How do private digital currencies affect government policy?

Max Raskin NYU School of Law Fahad Saleh McGill University - Desautels

David Yermack

NYU Stern School of Business, NBER & ECGI

November 16, 2018

We have the first global currency crises since the invention of private digital currency

Digital currencies, most prominently Bitcoin, circulate alongside unstable fiat currencies

Main Finding 1: Digital currencies enhance citizen welfare

Risk Reduction

Non-positive correlation with local economic risks provides investors with a diversification opportunity

Restrained Monetary Policy
 The difficulty of excluding digital currencies from
 the market reduces gains from seigniorage,
 thereby inducing lower inflation

Main Finding 2: Digital currencies encourage local investment

Diversification

Digital currencies serve as a hedge asset, thereby facilitating investment in high-risk economies

Credible Commitment Digital currenciess facilitate a credible commitment to disciplined monetary policy, thereby enhancing expected returns from local investment

Main Finding 3: Digital currencies may be desirable for corrupt sovereigns

 Local Investment Increased local investment yields higher tax revenue (holding tax rates constant)

Welfare Gains

Governments may extract some of the welfare gains via increased tax rates

Typology

Private Decentralized Digital Currency Private Centralized Digital Currency

Public Decentralized Digital Currency

Public Centralized Digital Currency

GEMINI

dollar

Centralized digital currencies

- Public
 - Many investigating, few implementing
 - E.g. Sweden, Ecuador, Venezuela
 - Narrowing of banking system,
 - Similar to Chicago Plan of 1933
 - Central bank retains monopoly power
 - Can alter ledger or rules to defeat private choice

Private

- Easier to regulate companies than individuals
- History of numerous shutdowns
 - E.g., Liberty Reserve
- Stablecoins, such as Tether, interact with traditional banking system

Decentralized digital currencies

- Often politically motivated
 - E.g., Nakamoto and Bitcoin
- Rules-based monetary policy, implemented by decentralized consensus
- Can only be suppressed by closing extraterritorial nodes
 - Compare Bit Torrent
- Capital control resistant
 - Bearer instruments, with no recognition needed from legal system
 - Similar to gold, cigarettes, shells, etc.
 - Requires user to control private key

Related literature

- Central banks and digital currency Raskin and Yermack (2016), Bordo and Levin (2017), Fung and Halaburda (2017)
- Digital currency return properties
 Yermack (2015), Dyhrberg (2016a, 2016b), Liu and Tsyvinski (2018), Hinzen (2018)
- **Digital currency economic design** Routledge and Zetlin-Jones (2018), Saleh (2018)

Model

- Two agents
 - Government
 - Citizen
- Three assets
 - Local productive capital
 - Unproductive capital
 - Private digital currency (if permitted)
- Two dates (i.e., agents are short-lived)

Model: Assets

- Local productive capital
 - Taxable
 - Proxy for local investment
- Private digital currency
 - Untaxable (reflects enforcement difficulty)
 - Non-positively correlated with local economy
- Unproductive capital
 - Zero real return

Model: Government

max (E[Tax revenue] + E[Seigniorage])

- t = 0
 - Government decides whether to permit private digital currency
 - Government sets tax rate for local investment
- *t* = 1
 - Government sets inflation rate
 - Government consumes

Model: Citizen

max (E[R_p] - .5 Var[R_p])

- t = 0
 - Citizen invests among available assets
 - Local productive capital
 - Unproductive capital
 - Private digital currency (if permitted)
- *t* = 1
 - Payoffs realized
 - Citizen pays taxes; faces inflation
 - Citizen consumes

Model: Monetary policy (*t* = 1)

Seigniorage = Money Growth x Real Money Demand

- Higher inflation directly increases seigniorage
- Higher inflation indirectly lowers seigniorage revenue by lowering real money demand
- Interior optimal inflation rate (Cagan, 1956)

Model: Monetary policy (*t* = 1)

- Private digital currency strengthens the negative effect of inflation on local fiat money demand by creating an outside option
- Outside fiat cannot fill identical role, because traditional fiats are easier for governments to restrict
- Private digital currency enables credible commitment by the sovereign to (more) restrained monetary policy

Model: Fiscal policy (t = 0)

Tax Revenue = Tax Rate x Local Investment Return

- Higher tax rate directly increases tax revenue
- Higher tax rate indirectly lowers tax revenue by discouraging local investment
- Private digital currency serves as alternative asset and therefore restrains fiscal policy

Model: Regulatory policy (t = 0)

- Digital currency as a complement to local investment
 - Permitting digital currency facilitates diversification which encourages local investment
- Digital currency as a substitute for local investment
 - Permitting digital currency enables citizens to substitute away from local investment
- Digital currency is not taxable, so government optimizes based on revenue extracted from local investment

Results: Citizen welfare

Results: Local investment

Results: Government welfare

What if private digital currencies were better designed?

• Higher productivity (Cong, Li and Wang 2018)

• Lower volatility (Saleh 2018)

Results: Government welfare

Results: Citizen welfare

Conclusions

- Private digital currencies may improve welfare in some emerging market economies
- Selfish governments may wish to permit trading of private digital currencies
- Our results highlight the need for work on the economic design of private digital currencies