Introduction

Measure

Data

Measuring Mispricing in the Global Market: A New Perspective

Return

Flow

Conclusion

2019 May, Singapore

Massimo Massa (INSEAD), Gloria Yu (SMU), Hong Zhang (PBCSF)

1

Motivation

Introduction

Measure

Identifying mispricing in the global market

- The core of modern financial theories.
- Essential to practitioners allocating asset globally.
- Highly complex in practice.
- US market:
 - Englberg, McLean and Pontiff (2018) have examined a list of 97 anomalies observed in the U.S. market that could be related to mispricing due to biased expectations.
 - Hou, Xue, and Zhang (2017) compile a database of 447 anomalies.
- Global market:
 - Local vs global factors: Fama and French, 1998; Griffin, 2002; Bekaert, Hodrick and Zhang, 2009; Hou, Karolyi, and Kho (2011).

Return

Data

Flow

A New Perspective

Introduction

Measure

Data

Return

Flow

- From U.S. investors' perspective: is the non-US food producer industry mispriced or not compared to its U.S. counterpart?
- Exploit dual-listings as a benchmark to measure crossmarket mispricing.
- Assume that only one non-US (Japanese) food company ABC has issued both the parent stock traded in the non-US market (Japan) and American Depository Receipts (ADRs) traded in the U.S.,.
 - ABC parent stock and its ADR are probably subject to a similar degree of mispricing thanks to arbitrageurs.

A New Perspective – an example

In Japan: 90% of food stocks is more undervalued than ABC In the US: 20% of food stocks is more undervalued than ABC UnderPricing of the Japanese food industry: 90%-20%=70%

Preview

Introduction

Measure

Data

Return

Flow

- The UnderPricing index positively predicts industry returns at both quarterly and semiannual frequencies.
 - Consistent with the market segmentation argument, we show the differential roles played by foreign and local mutual funds in this sizable return predictability.
 - Dissipation: Foreign mutual funds reshuffle capital into country-industry pairs experiencing undervaluation in the previous period.
 - Formation: Local funds explain the contemporaneous mispricing.

	UnderPricing Measure Construction
Introduction	 Step one: stock-level mispricing
Measure	Follow Rhodes-Kropf et al. 2005 to measure the
Data	deviation of a firm's market valuation from the one implied by the average industry-quarter specific
Return	multiples.
Flow	$log M_{icst} = a_{cst} + \beta 1_{cst} log B_{icst} + \beta 2_{cst} \log(NI)_{icst} + \beta 3_{cst} I_{<0} \log(NI^+)_{icst} + \beta 4_{cst} \text{LEV}_{icst} + S_{icst} $ (1)
Conclusion	$MIC \qquad la = M \qquad la = \widehat{M} \qquad (2)$
	$MIS_{icst} = logM_{icst} - lo\overline{gM_{icst}} $ (2)
	** <i>i</i> indexes firms, c for countries, s for industries, and <i>t</i> for time.
7	

Step One – an example

UnderPricing of the foreign food industry: 90%-20%=70%

	UnderPricing Measure Construction
Introduction	 Step two: stock-level mispricing rankings
Measure	Within each country-sector-quarter group, we sort all
Data	stocks by MIS _{icst} , and assign to each stock the mispricing ranking scaled by the number of stocks.
Return	
Flow	Notice that ADRs and their underlying parent firms receive one ranking in the US and one at home.
Conclusion	

Step two – an example

UnderPricing of the foreign food industry: 90%-20%=70%

	UnderPricing Measure Construction
Introduction	 Step three: industry-level UnderPricing
Measure	Take the differential of ADR parent stock's relative
Data	mispricing ranking and ADR's.
Return	For industries with more than one ADRs (parent
Flow	stocks), we take the value weighted average rankings across all ADRs (parent stocks).
Conclusion	
	$UnderPricing_{sct} = \sum w_{icst} * (RankParent_{icst} - RankADR_{kust}) $ (3)

Step Three – an example

UnderPricing of the foreign food industry: 90%-20%=70%

Sample

Introduction

Measure

Data

Return

Flow

- Datastream, Worldscope, Factset/Lionshares and Morningstar International.
 - We keep all ADRs and the primary major listing of equity shares with sufficient information to calculate essential financial variables introduced below.
 - To ensure the compatibility across countries, we adopt Level 3 of the Global Industry Classification Standard (GICS).
 - The sample of 37 industries from 44 countries from December 1999 to December 2012. 477 country-industry pairs. 2045 ADRs.

Summary Statistics

Table 1											
Panel A: Quarterly											
count mean sd min p25 p50 p75 max											
UnderPricing	14414	0.049	0.223	-0.798	-0.045	0.019	0.143	0.997			
Returns	14414	0.047	0.174	-0.585	-0.051	0.040	0.134	1.151			
GlobalDGTW	14414	-0.004	0.122	-0.318	-0.075	-0.008	0.060	0.398			
LocalDGTW	14414	-0.014	0.126	-0.331	-0.088	-0.019	0.053	0.402			
Size(log\$)	14414	6.575	3.231	0.072	4.245	7.230	9.029	12.346			
BM	14414	1.548	2.307	0.140	0.474	0.745	1.195	9.791			
Capex	14414	0.044	0.042	0.000	0.014	0.033	0.059	0.223			
Leverage	14414	0.208	0.150	0.001	0.078	0.192	0.313	0.639			
			Pane	el B: Sem	iannually						
	count	mean	sd	min	p25	p50	p75	max			
UnderPricing	7133	0.049	0.221	-0.798	-0.045	0.021	0.143	0.997			
Returns	7133	0.098	0.262	-0.728	-0.053	0.081	0.229	1.772			
GlobalDGTW	7133	-0.010	0.185	-0.464	-0.118	-0.019	0.081	0.618			
LocalDGTW	7133	-0.028	0.191	-0.511	-0.139	-0.039	0.067	0.635			
Flow	4626	0.083	0.375	-1.078	-0.041	0.034	0.164	1.808			
FlowFrn	4626	0.205	0.761	-1.079	-0.035	0.055	0.225	5.519			
FlowHome	4626	1.076	5.050	-1.141	-0.109	0.030	0.338	40.221			
Size(log\$)	7133	6.601	3.236	0.068	4.294	7.261	9.051	12.377			
BM	7133	1.561	2.373	0.138	0.471	0.740	1.187	10.104			
Capex	7133	0.044	0.042	0.000	0.014	0.033	0.059	0.223			
Leverage	7133	0.208	0.150	0.001	0.078	0.193	0.314	0.639			

Introduction

Measure

Return

Data

Flow

Return Predictability – Multivariant

Introduction

Measure

Data

Return

Flow

Conclusion

 Gross returns (Returns), returns adjusted for global characteristics (GlobalDGTW), and returns adjusted for local characteristics (LocalDGTW).

• Return_{t+1} = a + β UnderPricing_t + γ_0 Return_t + γ_1 Size_t + γ_2 Leverage_t + γ_3 BM_t + γ_4 Capex_t + s_t (4)

• Panel and Fama-Macbeth regressions.

		Panel A : Glo	bal DGTW-adjust	ed Returns and Ur	nderPricing Index		
Table 2	(1)	(2)	(3)	(4)	(5)	(6)	(7)
14010 2	$GlobalDGTW_{t+1}$	GlobalDGTW _{t+1}	$GlobalDGTW_{t+1}$	$GlobalDGTW_{t+1}$	$GlobalDGTW_{t+1}$	$GlobalDGTW_{t+1}$	$GlobalDGTW_{t+1}$
UnderPricing _t	0.020**	0.021**	0.023***	0.020***	0.021***	0.023***	0.018**
	(3.06)	(3.07)	(3.43)	(3.39)	(3.60)	(3.81)	(2.76)
$GlobalDGTW_t$	0.034***	0.028**	0.025**	0.034**	0.028**	0.025**	0.040**
	(3.69)	(2.97)	(2.58)	(3.27)	(2.73)	(2.31)	(2.79)
Size _t	0.001**	0.001	0.001**	0.001**	0.001	0.001**	0.001*
	(2.91)	(1.58)	(2.41)	(2.23)	(1.13)	(2.17)	(2.00)
BM_t	0.001	-0.002	0.007	0.001	-0.002	0.007	0.003
	(0.19)	(-0.29)	(0.98)	(0.21)	(-0.32)	(1.08)	(0.38)
$Capex_t$	0.073*	0.070*	0.038	0.073***	0.070***	0.038*	0.022
	(1.74)	(1.79)	(1.01)	(3.55)	(3.87)	(1.96)	(0.54)
Leverage t	-0.053***	-0.047***	-0.050***	-0.053***	-0.047***	-0.050***	-0.039**
	(-4.80)	(-5.20)	(-4.25)	(-5.31)	(-5.45)	(-4.61)	(-2.35)
FE Time	Y	Y	Y	Y	Y	Y	
FE Industry	Ν	Y	Ν	Ν	Y	Ν	
FE Country	Ν	Ν	Y	Ν	Ν	Y	
Clustering Time	Y	Y	Y	Ν	Ν	Ν	
Clustering Industry	Ν	Ν	Ν	Y	Y	Y	
Clustering Country	Y	Y	Y	Ν	Ν	Ν	
		Panel B : Loo	al DGTW-adjuste	ed Returns and Un	derPricing Index		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}
UnderPricing _t	0.032***	0.033***	0.032***	0.032***	0.033***	0.032***	0.030***
75	(4.50)	(4.60)	(4.77)	(5.22)	(5.56)	(5.72)	(4.36)

one standard deviation higher *UnderPricing* index is associated with 46.2 (74.8) bps higher global DGTW-adjusted returns (local DGTW-adjusted returns).

Return Predictability – Portfolio

Introduction

Each quarter, we form zero-investment portfolios which go long in country-industry pairs with top 20% values for *UnderPricing* while shorting those with bottom 20% values.

Measure	Table 5									
	Raw Return GlobalDGTW Return LocalDGTW									
Data	Qintile	mean	t	mean	t	mean	t			
Panel A: Equal Weighted										
Return	1	0.028	1.972	-0.013	-2.966	-0.024	-4.823			
	2	0.033	2.347	-0.006	-2.371	-0.018	-5.61			
Flow	3	0.031	2.172	-0.009	-2.704	-0.019	-5.356			
	4	0.047	3.096	0.002	0.491	-0.006	-1.106			
	5	0.052	3.291	-0.001	-0.221	-0.003	-0.744			
Conclusion	5 - 1	0.024	11.659	0.012	6.144	0.020	9.759			
			F	Panel B: Val	ue Weighte	d				
	1	0.026	1.91	-0.012	-2.966	-0.024	-5.019			
	2	0.034	2.505	-0.005	-1.518	-0.015	-3.861			
	3	0.029	2.078	-0.009	-2.453	-0.02	-5.059			
	4	0.045	2.997	0.003	0.604	-0.007	-1.443			
	5	0.05	3.221	-0.001	-0.17	-0.004	-0.987			
	5 - 1	0.024	11.272	0.011	6.001	0.020	9.559			

Return Predictability – Portfolio

				_	Table 4				
	<u> </u>	(1) PortEW	(2) PortEW	(3) PortEW	(4) PortEW	(5) PortVW	(6) PortVW	(7) PortVW	(8) PortVW
ntroduction	$RmRf_t^G$	-0.001 (-0.53)	0.003 (0.63)			-0.002 (-0.81)	0.002 (0.38)		
1easure	SMB_t^G	0.281** (2.46)	0.266** (2.31)			0.284** (2.45)	0.271** (2.30)		
pata	HML_t^G	0.022 (0.26)	-0.007 (-0.07)			0.044 (0.52)	0.020 (0.22)		
eturn	WML_t^G		-0.050 (-0.97)				-0.044 (-0.83)		
ow	$RmRf_t^L$			0.126** (3.21)	0.099** (2.38)			0.130** (3.27)	0.100** (2.40)
	SMB_t^L			0.301** (2.28)	0.345** (2.63)			0.322** (2.42)	0.369** (2.80)
Conclusion	HNL_t^L			0.184* (1.83)	0.158 (1.59)			0.233** (2.30)	0.205** (2.05)
	MOM_t^L				-0.108* (-1.82)				-0.115* (-1.93)
	Alpha	0.020*** (4.15)	0.024*** (3.95)	0.017** (3.34)	0.020*** (3.85)	0.019*** (3.85)	0.022*** (3.61)	0.015** (3.00)	0.019*** (3.57)
	$\frac{\text{Obs.}}{R^2}$	55 0.1	55 0.186	55 0.237	55 0.284	55 0.184	55 0.195	55 0.260	55 0.312

The equal-weighted hedging portfolio earns global/local Fama-French 3/4 factors adjusted alphas of 2% / 2.4% /1.7% /2% per quarter.

Flows Chasing UnderPricing

Introduction

Measure

Data

Return

Flow

Conclusion

• we construct mutual fund flows as the market capitalization changes of total shares held by all mutual funds, adjusted for the gross returns.

$$Flow_t = \frac{cmv_t}{cmw_{t-1}} - Return_t$$

 we further decompose flows into the foreign and domestic components, based on the headquarter locations of the mutual funds.

Flows Chasing UnderPricing

	Table 6 Panel B : Flow from mutual funds in foreign countries										
Introduction		(1) FlowFrn _{t+1}	(2) FlowFrn _{t+1}	(3) $FlowFrn_{t+1}$	(4) $FlowFrn_{t+1}$	(5) $FlowFrn_{t+1}$	(6) FlowFrn _{t+1}				
	Under Pricing _t	0.104**	0.086**	0.088**	0.104**	0.086	0.088*				
Measure		(3.23)	(2.52)	(2.31)	(2.09)	(1.62)	(1.88)				
	FlowFrnt	0.044**	0.037**	0.028*	0.044**	0.037**	0.028				
Data		(2.57)	(2.34)	(1.86)	(2.54)	(2.20)	(1.65)				
		Pane	el C : Flow from	mutual funds i	in the home cou	intry					
Return		(1) <i>FlowHome</i> _{t+1}	(2) F lowHome _{t+1}	(3) F lowHome _{t+1}	(4) F lowHome _{t+1}	(5) F lowHome _{t+1}	(6) F lowHome _{t+1}				
	Under Pricing _t	0.254 (0.92)	0.225 (0.96)	0.103 (0.32)	0.254 (0.81)	0.225 (0.81)	0.103 (0.29)				
low	<i>FlowHome</i> t	0.012 (0.57)	0.004 (0.19)	-0.018 (-1.14)	0.012 (0.61)	0.004 (0.20)	-0.018 (-1.06)				
	FE Time	Y	Y	Y	Y	Y	Y				
Conclusion	FE Industry	Ν	Y	Ν	Ν	Y	Ν				
	FE Country	Ν	Ν	Y	Ν	Ν	Y				

Mutual funds headquarterd outside the country in question chase the UnderPricing, but domestic ones don't.

One standard deviation higher *UnderPricing* index is associated with 2.3% higher foreign flows.

	Under	Pricing	Forma	tion						
Introduction	• Why i	s there L	InderPric	ing to be	egin with	ŀŚ				
	 Price pressure from local fund flows? 									
Measure	• Sugg	estive ev	vidence	•						
Data			Tab	le 7						
Return		(1) $\Delta UnderPricing_t$	(2) ∆UnderPricingt	(3) ∆UnderPricingt	(4) ⊿UnderPricingt	(5) ∆UnderPricingt	(6) ∆UnderPricingt			
	$\Delta FlowHome_t$	-0.001**	-0.001**	-0.001**	-0.000	-0.000	-0.000			
Flow		(-2.08)	(-2.04)	(-2.37)	(-0.63)	(-0.62)	(-0.69)			
	$Ka*\Delta FlowH_t$				-0.003**	-0.003**	-0.003**			
					(-2.11)	(-2.06)	(-2.19)			
Conclusion	Kat				0.008	0.008	0.015			
					(0.65)	(0.63)	(0.39)			
	$\Delta Flow Frn_t$	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004			
		(-0.99)	(-0.99)	(-1.02)	(-0.97)	(-0.97)	(-0.99)			

Contemporaneously, higher domestic flow increases are correlated with lower underpricing (changes), particularly when local market has stricter capital controls in place.

Conclusion

Introduction

Measure

Data

Return

Flow

Conclusion

Identifying mispricing in the global market

- We propose a novel way to measure cross-market mispricing based on the benchmark of dual listings.
- We characterize its return predictability, implications on funds, and formation.
- We show the role of market segmentation in the underpricing.

22