A model of the Fed's view on inflation

Thomas Hasenzagl¹, Filippo Pellegrino², Lucrezia Reichlin³, and Giovanni Ricco⁴

¹Now-Casting Economics ²London School of Economics and Now-Casting Economics ³London Business School, Now-Casting Economics, and CEPR ⁴University of Warwick and OFCE - SciencesPo

> ABFER 6th Annual Conference May 24, 2018

Modelling the Fed's View

"Inflation is characterized by an underlying trend that has been essentially constant since the mid-1990s; Theory and evidence suggest that this **trend is strongly influenced by inflation expectations** that, in turn, depend on monetary policy. In particular, the remarkable stability of various measures of expected inflation in recent years presumably represents the fruits of the Federal Reserve's sustained effort since the early 1980s to bring down and stabilize inflation at a low level. The anchoring of inflation expectations ...does not, however, prevent actual inflation from fluctuating from year to year in response to the temporary influence of movements in **energy prices and other disturbances**. In addition, inflation will tend to run above or below its underlying trend to the extent that **resource utilization–which may serve as an indicator of firms' marginal costs–** is persistently high or low."

- Janet Yellen, 60th Boston Fed Conference

An Econometric Model of the Policymakers' View

Inflation dynamics are dominated by three components

- 1. A trend in inflation, reflecting expectations
- 2. The Phillips curve, relating economic slack to prices
- 3. An oil price component unrelated to real variables

A Stylized Rational Expectations Model

For now, we are leaving out energy prices ...

A Stylized Rational Expectations Model

For now, we are leaving out energy prices ...

$$\begin{aligned} y_t &= \mu_t^y + \psi_t^{PC} + \psi_t^y , \\ \pi_t &= \mu_t^\pi + \delta_\pi \psi_t^{PC} + \psi_t^\tau \end{aligned}$$

- μ^y and μ^π are independent random walk trends
- + ψ^{PC} is a common output gap or Phillips curve cycle

A Stylized Rational Expectations Model

For now, we are leaving out energy prices ...

$$\begin{aligned} y_t &= \mu_t^y + \psi_t^{PC} + \psi_t^y , \\ \pi_t &= \mu_t^\pi + \delta_\pi \psi_t^{PC} + \psi_t^\pi \end{aligned}$$

- μ^y and μ^π are independent random walk trends
- * ψ^{PC} is a common output gap or Phillips curve cycle
- ψ^y and ψ^{π} are other (idiosyncratic) disturbances

Standard Features of the Stylized Model

A Random Walk trend in inflation

Stochastic Trend Inflation

Unit root trend inflation

$$\mu_t^{\pi} = \tau^{\pi} + \mu_{t-1}^{\pi} + u_t^{\pi}$$

Trend inflation relates to long-run forecast for inflation

$$\lim_{h \to \infty} \mathbb{E}_t[\pi_{t+h}] = \lim_{h \to \infty} \left\{ h \tau^{\pi} + \mu_t^{\pi} \right\}$$

Standard Features of the Stylized Model

Rational Expectations Phillips curve

A Stylized RE Model for Output and Inflation

• We model ψ_t^{PC} as a sationary stochastic cycle (Harvey, 1985)

$$\begin{bmatrix} \psi_t^{PC} \\ \bar{\psi}_t^{PC} \end{bmatrix} = \rho^{PC} \begin{bmatrix} \cos(\lambda^{PC}) & \sin(\lambda^{PC}) \\ -\sin(\lambda^{PC}) & \cos(\lambda^{PC}) \end{bmatrix} \begin{bmatrix} \psi_{t-1}^{PC} \\ \bar{\psi}_{t-1}^{PC} \end{bmatrix} + \begin{bmatrix} v_t^{PC} \\ \bar{v}_t^{PC} \end{bmatrix},$$

- This cycle corresponds to a stationary ARMA(2,1) with complex roots
- + ψ_t^{PC} is solution to a hybrid New Keynesian Phillips Curve

$$\hat{\pi}_t = \sum_{i=1}^2 \alpha_i \hat{\pi}_{t-i} + \beta \mathbb{E}_t \left[\hat{\pi}_{t+1} \right] + \gamma \hat{y}_t + v_t$$

Standard Features of the Stylized Model

Reduced Form Representation

$$\begin{pmatrix} y_t \\ \pi_t \\ \mathbb{E}_t \left[\pi_{t+1} \right] - \tau^{\pi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \delta_{\pi} & 1 \\ \delta_{exp,1} + \delta_{exp,2}L & 1 \end{pmatrix} \begin{pmatrix} \psi_t^{PC} \\ \mu_t^{\pi} \end{pmatrix} + \begin{pmatrix} \mu_t^y \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \psi_t^y \\ \psi_t^{\pi} \\ 0 \end{pmatrix}$$

- Can accommodate different specifications for the Phillips Curve
- An AR(1) ψ_t^{PC} would be the solution to a **purely forward** looking New-Keynesian Phillips Curve
- It also nests the **backwards looking** Old-Keynesian Phillips curve connecting output gap and prices

Deviations from the Stylized Rational Expectations Model Energy Price Cycle

Energy Cycle (Coibion and Gorodnichenko 2015)

- Household (and firms) expectations may be not fully anchored
- ... and can respond to oil and commodity price changes
- gasoline prices are among the most visible prices
- ... and may follow a global demand cycle

Deviations from the Stylized Rational Expectations Model

(More) Non-standard features

We model agents' (survey) expectations:

$$\mathbb{E}^{*}[\pi_{t+1}] = \mu_{t}^{\pi} + \delta_{*}\psi_{t}^{PC} + \gamma_{*}\psi_{t}^{EP} + \mu_{t}^{*} + \psi_{t}^{*}$$

1. Expectational oil disturbances (transitory disanchoring)

Deviations from the Stylized Rational Expectations Model

(More) Non-standard features

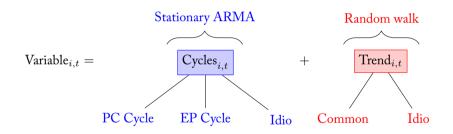
We model agents' (survey) expectations:

$$\mathbb{E}^*[\pi_{t+1}] = \mu_t^{\pi} + \delta_* \psi_t^{PC} + \gamma_* \psi_t^{EP} + \mu_t^* + \psi_t^*$$

1. Expectational oil disturbances (transitory disanchoring)

2. Time varying bias in expectations (permanent disanchoring)

Deviations from the Stylized Rational Expectations Model

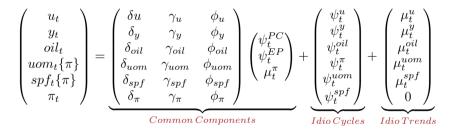

(More) Non-standard features

We model agents' (survey) expectations:

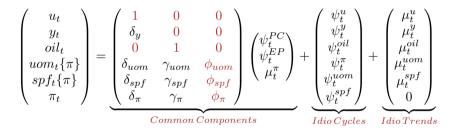
$$\mathbb{E}^*[\pi_{t+1}] = \mu_t^{\pi} + \delta_* \psi_t^{PC} + \gamma_* \psi_t^{EP} + \mu_t^* + \psi_t^*$$

- 1. Expectational oil disturbances (transitory disanchoring)
- 2. Time varying bias in expectations (permanent disanchoring)
- 3. Measurement error in the variables

A Sketch of the Model


- Phillips Curve Cycle: Real variables, inflation expectations, and inflation
- Energy Price Cycle: Oil prices, inflation expectations, and inflation
- Common Trend: Inflation expectations and inflation

The Data


Variable	Transform	Loads on			
		PC Cycle	EP Cycle	Common Trend	
Unemployment Rate	Levels	\checkmark			
Gross Domestic Product	Levels	\checkmark			
WTI Spot Oil Price	Levels		\checkmark		
UoM: Expected Inflation	Levels	\checkmark	\checkmark	\checkmark	
SPF: Expected Inflation	Levels	\checkmark	\checkmark	\checkmark	
CPI: All Items	YoY	\checkmark	\checkmark	✓	

Quarterly sample: Q1-1984 to Q2-2017

Identifying the unobserved components model

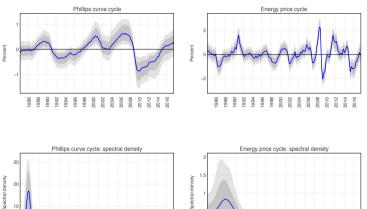
Identifying the unobserved components model

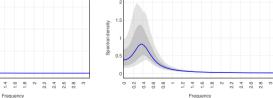
Bayesian Estimation

Metropolis-Within-Gibbs Algorithm

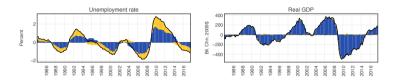
The algorithm is structured in two blocks (priors are diffuse or weakly informative):

MWG algorithm with two blocks

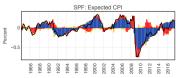

- The first block uses a Metropolis step for the estimation of the state-space parameters
- The **second block** uses a Gibbs step to draw the **unobserved states** conditional on the model parameters

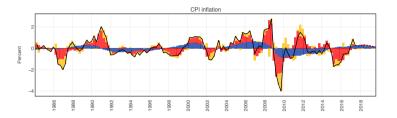

Trends and Cycles in US Inflation

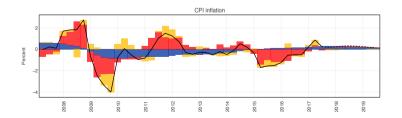
Common Cycles


0 0.2 0.6 0.8 2

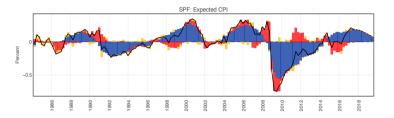
Common Cycles in time and frequency domain


Cycles Historical Decomposition

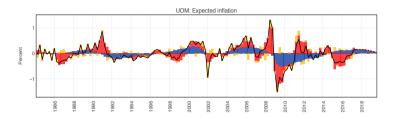


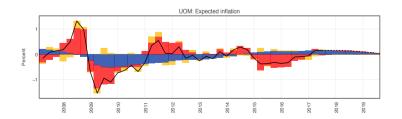


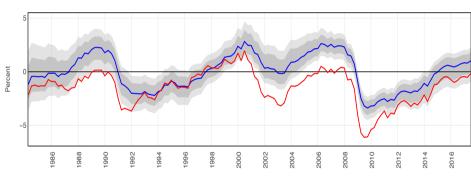
Cycles


Historical Decomposition of the CPI Cycles

Cycles

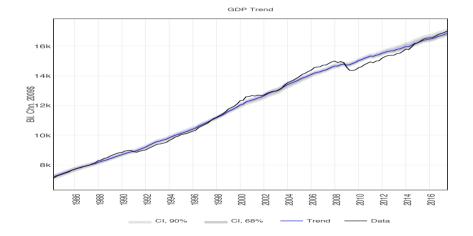

Historical Decomposition of the SPF Expectations Cycles




Cycles

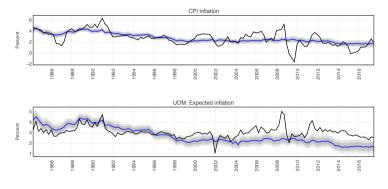
Historical Decomposition of the UoM Exoectations Cycles

Cycles Output Gaps



Output gap as a percentage of potential GDP

- СВО

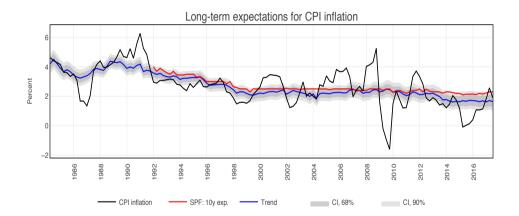

Trends

Idiosyncratic trend in GDP

Common Inflation Trend

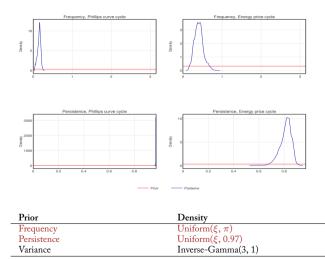

Common trend between inflation and inflation expectations

Time Varying Bias in UoM Expectations

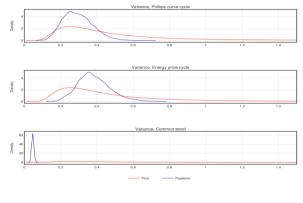

Warning: two different axis

23/32

Common Inflation Trend

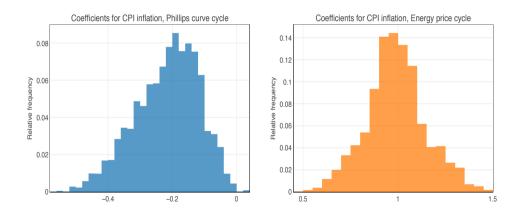

The trend is similar to 10-year Expectations

Model Diagnostics and Forecasting


Priors and Posteriors

(Maximum) Frequency and Persistence

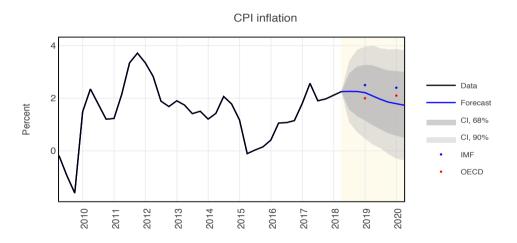
Priors and Posteriors


Variance of Shocks to the Components

Prior	Density
Frequency	Uniform (ξ, π)
Persistence	$Uniform(\xi, 0.97)$
Variance	Inverse-Gamma(3, 1)

Coefficients

Posteriors of the coefficients for the common cycles of inflation


Out-of-Sample Forecast Evaluation

Root Mean Squared Forecast Error relative to the Random Walk with drift

Horizon	Variable	TC Model	BVAR	UC-SV
	Unemployment rate	0.83	0.65	x
h=1	Real GDP	1.00	0.92	x
	Oil price	1.02	1.08	x
	CPI Inflation	0.92	0.91	1.00
	UOM: Expected inflation	0.97	1.03	x
	SPF: Expected CPI	0.95	1.10	x
h=2	Unemployment rate	0.85	0.68	x
	Real GDP	1.03	0.91	x
	Oil price	1.04	1.18	x
	CPI Inflation	0.87	1.00	0.99
	UOM: Expected inflation	0.95	1.09	x
	SPF: Expected CPI	0.95	1.24	x
h=4	Unemployment rate	0.89	0.79	x
	Real GDP	1.09	0.97	х
	Oil price	1.04	1.26	x
	CPI Inflation	0.81	1.13	0.98
	UOM: Expected inflation	0.93	1.14	x
	SPF: Expected CPI	0.87	1.35	х
h=8	Unemployment rate	0.93	0.97	x
	Real GDP	1.17	1.18	х
	Oil price	1.04	1.39	х
	CPI Inflation	0.79	1.07	0.96
	UOM: Expected inflation	0.92	1.30	x
	SPF: Expected CPI	0.84	1.39	x

Out-of-Sample Forecast Evaluation

Probability that US inflation will be below 2% is 42% in 2018 and 56% in 2019

Conclusion

Conclusions

- The Phillips Curve is well identified and fairly stable
- Not always the dominant component
- Large oil price fluctuations can move consumers' expectations away from the real-nominal relationship
- Forecast: larger than 50% probability of inflation falling below 2% in 2019
 - Trend expectations are in line with last ten years
 - Oil price pressures will remain subdued
 - The economy will start slowing down in early 2019