

-5
0

0
50

times

ac
ce
l

Averaging many trees yields a single response surface.

Still looks like a bit of overfit to me, which remains a danger.

50

A larger example: California Housing Data

Median home values in census tracts, along with

I Latitude and Longitude of tract centers.

I Population totals and median income.

I Average room/bedroom numbers, home age.

The goal is to predict log(MedVal) for census tracts.

Difficult regression: Covariate effects change with location.

How they change is probably not linear.

51

CART Dendrogram for CA housing

|medianIncome < 3.5471

medianIncome < 2.51025

latitude < 34.465

longitude < -117.775 longitude < -120.275

latitude < 37.905

AveRooms < 4.70574

medianIncome < 5.5892

AveOccupancy < 2.41199

medianIncome < 4.5287

medianIncome < 7.393

11.93 11.53

11.76 11.36

11.08

12.13 11.78 12.53

12.08 12.30

12.64 12.98

Income is dominant, with location important for low income.

Cross Validation favors the most complicated tree: 12 leaves.

52

LASSO fit for CA housing data

Looks like over-estimates in the Bay, under-estimates in OC.

53

CART fit for CA housing data

Under-estimating the coast, over-estimating the central valley?

54

randomForest fit for CA housing data

No big residuals! (although still missing the LA and SF effects)

Overfit? From out-of-sample prediction it appears not.

55

CA housing: out-of-sample prediction

LASSO CART RF

0.
0

0.
4

0.
8

1.
2

model

M
S

E

Trees outperform LASSO: gain from nonlinear interaction.

RF is better still than CART: benefits of model averaging.

56

Aside: trunks are stable (Taddy+ icml 2015)

2 4 6 8 10 12 14
median income in $10k

10-3

10-2

10-1

100

101

lo
g
 d

e
n
si

ty

full sample
first split
second split I sample tree occurs 62%

of the time.

I 90% of trees split on

income twice,

and then latitude.

I 100% of trees have 1st 2

splits on median income.

Empirically and theoretically: trees are stable, at the trunk.
57

Random Forest bottlenecks

RFs (or BFs) are awesome, but when the data are too big to fit in

memory or on a single machine they get extremely expensive.

(e.g., Google PLANET, Panda 2009).

A common solution is a ‘sub-sampling forest’: instead of drawing

with-replacement, or re-weighting, draw m� n sub-samples.

This defeats the whole purpose of trees: these are rules that are

designed to grow in complexity with the amount of data available.

(that’s why we bother storing so much data!)

If you starve the individual trees of data you lose.

58

Empirical Bayesian Forests (EBF)

RFs are expensive. Sub-sampling hurts bad.

Instead:

I fit a single tree to a shallow trunk.

I Map data to each branch.

I Fit a full forest on the smaller branch datasets.

Since the trunks are all similar for each tree in a full forest, our

EBF looks nearly the same at a fraction of computational cost.

It’s an updated version of classical Empirical Bayes:

use plug-in estimates at high levels in a hierarchical model,

focus effort at full Bayesian learning for the the hard bits.

59

OOS predictive performance on California Housing

DT BART ET RF BF EBF SSF
45000

50000

55000

60000

65000

70000
R

M
S
E

Here EBF and BF give nearly the same results. SSF does not.

EBFs crunch more data faster without hurting performance.

60

Roundup on Tree-based learning

We’ve seen two techniques for building tree models.

I CART: recursive partitions, pruned back by CV.

I randomForest: average many simple CART trees.

There are many other tree-based algorithms.

I Boosted Trees: repeatedly fit simple trees to residuals.

Fast, but it is tough to avoid over-fit (requires full CV).

I Bayes Additive Regression Trees: mix many simple trees.

Robust prediction, but suffers with non-constant variance.

Trees are poor in high dimension, but fitting them to low

dimension factors (principle components) is a good option.

61

Roundup on Nonlinear Regression and Classification

Many other semiparametric learning algorithms

I Neural Networks (and deep learning):

many recursive logistic regressions.

I Support Vector Machines:

Project to HD, then classify.

I Gaussian Processes, splines, wavelets, etc:

Use sums of curvy functions in regression.

Some of these are great, but all take a ton of tuning.

Lots of work on automating this tuning for deep nets

For now, nothing’s better out-of-the-box in low-D than forests.

But: a lasso will tend to work better in high-D

62

