Are Disagreements Agreeable? Evidence from Information Aggregation

Dashan Huang Jiangyuan Li Liyao Wang Singapore Management University

> **Guofu Zhou** Washington University in St. Louis

> > May 22, 2018

2018 ABFER 6th Annual Conference

Time-Series Return Predictability

Return predictability is as central as it is old:

 $R_{t+1} = \alpha + \beta Z_t + \varepsilon_{t+1}.$

- Welch and Goyal (2008): out-of-sample (OOS) forecasting
 - In-sample forecasting \neq OOS (i.e., profitability)
 - Traditional predictors, such as $r_{f,t}$ and d/p_t , do not have OOS power
 - Possible reason: parameter uncertainty and model instability
- Some promising economic predictors:
 - **1** Output gap (Cooper and Priestley, 2009)
 - 2 Ene-of-the-year economic growth (Møller and Rangvid, 2015)
 - 3 Aggregate short interest (Rapach, Ringgenberg, and Zhou, 2016)
 - 4 Variance risk premium (Pyun, 2018JFE)

Economic variables can predict stock returns out-of-sample!

How about Investor Disagreement as a Predictor?

- Stock prices are driven by both fundamentals and investors' belief (Shiller, 1981).
- Disagreement is one dimension to capture investors' belief.
- Without disagreement, it is difficult to explain why investors would trade (Milgrom and Stockey, 1982).
- Disagreement has been explored as early as Miller (1977).
- Its effect is widespread:
 - **1** Stock return and volatility
 - 2 Liquidity
 - 3 Trading volume
 - 4 Government bond
 - 5 Firm investment

Disagreement represents "the best horse" for behavioral finance to obtain as much insights as classical asset pricing theories (Hong and Stein, 2007).

Disagreement Generates Predictability

1 Theoretically

- -Miller (1977)
- -Banerjee (2011)
- -Atmaz and Basak (2018)

2 Empirically

- -Yu (2011): analyst forecast dispersion
- –Carlin, Longstaff, and Matoba (2014): disagreement on mortgage prepayment

Can disagreement predict stock returns OOS?

Many Proxies: Unobservable

1 Professional forecast-based

- Gross domestic production forecast dispersion (D^{GDP})
- Gross domestic production growth forecast dispersion (D^{GDPg})
- Industrial production forecast dispersion (D^{IP})
- Industrial production growth forecast dispersion (D^{IPg})
- Unemployment forecast dispersion (D^{UEP})
- Investment forecast dispersion (D^{INV})
- Investment growth forecast dispersion (D^{INVg})
- Consumer price index forecast dispersion (D^{CPI})
- 3-month T-bill forecast dispersion (D^{TBL})
- Value-weighted analyst forecast dispersion (D^{Yu})
- Beta-weighted analyst forecast dispersion (D^{HS})

2 Household forecast-based

- Realized personal financial improvement dispersion (D^{RPF})
- Expected personal financial improvement dispersion (D^{EPF})
- Business condition dispersion (D^{BC})
- Unemployment condition dispersion (D^{UC})
- Interest rate condition dispersion (D^{IRC})
- Vehicle purchase condition dispersion (D^{VPC})

3 Market information-based

- Standardized unexplained volume (D^{SUV})
- Idiosyncratic volatility (D^{IVOL})
- OEX call/put open interest difference (D^{OID})

Predictive Ability of Disagreement Proxies

	R_{t+1}	$= \alpha + \beta D_t + \varepsilon_{t+1}$	(monthly)	
Disagreement	β	<i>t</i> -stat	R^2	R_{OS}^2
D^{GDP}	-0.15	-0.73	0.12	-1.69
D^{GDP_g}	-0.29	-1.60	0.43	-3.01
D^{IP}	-0.11	-0.60	0.06	-2.33
D^{IP_g}	-0.01	-0.05	0.00	-2.13
D ^{UEP}	0.13	0.59	0.08	-0.35
D^{INV}	-0.21	-1.16	0.24	-2.69
D^{INV_g}	0.20	1.19	0.22	-0.68
D ^{CPI}	-0.36	-1.62	0.71	-5.44
D ^{TBL}	-0.66***	-2.57	2.37	-3.60
D^{Y_u}	-0.32	-1.71	0.66	-3.08
D ^{HS}	-0.14	-0.67	0.14	-2.80
D ^{RPF}	-0.20	-1.01	0.22	-2.57
DEPF	-0.22	-1.01	0.25	-3.05
D ^{BC}	-0.24	-1.25	0.31	-4.26
D ^{UC}	-0.05	-0.23	0.01	-2.02
D ^{IRC}	-0.23	-0.99	0.28	-1.74
D ^{VPC}	-0.14	-0.69	0.11	-1.89
D ^{SUV}	-0.27	-1.61	0.40	-2.44
D ^{IVOL}	-0.20	-1.02	0.21	-3.36
D ^{OID}	-0.20	-0.56	0.08	-2.12

 $R_{t+1}^{S\&P500} = \alpha + \beta D_t + \varepsilon_{t+1}$ (monthly)

This Paper

Attempts to construct a disagreement index that

- 1 can significantly predict the market, and
- **2** is consistent with the implications of theories on disagreement.

Our Method: Aggregating Info by Eliminating Noise

- Weak performance may be due to
 - 1 too much noise in individual proxies
 - 2 pockets of predictability (Farmer, Schmidt, and Timmermann, 2018)
- If proxies measure disagreement, they should have a common factor.
- Three information shrinkage approaches
 - **1** Equal-weighting (EW) $\rightarrow D^{EW}$
 - 2 Principal component analysis (PCA) $\rightarrow D^{PCA}$
 - 3 Partial least squares (PLS) $\rightarrow D^{PLS}$
- Sample period: 1968:12–2016:12

Predictive Ability of Our Disagreement Indexes

 $R_{t,t+h}^{S\&P500} = \alpha + \beta D_t + \varepsilon_{t+1}$

Disagreement	eta	<i>t</i> -stat	R^2	R_{OS}^2
Panel A: $h = 1$				
D^{EW}	-0.62^{***}	-3.09	1.53	0.13
D^{PCA}	-0.35^{**}	-2.02	0.56	-0.24
D^{PLS}	-0.83***	-3.69	2.59	1.94**
Panel B: $h = 3$				
DEW	-0.61^{***}	-3.30	4.31	1.41**
D^{PCA}	-0.35^{**}	-2.15	1.57	0.00
D^{PLS}	-0.80***	-3.72	6.93	5.29***
Panel C: $h = 12$				
DEW	-0.56***	-3.24	6.97	6.89***
D^{PCA}	-0.24*	-1.77	2.77	-0.38
D^{PLS}	-0.67***	-4.81	18.53	14.32***

PLS seems the most efficient approach for information aggregation in predictability (Kelly and Pruitt, 2013): Target driven

Economic Gain from Disagreement Forecasting

An mean-variance investor's optimal portfolio on the risky asset is

$$w_t = rac{1}{\gamma} rac{\hat{R}_{t+1}}{\hat{\sigma}_{t+1}^2}$$

1 Believes predictability: $\hat{R}_{t+1} = \hat{\alpha} + \hat{\beta}D_t$

2 Doesn't believe predictability: \hat{R}_{t+1} is the sample mean

	No transaction cost		50 bps transaction costs	
	CER gain (% per year)	Sharpe ratio	CER gain (%)	Sharpe ratio
Panel A:	Risk aversion $\gamma = 3$			
D^{EW}	0.50	0.10	-0.01	0.08
D^{PCA}	-0.34	0.08	-0.50	0.08
D^{PLS}	4.39***	0.18***	3.58**	0.16**

4.39 means that the investor can earn 4.39% more certainty-equivalent returns (CER) if believing predictability

Top 3 Weights (in %) on Individual Disagreement Proxies

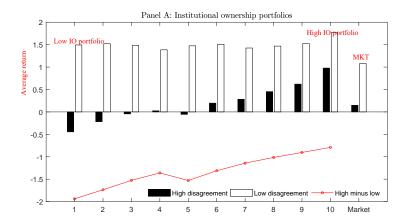
		EW	PCA	PLS
D ^{IP}	industrial production forecast dispersion	5.00	8.11	2.00
D^{TBL}	T-bill forecast dispersion	5.00	2.85	15.91
D^{Y_u}	value-weighted forecast dispersion	5.00	9.63	9.46
D ^{HS}	eta-weighted forecast dispersion	5.00	10.12	4.55
D ^{SUV}	standardized unexplained volume	5.00	2.96	8.60

Disagreement Predicts the Market Because It Predicts Future Economic Activities

- Disagreement represents uncertainty, and high uncertainty leads to cautious investment and hiring (Bloom, 2009; Bachmann et al., 2013).
- Disagreement amplifies investors' optimism, boosting current economic activities and dampening future's (Baker, Hollifield, and Osambela, 2016; Atmaz and Basak, 2018).

Disagreement should negatively predict future economic activities.

Disagreement Predicts the Market Because It Predicts Future Economic Activities Cont'd


$$y_{t+1} = \alpha + \beta D_t^{\text{PLS}} + \sum_{i=1}^{12} \lambda_i y_{t-i+1} + \epsilon_{t+1},$$

$$y_{q+1} = \alpha + \beta D_q^{\text{PLS}} + \sum_{i=1}^4 \lambda_i y_{q-i+1} + \epsilon_{q+1}$$

	eta	<i>t</i> -stat	R^2
CFNAI	-0.97**	-2.38	27.77
Industrial production	-1.21^{***}	-3.15	22.86
Consumption	-0.06**	-2.26	61.54
Unemployment	0.32***	3.47	17.94
Investment (quarterly)	-3.28***	-2.91	12.06
Equity issuance	-0.47***	-2.02	34.11
Business inventory	-0.59**	-2.44	59.94
Capacity utilization	-0.71^{**}	-2.30	20.43

Forecasting Asymmetry of Disagreement

- Cross-sectionally, the predictive power should be stronger among stocks with
 - **1** low institutional ownership (Nagel, 2005)
 - 2 high beta (Hong and Sraer, 2016)
 - 3 high IVOL (Stambaugh, Yu, and Yuan, 2015)
- In time-series, the predictive power should be stronger in high sentiment periods (Atmaz and Basak, 2018).

Cross-Sectional Predictability Asymmetry

- Low ownership indicates more stringent short sale constraints and therefore more overpricing (Miller, 1977).
- The results with beta and IVOL portfolios are consistent with the literature.

Time-Series Predictability Asymmetry

Panel A: Performance of $R_{t+1} = \alpha + \beta D_t + \varepsilon_{t+1}$ in high and low sentiment periods						
In-sample R^2				Out-of-sample $R_{ m OS}^2$		
	High sentiment Low sentiment			h sentiment	Low sentiment	
D^{EW}	2.89	-0.02	_	-0.23	0.49	
D^{PCA}	1.47	-0.49	_	-0.52	0.07	
DPLS	4.74	0.08		3.53**	-0.22	
Panel B	Panel B: $R_{t+1} = \alpha + \beta_1 I_t^{\text{high}} D_t + \beta_2 I_t^{\text{low}} D_t + \epsilon_{t+1}$					
	β_1	<i>t</i> -stat	β_2	<i>t</i> -stat	R^2	
D^{EW}	-1.00^{***}	-3.57 -	-0.30	-1.09	2.01	
D^{PCA}	-0.72**	-2.66	-0.04	-0.19	1.07	
D ^{PLS}	-1.02***	-3.63	-0.36	-0.94	2.92	

More Results

The aggregate disagreement indexes positively predict

- 1 stock market volatility (Atmaz and Basak, 2018)
- 2 market illiquidity (Sadka and Scherbina, 2007)
- 3 trading volume (Banerjee, 2011; Atmaz and Basak, 2018)

Controlling for Economic Variables

 $R_{t+1} = \alpha + \beta D_t^{\text{PLS}} + \psi Z_t + \varepsilon_{t+1}$

Economic predictor	$oldsymbol{eta}$	ψ	R^2
Dividend-price ratio	-0.86***	-0.08	2.61
Dividend yield	-0.85***	-0.07	2.61
Earning-price ratio	-0.84***	-0.06	2.60
Dividend payout ratio	-0.83***	-0.01	2.59
Stock sample variance	-0.82***	-0.01	2.59
Book-to-market ratio	-0.84***	-0.10	2.64
Net equity expansion	-0.84***	-0.12	2.66
Treasury bill rate	-0.85***	-0.31	3.08
Long-term bond yield	-0.86***	-0.23	2.86
Long-term bond return	-0.81^{***}	0.40**	3.41
Term spread	-0.86***	-0.45**	3.63
Default yield spread	-0.84***	-0.22	2.82
Default return spread	-0.81^{***}	0.32	3.11
Inflation rate	-0.83***	0.03	2.59

Controlling for Uncertainty

$$R_{t+1} = \alpha + \frac{\beta}{D_t^{\text{PLS}}} + \psi U_t + \epsilon_{t+1},$$

	eta	ψ	R^2
Economic uncertainty Index	-1.06^{***}	0.06	5.24
Treasury implied volatility	-0.89***	-0.08	4.02
Economic policy uncertainty	-0.89***	0.27	3.40
Financial uncertainty	-0.69***	-0.44	3.53
Macro uncertainty	-0.74***	-0.30	3.01
Real economy uncertainty	-0.82***	-0.24	2.87
Sample stock variance	-0.82***	-0.01	2.58
VIX	-1.05^{***}	0.29	4.86

Conclusion

We construct three aggregate disagreement indexes that can predict the market returns out-of-sample and are consistent with the implications of existing theories.