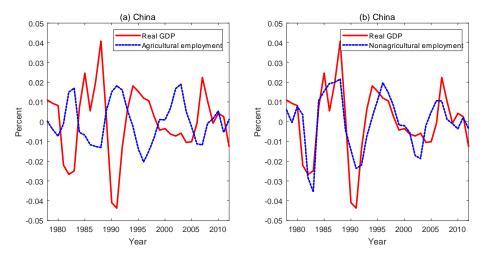

Business Cycles during Structural Change: Arthur Lewis' Theory from a Neoclassical Perspective

Kjetil Storesletten University of Oslo Bo Zhao Peking University Fabrizio Zilibotti Yale University

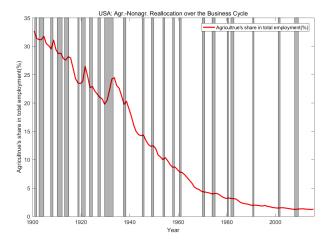
ABFR 7th Annual Conference


May 28, 2019

US (left) & China (right): GDP vs. Total Employment



SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change


China: GDP vs. Agric. empl & Non-Agric. empl

China: Agr-NonAgr Reallocation over the Business Cycle

US: Agr-NonAgr Reallocation over the Business Cycle

• Unified theory of business cycles and structural transformation

- Unified theory of business cycles and structural transformation
- Structural transformation:

- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates

- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 - ② Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓

- Unified theory of business cycles and structural transformation
- Structural transformation:

 Q Reallocation of labor away of Agr as capital accumulates
 Q Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓

• Business cycles change as economy undergoes structural change:

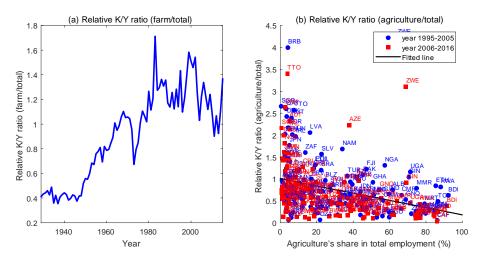
- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich

- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Q Reallocation of labor away of Agr as capital accumulates
 Q Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich
 - Strong labor reallocation between Agr and NonAgr when poor

- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich
 - Strong labor reallocation between Agr and NonAgr when poor
 - Iabor productivity in Agr ↑ in booms (also relative to NonAgr)

- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr 1 and labor share in Agr 1
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich
 - Strong labor reallocation between Agr and NonAgr when poor
 - Substitution and the second state of the s
- Goals:

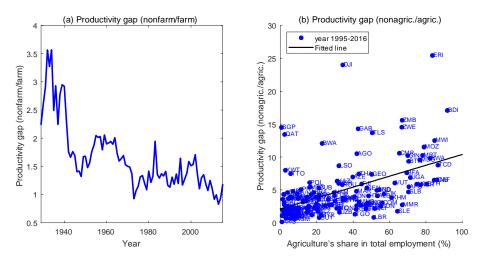
- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich
 - Strong labor reallocation between Agr and NonAgr when poor
 - Substitution State (also relative to NonAgr)
- Goals:
 - Propose a theory quantitatively consistent with both structural transformation and business cycles


- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr ↓ and labor share in Agr ↓
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich
 - Strong labor reallocation between Agr and NonAgr when poor
 - Substitution State (also relative to NonAgr)
- Goals:
 - Propose a theory quantitatively consistent with both structural transformation and business cycles
 - 2 Match China-US (and cross-country) patterns

- Unified theory of business cycles and structural transformation
- Structural transformation:
 - Reallocation of labor away of Agr as capital accumulates
 Modernization of Agr: As workers leave Agr, labor productivity gap NonAgr-vs-Agr 1 and labor share in Agr 1
- Business cycles change as economy undergoes structural change:
 - Smooth labor supply when poor, volatile when rich
 - Strong labor reallocation between Agr and NonAgr when poor
 - Substitution State (also relative to NonAgr)
- Goals:
 - Propose a theory quantitatively consistent with both structural transformation and business cycles
 - Match China-US (and cross-country) patterns
 - Sovel framework to analyze fluctuations "far from steady state"

STYLIZED FACTS: STRUCTURAL CHANGE

SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change


Modernization of Agriculture: KY ratio

 Define Productivity Gap as the ratio of the Average Productivity of Labor (APL) in NonAgr vs. Agr

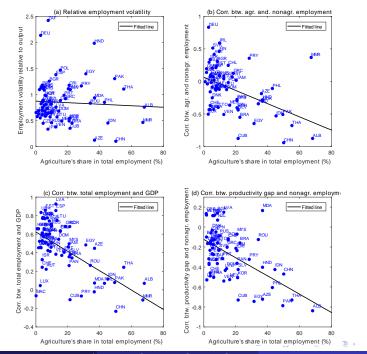
 ${\sf Prod.} \ {\sf Gap} \equiv \frac{{\sf Value} \ {\sf Added} \ {\sf per} \ {\sf Worker} \ {\sf in} \ {\sf NonAgr}}{{\sf Value} \ {\sf Added} \ {\sf per} \ {\sf Worker} \ {\sf in} \ {\sf Agr}}$

Modernization of Agric .: Productivity Gap

STYLIZED FACTS: BUSINESS CYCLE

SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change

э


▶ **∢ ∃** ▶

Business Cycle Over Structural Change

- Modernization is accompanied by four transformations in the nature of business cycle fluctuations.
- Consider HP Filtered or First-Differenced data:

	Large Agriculture	Small Agriculture
	(poor country)	(rich country)
relative volatility emplGDP	low	high
corr(agr. empl.,nonagr empl.)	negative	pprox 0
corr total employment-GDP	low	high
labor prod. gap	countercyclical	acyclical
relative volatility consGDP	high	low

• US time-series and US-China contrasting evidence in line will cross-country evidence.

SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change

DO WE NEED A NEW THEORY?

► < ∃ ►</p>

- Consider a two-sector neoclassical benchmark
 - cf. Hansen and Prescott (2002)
- Cobb-Douglas production function in each sector

$$Y^{M} = Z^{M} imes \left(K^{M}
ight)^{1-lpha} \left(L^{M}
ight)^{lpha}$$
 and $Y^{G} = Z^{G} imes \left(K^{G}
ight)^{1-eta} \left(L^{G}
ight)^{eta}$

• Counterfactual predication: constant productivity gap.

Theory: Why Hansen-Prescott Does Not Work

• Cobb Douglas implies constant factor shares:

$$\frac{wL^{M}}{P^{M}Y^{M}} = \alpha \text{ and } \frac{wL^{G}}{P^{G}Y^{G}} = \beta$$

$$\Rightarrow$$

$$\frac{P^{M}Y^{M}}{L^{M}} = \frac{w}{\alpha} \text{ and } \frac{P^{G}Y^{G}}{L^{G}} = \frac{w}{\beta}$$

• So, the productivity gap is

$$\frac{P^M Y^M}{L^M} / \frac{P^G Y^G}{L^G} = \frac{\beta}{\alpha}$$

Counterfactual!

- Introduce business cycles in a transition model à la Acemoglu-Guerreri (2008) with Agr and NonAgr sector.
- Structural transformation is driven by two forces:
 - exogenous differential technical progress,
 - endogenous capital deepening.
- Extend Acemoglu-Guerreri to incorporate a "rural Lewis sector."
- Agr goods are produced using two different technologies
 - Modern (neoclassical) sector using labor, capital, and land;
 - Traditional sector with no capital.

Structural Changes

- Baumol (1967), Kongsamut, Rebelo and Xie (2001), Ngai and Pissarides (2007; 2008), Acemoglu and Guerrieri (2008)
- Alvarez-Cuadrado and Poschke (2011), Herrendorf, Rogerson and Valentinyi (2013, 2015), Alvarez-Cuadrado et al (2017)
- Business Cycle
 - Cross-country: Rogerson (1991), Da-Rocha and Restuccia (2006), Aguiar and Gopinath (2007)
 - Zhang, Rozelle, and Huang (2001), Brandt and Zhu (2000; 2001), Yao and Zhu (2017)
- Development
 - Lewis (1954); Harris and Todaro (1970); Hansen-Prescott (2002); Parente, Rogerson, and Wright (2000); Gollin, Lagakos, and Waugh (2014)

THE MODEL

э

Image: A math a math

- The final good is produced competitively
- ullet It combines Agr and NonAgr goods, with elast. of subst. arepsilon

$$Y = F\left(Y^{G}, Y^{M}\right) = \left[\gamma\left(Y^{G}\right)^{\frac{\varepsilon-1}{\varepsilon}} + (1-\gamma)\left(Y^{M}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

- Can be interpreted as a preference aggregator.
- Extension: nonhomothetic (Stone Geary) preferences:
 - Agr good is a "necessity".
- Our estimates suggest $\varepsilon > 1$ (discussed later).

Production: NonAgr and Agr Sector

Production Function in NonAgr sector:

$$\boldsymbol{Y}^{M} = \left(\boldsymbol{K}^{M}\right)^{1-\alpha} \left(\boldsymbol{Z}^{M} \boldsymbol{N}^{M}\right)^{\alpha}$$

• Agr is produced in two ways: modern (AM) and traditional (S) technology with an elasticity of substitution $\omega > 1$:

$$Y^{\mathsf{G}} = \left[\varsigma \left(Y^{\mathsf{A}\mathsf{M}} \right)^{\frac{\omega-1}{\omega}} + (1-\varsigma) \left(Y^{\mathsf{S}} \right)^{\frac{\omega-1}{\omega}} \right]^{\frac{\omega}{\omega-1}},$$

where

$$Y^{AM} = \left(K^{AM}\right)^{1-\beta} \left(Z^{AM}N^{AM}\right)^{\beta},$$

$$Y^{S} = Z^{S}N^{S}.$$

- TFP grows at a constant rate in each sector
- Only one friction:
 - an exogenous time-invariant wedge (a "tax" on nonagr employment) that keeps marginal productivity higher in urban than in rural sector;
 - stand-in for a variety of institutional frictions inducing rural overpopulation;
 - does not matter for the theory, matters for quantitative results.

Social Planner's Problem

 The Recursive Competitive Equilibrium is equivalent to the solution to the following distorted social planner's problem

$$\max_{\mathcal{K}^{M},\mathcal{K}^{AM},\mathcal{N}^{M},\mathcal{N}^{AM},\mathcal{N}^{S},c}\int_{0}^{\infty}e^{-(\rho-n)t}\times\log\left(c_{t}\right) dt$$

subject to the resource constraints

$$\begin{split} \dot{K}_t &= F\left(Y_t^M, Y_t^G\right) - \delta K_t - cN_t - \tau \bar{W}N_t^M + Tr_t, \\ K_t &= K_t^M + K_t^{AM}, \\ N_t &= N_t^M + N_t^{AM} + N_t^S, \end{split}$$

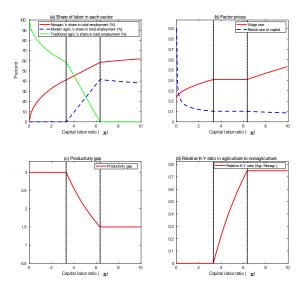
given exogenous law of motions for TFPs, and initial conditions.

• We later augment it with endogenous labor supply and shocks.

• Equalization of MPL and MPK across sectors.

Let:

$$\begin{split} \chi &\equiv \frac{\kappa}{L} \text{ (endogenous state variable)} \\ \kappa &\equiv K^M/K \text{ (share of capital in Nonagr)} \\ v &\equiv \frac{\varsigma(Y^{AM})^{\frac{\omega-1}{\omega}}}{\varsigma(Y^{AM})^{\frac{\omega-1}{\omega}} + (1-\varsigma)(Y^S)^{\frac{\omega-1}{\omega}}} \text{ (Agr modernization).} \end{split}$$


• $\kappa\left(\chi,\mathbf{Z}
ight)$ and $v\left(\chi,\mathbf{Z}
ight)$ are sufficient for characterization

• pin down employment in the three sectors.

• RESULT: for ω close to $\varepsilon > 1$: $\partial \kappa / \partial \chi > 0$ and $\partial v / \partial \chi < 0$

- Monotone dynamics is not a robust feature.
- Consider a "Lewis model" $(\omega
 ightarrow \infty)$ driven by capital accumulation.
- Three stages of economic growth:
 - Early Lewis: no modern agriculture ($v = 0, \kappa = 1$);
 - **2** Advanced Lewis: modernization of agriculture $(v \uparrow, \kappa \downarrow, N^S \downarrow)$.
 - Seoclassical: demise of agriculture (κ ↑ and κ → 1) and further modernization of agriculture (v → 1).

Static Equilibrium (Lewis)

May 10, 2019 26 / 75

• Suppose (sufficient conditions!!)

$$\omega > 1, \qquad \varepsilon > 1, \qquad \beta > \alpha, \qquad g^M \ge g^{AM} \ge g^S$$

• Then, the dynamic equilibrium converges to a unique ABGP where

$$egin{array}{rcl} \kappa_t & o & 1, & v o 1, \ \dot{rac{c}t} &
ightarrow & g^M, & rac{\dot{\chi}_t}{\chi_t}
ightarrow g^M. \end{array}$$

 Note: capital and labor accumulation in agriculture can be positive in the ABGP, but it goes to zero as a share of total GDP.

ELASTICITIES OF SUBSTITUTION

SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change

э

► < ∃ ►</p>

- The results hinge on the assumption $\omega > 1$ and $\varepsilon > 1$.
- Large ω is plausible (in Lewis, $\omega \to \infty$).
- What about ε ?
- Some earlier studies argue $\varepsilon < 1...$

Elasticity of Substitution btw. Agr/Nonagr Goods

• Recall production function

$$Y_{t} = \left[\gamma\left(Y_{t}^{G}\right)^{\frac{\varepsilon-1}{\varepsilon}} + (1-\gamma)\left(Y_{t}^{M}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

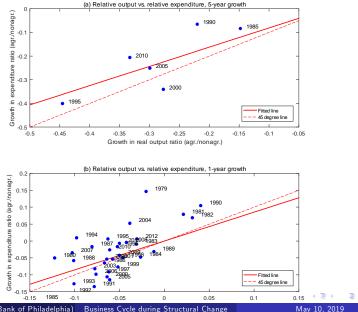
• Profit maximization of final producers imply:

$$\frac{P_t^G Y_t^G}{P_t^M Y_t^M} = \frac{\gamma}{1-\gamma} \left(\frac{Y_t^G}{Y_t^M}\right)^{\frac{\varepsilon-1}{\varepsilon}}$$

A relationship between relative expenditure and (real) output.

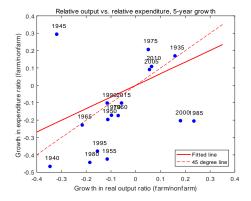
Elasticity of Subs§titution btw. Agr/Nonagr Goods

Takes log on both sides


$$\ln\left(\frac{P_t^G \, Y_t^G}{P_t^M Y_t^M}\right) = \ln\left(\frac{\gamma}{1-\gamma}\right) + \frac{\varepsilon-1}{\varepsilon} \ln\left(\frac{Y_t^G}{Y_t^M}\right).$$

• Take the first difference

$$\Delta \ln \left(\frac{P_t^G Y_t^G}{P_t^M Y_t^M} \right) = \frac{\varepsilon - 1}{\varepsilon} \Delta \ln \left(\frac{Y_t^G}{Y_t^M} \right),$$


• $\varepsilon > 1$ iff $\Delta \ln \left(\frac{Y_t^G}{Y_t^M} \right)$ has positive coefficient in simple OLS

Elasticity of Substitution btw. Agr/Nonagr Goods: China

SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change

Elasticity of Substitution btw. Agr/Nonagr Goods: USA

Rel. Price of non-farm/farm output in CHINA

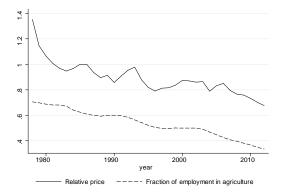


Figure:

Rel. Price of non-farm/farm output in the US

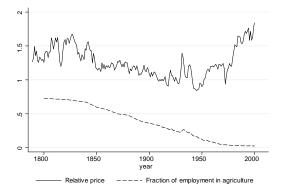
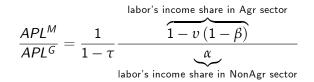



Figure: Source: Figure 1 in Alvarez-Cuadrado and Poschke (2011, AEJ Macro).

May 10, 2019 35 / 75

• We show that the Productivity Gap is

where v is the output share of ModernAgr in Agr. and APL is avg. product of labor.

• Since v increases and $\lim_{t\to\infty} v = 1$, the productivity gap falls over time, converging to

$$\lim_{t \to \infty} \frac{APL_t^M}{APL_t^G} = \frac{1}{1 - \tau} \frac{\beta}{\alpha}$$

• Note: au is the exogenous wedge.

QUANTITATIVE ANALYSIS

SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change

э

.

Quantitative Model

- Discrete time.
- Persistent shocks to the three TFPs.
- Endogenous labor supply (pref. for leisure).
- Land in (modern) agriculture.
- First estimate the deterministic model to match structural change.
- Then, estimate stochastic processes for TFPs.
- Finally, simulate the stochastic model and compare business cycle statistics.

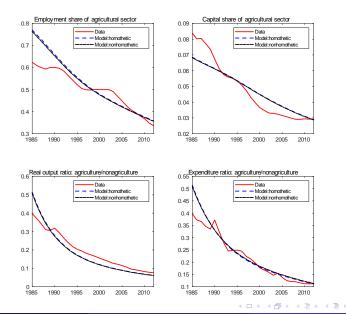
Model Estimation: SMM (for China)

• 5 parameters are calibrated outside the model

• n = 1.5%, $\delta = 5\%$, $(1 + \rho)^{-1} = 0.96$, $\alpha = 0.50$, $Y_{1985} = 1$

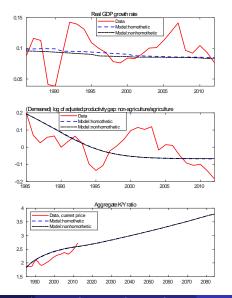
- 14 parameters are estimated by SMM to match 226 moments (China 1985-2012):
 - Capital stock (in current price) share in agr. sector
 - Employment share in agr. sector
 - $\bullet\,$ Aggregate GDP growth and K/Y ratio
 - Productivity Gap during 1985-2012
 - Ratio of (real) agr to total output
 - Expenditure share in agr products
 - Hours worked in the long run (1/3)

	Estimated Parameter	Homoth	NonHom	NoTargPG
Ē ^G /Υ	Subsistence level Agr	0	0.05	0.05
ε	ES btw Nonagr and Agr	3.60	3.36	4.00
ω	ES btw Modern and Trad. Agr	9.00	9.00	8.22
τ	labor wedge	0.76	0.75	0.73
θ	pref. weight on consumption	0.73	0.73	0.71
γ	weight on Agr output	0.61	0.60	0.54
ς	weight on Modern Agr output	0.40	0.39	0.50
ξ	capital inc. share in Modern Agr	0.14	0.13	0.21
β	labor inc. share in Modern Agr	0.61	0.60	0.68
g ^M	TFP growth rate Nonagr	6.5%	6.5%	6.5%
g ^{AM}	TFP growth rate Modern Agr	6.1%	6.1%	5.9%
g ^{AM}	TFP growth rate Trad Agr	0.9%	0.9%	1.0%
Z^{M}_{1985}	initial TFP level Nonagr	4.33	4.45	3.42
$Z_{1985}^{\tilde{A}M}$	initial TFP level Modern Agr	2.26	2.25	2.42
Z_{1985}^{5}	initial TFP level Trad Agr	1.23	1.18	1.35


Elasticity of substitution $\varepsilon > 1$

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

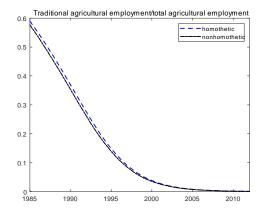
QUANTITATIVE ANALYSIS: FITTING STRUCTURAL CHANGE


SZZ (Federal Reserve Bank of Philadelphia) Business Cycle during Structural Change

Model Fit 1: Decline of Agricultural Sector

May 10, 2019 42 / 75

Model Fit 2: GDP growth, Prod. Gap, K/Y Ratio



May 10, 2019 43 / 75

э

< E > < E >

Trajectories: Traditional Agr Share in Agr

May 10, 2019 44 / 75

QUANTITATIVE ANALYSIS: BUSINESS CYCLE DURING STRUCTURAL CHANGE

- ullet TFP has cyclical and trend components: In $Z_t^j = \left(1+g^j
 ight)+z_t^j$
- Cyclical component is simple VAR(1),

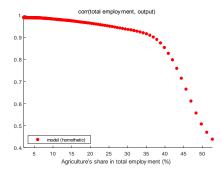
$$\left[egin{array}{c} z^M_{t+1} \ z^{AM}_{t+1} \ z^S_{t+1} \end{array}
ight] = \left[egin{array}{c} \phi^M & 0 & 0 \ 0 & \phi^{AM} & 0 \ 0 & 0 & \phi^S \end{array}
ight] \cdot \left[egin{array}{c} z^M_t \ z^{AM}_t \ z^S_t \end{array}
ight] + \epsilon_t,$$

- Estimates of persistence: $\hat{\phi}^M=$ 0.63, $\hat{\phi}^{AM}=$ 0.9, and $\hat{\phi}^S=$ 0.42
- Implied volatility of innovations: $\sigma\left(\epsilon_{t}^{M}\right) = 0.042$, $\sigma\left(\epsilon_{t}^{AM}\right) = 0.036$, and $\sigma\left(\epsilon_{t}^{S}\right) = 0.053$

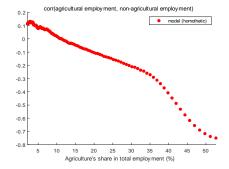
HP FILTER	x =									
НОМОТН.	с	i	$\frac{P^{G}y^{G}}{P}$	$\frac{P^{M}y^{M}}{P}$	PrGap	n ^G	n ^M	n		
	A. HP-	A. HP-filtered China Data: $std(y) = 1.7\%$								
$\frac{std(x)}{std(y)}$	0.99	<u>3.53</u>	1.63	1.34	2.04	0.64	0.73	0.10		
corr (x, y)	0.70	0.65	0.06	0.95	-0.17	-0.69	0.73	-0.23		
$corr(x, n^G)$	-0.60	-0.31	-0.37	-0.55	0.48	1.00	-0.94	0.48		
$corr(x, n^M)$	0.60	0.37	0.41	0.57	<u>-0.54</u>	<u>-0.94</u>	1.00	0.04		
B. HP-filtered Model, std $(y) = 1.6\%$										
$\frac{std(x)}{std(y)}$	<u>0.27</u>	<u>2.39</u>	1.09	1.18	0.62	1.03	<u>1.07</u>	0.42		
corr (x, y)	<u>0.81</u>	0.99	0.30	0.97	<u>-0.38</u>	-0.25	0.73	<u>0.43</u>		
$corr(x, n^G)$	-0.08	-0.25	0.78	-0.43	0.72	1	-0.75	0.69		
corr (x, n^M)	0.45	0.75	-0.31	0.87	<u>-0.74</u>	<u>-0.75</u>	1	-0.21		

Table: Business Cycle Statistics: Model vs Data

HP FILTER				x =	=					
HOMOTH.	с	i	$\frac{P^{G}y^{G}}{P}$	$\frac{P^{M}y^{M}}{P}$	PrGap	n ^G	n ^M	п		
	A. HP-	A. HP-filtered China Data: $std(y) = 1.7\%$								
$\frac{std(x)}{std(y)}$	<u>0.99</u>	<u>3.53</u>	1.63	1.34	2.04	0.64	<u>0.73</u>	0.10		
corr (x, y)	0.70	0.65	0.06	0.95	-0.17	<u>-0.69</u>	0.73	-0.23		
$corr(x, n^G)$	-0.60	-0.31	-0.37	-0.55	0.48	1.00	-0.94	0.48		
$corr(x, n^M)$	0.60	0.37	0.41	0.57	-0.54	<u>-0.94</u>	1.00	0.04		
	B. HP-filtered Model, std $(y) = 1.6\%$									
$\frac{std(x)}{std(y)}$	<u>0.27</u>	<u>2.39</u>	1.09	1.18	0.62	1.03	<u>1.07</u>	0.42		
corr (x, y)	<u>0.81</u>	<u>0.99</u>	0.30	0.97	-0.38	<u>-0.25</u>	0.73	<u>0.43</u>		
$corr(x, n^G)$	-0.08	-0.25	0.78	-0.43	0.72	1	-0.75	0.69		
$corr(x, n^{M})$	0.45	0.75	-0.31	0.87	-0.74	<u>-0.75</u>	1	-0.21		


Table: Business Cycle Statistics: Model vs Data

HP FILTER				<i>x</i> =	=					
НОМОТН.	с	i	$\frac{P^{G}y^{G}}{P}$	$\frac{P^{M}y^{M}}{P}$	PrGap	n ^G	n ^M	n		
	A. HP-filtered China Data: $std(y) = 1.7\%$									
$\frac{std(x)}{std(y)}$	0.99	<u>3.53</u>	1.63	1.34	2.04	0.64	0.73	0.10		
corr (x, y)	0.70	0.65	0.06	0.95	-0.17	<u>-0.69</u>	0.73	-0.23		
$corr(x, n^G)$	-0.60	-0.31	-0.37	-0.55	0.48	1.00	-0.94	0.48		
$corr\left(x, n^{M'}\right)$	0.60	0.37	0.41	0.57	-0.54	-0.94	1.00	0.04		
	B. HP-filtered Model, std $(y) = 1.6\%$									
$\frac{std(x)}{std(y)}$	0.27	<u>2.39</u>	1.09	1.18	<u>0.62</u>	1.03	<u>1.07</u>	0.42		
corr (x, y)	<u>0.81</u>	<u>0.99</u>	0.30	0.97	<u>-0.38</u>	<u>-0.25</u>	<u>0.73</u>	<u>0.43</u>		
$corr(x, n^G)$	-0.08	-0.25	0.78	-0.43	<u>0.72</u>	1	-0.75	0.69		
$corr(x, n^{M})$	0.45	0.75	-0.31	0.87	<u>-0.74</u>	<u>-0.75</u>	1	-0.21		

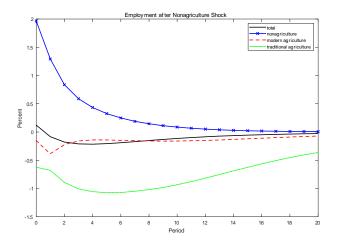

Table: Business Cycle Statistics: Model vs Data

Employment: From Acyclical to Procyclical

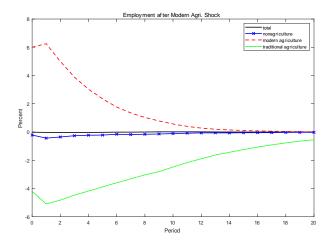
Richer countries (lower share of employment in agriculture) to the left


Employment Agr-NonAgr Turns Less (Neg.) Correlated Richer countries (lower share of employment in agriculture) to the left

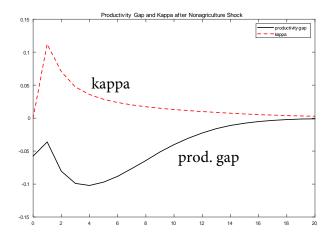
May 10, 2019 53 / 75


Prod Gap (Nonag/Ag) Becomes Less Countercyclical

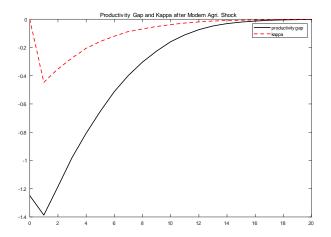
Richer countries (lower share of employment in agriculture) to the left


May 10, 2019 54 / 75

Imp.-Resp. of Employment to NonAgr TFP Shock


May 10, 2019 55 / 75

Imp.-Resp. of Employment to Modern Agr TFP Shock


May 10, 2019 56 / 75

Imp.-Resp. of Prod. Gap to Nonagr TFP Shock

May 10, 2019 57 / 75

Imp.-Resp. of Prod. Gap to Modern Agr TFP Shock

May 10, 2019 58 / 75

- Modify TFP process for traditional sector
 - assume same persistence, $\phi^S=\phi^{AM}$
 - common shock to entire agric. sector
- Capital adjustment costs
- Cobb-Douglas preferences (arepsilon=1 and large subsistence level in food)

- We document how business cycle features changes throughout development
 - China vs. US
 - A cross section of countries
- We provide a unified theoretical framework to account for business cycles and structural change
- We estimate the model to match the structural transformation in China
 - The model is broadly consistent with the business cycle properties of China
- As productivity grows and capital accumulates, business cycles become more similar to those of the US

ADDITIONAL MATERIAL

Literature

- Business cycles in developing countries
 - Sectoral comovement
 - Hornstein and Praschnik (1997), Horvath (2000), Boldrin et. al. (2001), Kim and Kim (2006)
 - Cross-country business cycle differences
 - Rogerson (1991): movement out of Agriculture in the US has been concentrated during upturns in economic activity, whereas the movement of workers out of manufacturing has been concentrated during downturns.
 - Da-Rocha and Restuccia (2006) focus on the role of Agriculture. We provide new evidence and a model with structural change
 - Aguiar and Gopinath (2007): emphasize trend shocks
 - China:
 - Zhang, Rozelle, and Huang (2001); in the early 1990's the layoffs increased and hiring slowed. Those who lost their jobs returned to the Agricultural sector.
 - Brandt and Zhu (2000; 2001), Yao and Zhu (2017)

May 10, 2019 62 / 75

Structural change

- Driving force: differential technical change and capital deepening Baumol (1967), Kongsamut, Rebelo and Xie (2001), Ngai and Pissarides (2007; 2008), Acemoglu and Guerrieri (2008)
- China: Cheremukhin et. al. (2015),

Dual labor market:

• Lewis (1954), Harris and Todaro (1970)

Deterministic Dynamic Systems (Constant h)

• In absence of shocks, the deterministic equilibrium is characterized by the following systems of differential equations w.r.t. (c, v^A, κ^M, χ) where

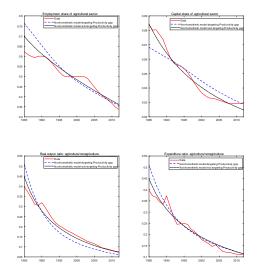
$$\kappa^{M} \equiv \frac{K^{M}}{K}, v^{A} \equiv \frac{\varsigma \left(Y^{AM}\right)^{\frac{\omega-1}{\omega}}}{\left(Y^{A}\right)^{\frac{\omega-1}{\omega}}}, \chi \equiv \frac{K}{N}$$

$$\frac{\dot{c}}{c} = \frac{1}{1+\theta(\sigma-1)} \times \begin{bmatrix} \eta_t^{\frac{1}{c}} (1-\gamma) (1-\alpha_M) \times \\ (\kappa_t^M)^{-\alpha_M} (Z_t^M \nu_t^M)^{\alpha_M} \chi_t^{-\alpha_M} - \delta - \rho \end{bmatrix}$$

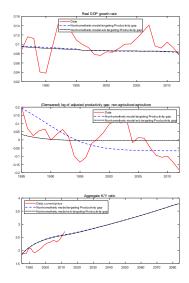
$$\frac{\dot{\chi}_t}{\chi_t} = \eta_t (Z_t^M)^{\alpha_M} (\kappa_t^M)^{1-\alpha_M} (\nu_t^M)^{\alpha_M} \chi_t^{-\alpha_M} - \delta - c\chi_t^{-1} - n,$$

Deterministic Dynamic Systems (Constant h)

$$\begin{split} \frac{\dot{\kappa}_{t}^{M}}{\kappa_{t}^{M}} &= \left(1 - \kappa_{t}^{M}\right) \frac{\left(\begin{pmatrix} \left(\alpha_{M} \ g^{M} - \alpha_{A} g^{A} + \left(\alpha_{A} - \alpha_{M}\right) \frac{\dot{\chi}_{t}}{\chi_{t}}\right) + \\ \left(\frac{1}{\omega - 1} - \frac{\left(\alpha_{A} - \alpha_{M}\right)\left(1 - \nu_{t}^{M}\right)}{\alpha_{A} \ v^{A} + 1 - v_{t}^{A}}\right) \frac{\dot{v}_{t}^{A}}{v_{t}^{A}} \end{pmatrix}}{\frac{1}{\varepsilon - 1} + \left(\alpha_{A} - \alpha_{M}\right)\left(\kappa_{t}^{M} - \nu_{t}^{M}\right)}, \\ \frac{\dot{v}_{t}^{A}}{v_{t}^{A}} &= \frac{\left(1 - v_{t}^{A}\right)\left(\alpha_{A} \ g^{A} - g^{S} + \left(1 - \alpha_{A}\right)\left(\frac{\dot{\chi}_{t}}{\chi_{t}} - \frac{\dot{\kappa}_{t}^{M}}{\kappa_{t}^{M}}\frac{\kappa_{t}^{M} - \nu_{t}^{M}}{1 - \kappa_{t}^{M}}\right)\right)}{\frac{1}{\omega - 1} + \frac{\left(1 - v_{t}^{A}\right)\left(1 - \alpha_{A}\right)\left(1 - \nu_{t}^{A}\right)}{\alpha_{A} \ v_{t}^{A} + 1 - v_{t}^{A}}}, \\ \frac{Z_{t}^{M}}{Z_{t}^{M}} &= g^{M}, \ \frac{Z_{t}^{A}}{Z_{t}^{A}} = g^{A}, \ \frac{Z_{t}^{S}}{Z_{t}^{S}} = g^{S}, \end{split}$$

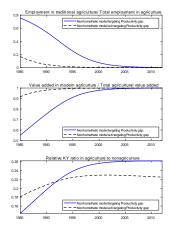

3

Deterministic Dynamic Systems (Constant h)


...where

$$\begin{split} \eta_t &\equiv (1-\gamma)^{\frac{\varepsilon}{\varepsilon-1}} \left(1 + \frac{1-\alpha_M}{1-\alpha_A} \frac{1-\kappa_t^M}{\kappa_t^M} \frac{1}{v_t^A} \right)^{\frac{\varepsilon}{\varepsilon-1}}, \\ \nu_t^M &= \left(1 + \frac{1-\kappa_t^M}{\kappa_t^M} \frac{1-\alpha_M}{1-\alpha_A} \left(\frac{\alpha_A}{\alpha_M} + \frac{1}{\alpha_M} \frac{1-v_t^A}{v_t^A} \right) \right)^{-1}, \\ \nu_t^A &= \frac{1}{1-\tau} \frac{1-\kappa_t^M}{\kappa_t^M} \frac{1-\alpha_M}{1-\alpha_A} \frac{\alpha_A}{\alpha_M} \nu_t^M. \end{split}$$

Comparing Two Versions of Non-homothetic Model


Comparing Two Versions of Non-homothetic Model

May 10, 2019 68 / 75

3. 3

Comparing Two Versions of Non-homothetic Mode

May 10, 2019 69 / 75

< ロト < 同ト < ヨト < ヨト

FIRST DIFF	x =							
номотн	с	i	P ^G y ^G	$\frac{P^{M}y^{M}}{P}$	PrGap	nG	n ^M	п
	A. FD- Filtered China Data: $std(y) = 2.4\%$							
$\frac{std(x)}{std(y)}$	1.27	3.34	1.82	1.31	2.32	1.00	0.76	0.30
corr (x, y)	0.57	0.63	0.12	0.93	-0.09	-0.57	0.66	-0.25
$corr(x, n^G)$	-0.74	-0.34	-0.38	-0.38	0.35	1.00	-0.50	0.71
$corr\left(x, n^{M}\right)$	0.32	0.37	0.40	0.53	-0.52	-0.50	1	0.19
B. FD- Filtered Model, $std(y) = 2.6\%$								
$\frac{std(x)}{std(y)}$	0.30	2.36	1.11	1.25	0.72	1.10	1.27	0.49
corr (x, y)	0.80	0.99	0.24	0.95	-0.42	-0.30	0.69	0.18
$corr(x, n^G)$	-0.22	-0.27	0.80	-0.51	0.79	1	-0.78	0.75
corr (x, n^M)	0.55	0.66	-0.40	0.88	-0.81	-0.78	1	-0.52

Table: Business Cycle Statistics: Model vs Data

Labor's Income Share in non-farm/farm sector

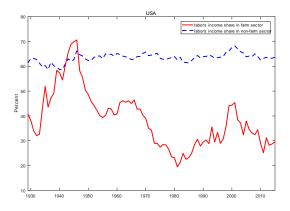


Figure: The Figure plots the labor's income share in farm/non-farm sectors in the USA. The labor's income share is defined as the compensation of employees divided by the value-added output minus proprietor's income. Source: Compensation of employees by farm/non-farm come from NIPA Table 6.2A, 6.2B, 6.2C, and 6.2D. Proprietor's income by farm/non-farm come from NIPA Table 1.12. The value-added output by farm/non-farm come from the NIPA Table 1.3.5.

Rel. Price of non-farm/farm output in the US

Figure: The Figure is from the Figure 1 in Alvarez-Cuadrado and Poschke (2011, AEJ Macro). It plots the share of employment in agriculture and the relative price of manufactures to agricultural goods in the US 1790/1800-2000. Note that the value-added price index is not available for such a long period, they use producer prices and wholesale prices of all commodities versus farm products in the US.

Rel. Price of non-farm/farm output in CHINA



Figure: The Figure plots the share of employment in agriculture and the relative price of non-agricultural goods to agricultural goods in CHINA 1978-2012. The relative price is calculated as non-agr. output deflator divided by the agr. output deflator.

May 10, 2019 73 / 75

Rel. Price of non-farm/farm output in Other Countries

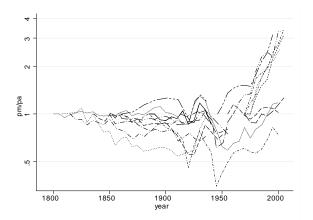


Figure: The Figure is from the Left panel of Figure 4 in Alvarez-Cuadrado and Poschke (2011, AEJ Macro). Countries include CAN, UK, NLD, BEL, FRA, GER, JPN, FIN, KOR, ESP.

May 10, 2019 74 / 75

Rel. Price of non-farm/farm output (Pre-WWII)

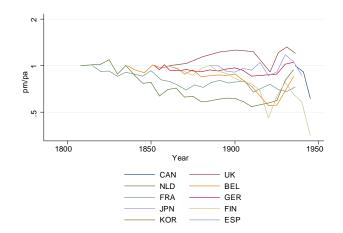


Figure: The Figure is based on the Left panel of Figure 4 in Alvarez-Cuadrado and Poschke (2011, AEJ Macro). Countries include CAN, UK, NLD, BEL, FRA, GER, JPN, FIN, KOR, ESP.