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Abstract

The expected returns of most portfolios are likely to fluctuate over time. We present
a statistical model that allows for such fluctuations and apply the model to analyze
the returns of characteristic-sorted portfolios, such as value minus growth. We find
that accounting for plausible magnitudes of persistent variation in returns doubles
the standard errors of these portfolios’ expected return estimates. We also analyze
characteristic-sorted portfolios from the perspective of Bayesian investors and show
that investors’ posterior beliefs about expected returns are highly dependent on their
priors about persistence.
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A large and growing literature links firm characteristics, such as valuation ratios, to ex-

pected rates of stock returns. While the evidence documented in this literature convincingly

rejects the CAPM, going beyond this rejection and interpreting alternatives has proven to

be challenging. For instance, some recent studies document time-variation in characteristic-

sorted portfolio returns, and others note longer-term fluctuations, such as the weakening of

the value premium or the increased performance of profitability-based strategies in recent

decades.1 A natural question arising from these observations is whether the historical links

between characteristics and returns represent permanent economic forces that will continue

to shape returns in the future, or transitory forces that will eventually dissipate.

To address this and related questions, we examine the returns of characteristic-sorted

portfolios through the lens of a statistical model that allows expected returns to vary over

time. The central feature of our model, persistent variation in expected returns, is implicit

in existing rational and behavioral theories of characteristic-based return predictability. The

general idea is that the economic forces that generate relationships between characteristics

and returns are likely to change over time.2 Our main contribution is to analyze how such

persistent variation influences our inferences about the past as well as the predictions about

the future returns of characteristic-sorted portfolios.

Our analysis delivers three main findings. First, allowing for plausible magnitudes of

persistent variation in conditional expected returns has a large effect on the precision of

unconditional expected return estimates, often doubling their standard errors. Second, the

1See Gupta and Kelly (2019) and Arnott et al. (2021a) for evidence of positive autocorrelation in
characteristic-sorted portfolio returns, Fama and French (2021) for the weakening value effect, and Novy-
Marx (2013) for the strengthening profitability effect.

2Gârleanu, Kogan, and Panageas (2012) and Kogan, Papanikolaou, and Stoffman (2020) provide exam-
ples of rational theories where investors hold lower returning growth stocks to hedge technology shocks.
Shiller (2000) provides a behavioral explanation based on investors being overly optimistic about the com-
mercialization potential of new technologies, causing growth stocks to underperform. One might expect
the economic fundamentals that drive both rational and behavioral explanations to fluctuate over time, or
possibly even reverse, causing growth stocks to outperform value stocks. See Altı and Titman (2019) for a
dynamic behavioral model that captures both possibilities.
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degree of persistent variation in expected returns is very imprecisely estimated. These two

findings imply that the historical return data we analyze is consistent with very different

return generating processes. For instance, the historical value portfolio returns are consistent

with a persistent process with zero unconditional expected returns as well as an i.i.d. process

with large unconditional expected returns. Given this wide range, it is natural to ask how

Bayesian analysts with different prior beliefs interpret the data and forecast future return

performance of characteristic-sorted portfolios. This leads to our third finding, which is that

the posterior beliefs of Bayesian analysts are highly sensitive to priors about the degree of

persistence, even after observing 56 years of data.

Our empirical analysis focuses on the returns of the four characteristic-sorted portfolios

described in Fama and French (2015) – value, investment, profitability, and size. As a first

step, we examine the autocorrelation patterns in these portfolios’ returns. All four portfolios

exhibit positive return autocorrelation over yearly horizons, and while only the size portfolio’s

autocorrelation estimate is significant on its own, a joint test of the four portfolios strongly

rejects the zero-autocorrelation null hypothesis. These autocorrelation estimates, however,

are sufficiently imprecise that they are consistent with a wide variety of parameterizations

of our model, from persistence lasting months to decades.

Next, we apply our model to analyze the returns of the four characteristic-sorted portfo-

lios. As we show, different assumptions about the extent of persistent variation in conditional

expected returns, all consistent with the historical return data, generate substantially dif-

ferent inferences about unconditional expected returns. If returns are assumed to be i.i.d.,

meaning they have no persistence, standard errors are low and the hypothesis of zero un-

conditional expected returns is strongly rejected. However, if shocks to conditional expected

returns are assumed to be somewhat persistent, both the ordinary least squares (OLS) and

generalized least squares (GLS) standard errors are substantially higher and the hypothesis is

not rejected. For example, the standard errors for all four strategies’ unconditional expected
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return estimates more than double, relative to the case where returns are i.i.d., when the

half-life of shocks to conditional expected returns are five years. Intuitively, when expected

returns are persistent, the return time series exhibits less independent variation, generating

less precise estimates of the unconditional expected returns.3

We also use maximum likelihood to estimate a version of our model where the degree

of persistence is an estimated parameter, rather than assumed. Consistent with the highly

noisy autocorrelation estimates in our reduced-form regressions, we find that the persistence

parameter is imprecisely estimated. Given these estimates, a variety of a plausible alternative

explanations for the historical performance of the characteristic-sorted portfolios cannot

be ruled out. Indeed, for several of the portfolios, likelihood ratio tests fail to reject the

possibility that the unconditional expected return is zero, but conditional expected returns

are both variable and highly persistent.

While the results discussed so far are expressed from a frequentist statistical perspective,

our focus on how assumptions about time-variation affect inferences about unconditional

expected returns has a natural Bayesian interpretation. Specifically, our OLS and GLS

estimates are similar to Bayesian analyses with dogmatic priors about the degree of persis-

tent variation in expected returns, while the maximum likelihood estimations are similar to

Bayesian analyses with agnostic priors. This analogy is limited, however, to priors about per-

sistence, as the frequentist analysis always assumes fully agnostic priors about unconditional

expected returns.

To assess how priors about unconditional expected returns and expected return persis-

tence interact, we embed the model into a Bayesian framework. Specifically, we assume that

different analysts start with different, but economically plausible priors, and that they up-

date their beliefs based on the same return data that we observe in our sample period. The

3Formally and more generally, when error terms are positively serially correlated, true standard errors
are typically larger than their OLS estimates. See, for instance, Greene (2000).
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value of this exercise is to quantify the extent to which individuals with different perspectives

on the determinants of expected returns may differ in their posterior beliefs after observing

the historical data. For example, analysts guided by predictions of the CAPM may have the

prior belief that the unconditional expected returns of characteristic-sorted portfolios cannot

deviate substantially from zero, while others may have less confidence in the CAPM.

We find that prior beliefs about persistence substantially affect how analysts, after ob-

serving the return history, update their beliefs about unconditional expected returns. If

analysts have strong priors that expected returns fluctuate very little, then their posterior

beliefs about unconditional expected returns tend to be relatively precise and not highly

sensitive to priors about unconditional expected returns. However, if analysts’ priors put

more weight on the possibility of persistent fluctuations, then their posterior beliefs about

unconditional expected returns become more diffuse and more sensitive to their priors. In

this way, persistence makes analysts learn less from data and rely more on their priors.

We also calculate Bayesian analysts’ estimates of the conditional expected returns and

Sharpe ratios of the four characteristic-sorted portfolios at each point in time throughout

the sample period.4 These estimates illustrate the extent to which the analysts believe

that the characteristic-sorted portfolio returns can be timed. The estimated annualized

conditional Sharpe ratios exhibit substantial variation over time, ranging from lows around

0.1 to highs around 0.8 for the value, investment, and profitability portfolios. Interestingly,

the size portfolio’s conditional Sharpe ratio exhibits even greater and more persistent swings

– peaking near 1.0 in 1968, 1979, and 2002, while also falling below -0.5 in 1988, 1999, and

2019 – despite the average conditional Sharpe ratio being close to zero. These large and

persistent variations that the size portfolio returns exhibit have been largely unexplored in

the literature.

4Specifically, we compute the means of an analyst’s posteriors about the conditional expected returns
and Sharpe ratios given their priors and data observations from the full sample period.
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Finally, we use our Bayesian approach to generate estimates of conditional expected

returns and Sharpe ratios in 2020, the year after our sample period ends. These estimates

speak directly to the ongoing debate about the recent performance of value strategies and

the effectiveness of factor timing strategies.5 We find that Bayesian analysts who account

for time-varying expected returns will have very different views of near-term and long-term

expected returns. The reason is that while data from the early and later parts of the sample

are equally important for estimating unconditional expected returns, near-term conditional

expected return estimates put more weight on the more recent observations when returns are

persistent. For example, because the value portfolio performed particularly poorly towards

the end of the sample, the value premium in 2020, measured as the mean of the posterior, is

generally around a quarter of the unconditional value premium, and is close to zero in many

specifications. The profitability portfolio exhibits the opposite pattern: because the returns

were stronger in recent decades, the posteriors for conditional expected returns in 2020 are

higher than posteriors for the unconditional expected return.

While we are among the first to analyze time variation in the expected returns of

characteristic-sorted portfolios, there is a well-established literature that explores a num-

ber of these issues within the context of the aggregate equity market portfolio. For example,

Ferson, Sarkissian, and Simin (2003) consider the predictability of aggregate market returns

using persistent predictor variables such as price/dividend ratios. They present simulations

that show that OLS regressions can overstate the significance of such relationships in fi-

nite samples when expected returns are persistent, even when the Newey and West (1987)

standard errors adjustment is used. Although our application is different, the problem we

address is similar and we also show that the Newey and West (1987) correction is not effec-

tive in dealing with the problem. In addition, we propose some frequentist remedies, such

5See Arnott et al. (2021b), Asness et al. (2021), Choi, So, and Wang (2021), Eisfeldt, Kim, and Papaniko-
laou (2021), Fama and French (2021), and Goncalves and Leonard (2021).
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as GLS regressions when the level of persistence in expected returns is known, or maximum

likelihood when the level of persistence is estimated.

Pástor and Stambaugh (2009, 2012) also conduct Bayesian analyses of time-varying ex-

pected returns and find that the priors about the return generating process substantially

affect the posteriors about expected returns, a similar conclusion to the one we reach.

Our study differs from these papers in both application and focus, examining returns of

characteristic-sorted portfolios instead of timing the aggregate equity market portfolio based

on imperfect predictors.6 We are aware of only one study, Pástor (2000), that uses Bayesian

methods to study characteristic-sorted portfolio returns. However, in contrast to our analy-

sis, persistence plays no role in Pástor (2000) as expected returns are assumed to be constant.

Finally, as we mentioned at the outset, our analysis builds on a number of recent pa-

pers that combine evidence from many characteristic-based portfolios to show that there is

persistent time-variation in conditional expected returns, e.g., Lewellen (2002), McLean and

Pontiff (2016), Avramov et al. (2017), Gupta and Kelly (2019), Arnott et al. (2021a), and

Ehsani and Linnainmaa (2021). We contribute to this literature by studying the implications

of this persistence. In addition, we find that while there is strong evidence of persistence

when evaluating the returns of many portfolios, the magnitude of persistence for an individ-

ual portfolio is estimated so imprecisely that in most cases we fail to reject everything from

zero autocorrelation and economically-important autocorrelations persisting for decades.

The remainder of the paper is organized as follows. Section 1 describes our statistical

model of the return-generating process. Section 2 documents the historical performance

and the evidence of return autocorrelation for the characteristic-sorted portfolios. Section

3 presents the OLS, GLS, and maximum likelihood estimations of the model. Section 5

presents the Bayesian analysis. Section 6 concludes.

6Other papers in the literature that employ Bayesian methods to study aggregate equity market re-
turns include Kandel and Stambaugh (1996), Barberis (2000), Wachter and Warusawitharana (2009), and
Johannes, Korteweg, and Polson (2014).
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1. Statistical Model

In this section, we describe and analyze a simple statistical model of the return-generating

process that we later apply to characteristic-sorted portfolio returns. The important feature

of the model is the assumption that the conditional expected returns of the portfolio exhibits

persistent variations around an unconditional mean.

Specifically, we assume that the time-series of the zero-cost portfolio returns rt satisfies:

rt+1 = µt + εt+1, (1)

µt+1 = µ+ λ(µt − µ+ δt+1), (2)

where µt and µ are the conditional and unconditional expected returns, respectively, and

λ ≥ 0 is a parameter that determines the persistence of shocks to µt.
7 The shocks εt and δt

are i.i.d. and follow a joint normal distribution with variances σε and σδ, respectively, and

correlation ρ ∈ (−1, 1). We expect ρ to be negative, since shocks to expected rates of return,

ceteris paribus, reduce an investment’s value.

The econometrician does not observe µt, but can estimate it – along with other model

parameters – from the observed return realizations R = [r1, r2, . . . , rT ]′. Conditional on

parameters Ω = [µ, λ, σε, σδ, ρ, ], R has the following mean and covariance matrix:

E(R|Ω) = µ, (3)

Cov (R|Ω) = Σ(Ω), Σ(Ω)i,j =


λ2σ2

δ

1−λ2 + σ2
ε if i = j

λ|i−j|
(
λ2σ2

δ

1−λ2 + ρσδσε

)
if i 6= j

. (4)

7We multiply the shock δt+1 by λ so that returns are i.i.d. when λ = 0.
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Equation (4) shows that shocks to both the expected and unexpected returns contribute to

the volatility of returns (the terms σ2
δ and σ2

ε , respectively). Note also that the covariance

between ri and rj decays at constant rate λ as |i− j| grows.

The model is over-parameterized in the sense that multiple values of Ω lead to the same

predicted moments E(R|Ω) and Σ(Ω). To see this, define:

σ2
r(Ω) = Var(rt) =

λ2σ2
δ

1− λ2
+ σ2

ε , (5)

γ(Ω) = Corr(rt+1, rt) = λ
λ2σ2

δ + (1− λ2)ρσδσε
λ2σ2

δ + (1− λ2)σ2
ε

. (6)

Using this alternative notation, the covariance matrix becomes:

Σ(Ω)i,j =


σ2
r if i = j,

λ|i−j|−1γσ2
r if i 6= j.

(7)

Note that any two parameterizations Ω and Ω̃ satisfying

[µ, λ, σr, γ] =
[
µ̃, λ̃, σ̃r, γ̃

]
(8)

result in identical mean and covariance matrix for R (µ and Σ). Because we have five

parameters to satisfy four equations, many distinct Ω and Ω̃ generate any given µ and Σ.

To better understand identification in our model, note that the sample mean of returns

identifies the unconditional expected return µ (Equation (3)), while the rate at which the

covariance between ri and rj decays as |i − j| grows identifies the persistence parameter λ

(Equation (4)). This leaves three other parameters to be identified, σε, σδ, and ρ, but only

two other moments that can be estimated, the variance of returns σ2
r in Equation (5) and
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the one-lag autocorrelation γ in Equation (6).8 Intuitively, the identification problem arises

because one cannot distinguish between different channels that generate return variance and

autocorrelation. An increase in the volatility of expected return shocks σδ increases both

return variance and autocorrelation. But the same magnitudes of increases in these two

moments can also be generated from increases in the volatility of unexpected return shocks

σε and the correlation parameter ρ.

We address this identification problem in our frequentist analysis by estimating the four

moments θ = [µ, λ, σr, γ], which we can identify, rather than the full set of underlying

parameters Ω. In doing so, we apply the constraint that there must be a parameterization

Ω which is consistent with θ and satisfies σε > 0, σδ > 0, λ ≥ 0, and ρ ∈ (−1, 1). Our

frequentist analysis does estimate Ω or assume anything about which Ω generates the θ we

estimate. The identification problem is not an issue for our Bayesian analysis because we

compute a posterior distribution for parameter values, which is unique given a set of priors

and observed data, rather than a single point estimate, which is not unique.

To facilitate our interpretation of economic magnitudes, we express the persistence pa-

rameter λ as an annualized half-life H hereafter:

H =
log(0.5)

log(λ)

1

N
, (9)

where N is the number of periods per year (e.g. 4 for quarterly data).

2. Characteristic-Sorted Portfolios

We apply our statistical model to study four portfolios that are formed by sorting stocks

based on firm characteristics: value, investment, profitability, and size. We focus on these

portfolios because they are the basis of the Fama and French (2015) five-factor model and

8Note from Equation (7) that return covariances at longer lags do not provide any additional information
about the model parameters, because all these covariance terms are scaled by γσ2

r .
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illustrate a variety of channels through which time-varying expected returns affect our un-

derstanding of portfolio returns.

2.1. Data and Characteristic Definitions

We use data on historical returns of characteristic-sorted portfolios from Ken French’s

website.9 Each portfolio combines a long position in a value-weighted portfolio of firms in

one extreme quintile of the characteristic with a short position in the other extreme.

The characteristics are defined following Fama and French (2015). Value is the ratio of

the book value of equity (Bi,y) to the market value of equity (Mi,y) as of the end of the prior

fiscal year y. Investment is the growth rate in the book value of assets (Assetsi,y/Assetsi,y−1).

Profitability is revenues minus cost of goods sold, interest expense, and selling, general, and

administrative expenses in year y divided by book equity in year y − 1. Size is the market

value of equity Mi,y.

In contrast to most of the literature, which examines the monthly returns of characteristic

sorted portfolios, we analyze quarterly returns. As we show in the Appendix, the monthly

returns of three of the four portfolios we study exhibit strong positive first-order autocorre-

lations.10 While these short-term autocorrelations are consistent with time-varying expected

returns, they could also be driven by lead-lag effects and other short-term microstructure

effects. For this reason, and more generally to focus our analysis on longer-term autocorrela-

tions driven by persistent variations in expected returns, we estimate our model on quarterly

returns for each portfolio, which have weaker first-order autocorrelations.

To analyze expected returns associated with each characteristic-sorted portfolio rather

than the market risk premium, we use market-neutral versions of each portfolio’s returns

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
10This is consistent with the evidence in Gupta and Kelly (2019) that 47 of 65 characteristic-based port-

folios have significantly positive first-order autocorrelation.
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throughout, calculated as:

rβ=0
i,t = ri,t − β̂i(rm,t − rf,t), (10)

were ri,t is the quarterly return of long-short portfolio i, rm,t − rf,t is the quarterly excess

market return, and β̂i is the full-sample market beta. The average return and the Sharpe

ratio of this market-hedged portfolio are equivalent to the alpha and information ratio, re-

spectively, of the unhedged long-short portfolio.

2.2. Historical Performance of Characteristic-Sorted Portfolios

Table 1 summarizes the historical performance of the characteristic-sorted portfolios.

Panel A shows that value, investment, and profitability portfolios all have annualized excess

returns around 4% and Sharpe Ratios between 0.3 and 0.5. We calculate standard errors for

these statistics under the assumption that returns are i.i.d. by taking the standard deviation

across simulated samples formed by re-sampling historical data with replacement. Under

this assumption, we can strongly reject the hypothesis that average returns equal zero, with

t-statistics of 2.4, 3.3, and 3.5 for value, investment, and profitability, respectively.

We also examine the historical performance of the portfolios in the first and second halves

of our sample, 1963–1990 and 1991–2019, respectively. As discussed in McLean and Pontiff

(2016), Linnainmaa and Roberts (2018), and Fama and French (2021), the value strategy’s

average returns are smaller in the second half of the sample and not statistically different

from zero. However, as emphasized by Fama and French (2021), the difference between the

two halves of the sample is not statistically significant. Of course this finding does not imply

that expected returns are constant; it only means that we cannot reject that hypothesis from

a simple comparison of the first and second halves of the sample.

Several papers offer variations of two potential explanations for the declining performance
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of the value strategy: book value is worsening as a proxy for the value of assets in place (Choi,

So, and Wang, 2021; Eisfeldt, Kim, and Papanikolaou, 2021; Goncalves and Leonard, 2021),

or a series of shocks has widened the difference in multiples between growth and value stocks

(Israel, Laursen, and Richardson, 2020; Arnott et al., 2021b). Each of these explanations

imply time variation in expected returns for the value portfolio, meaning a methodology like

ours is needed to address this possibility when making inferences about either near-term or

long-term expected returns.

The investment, profitability, and size portfolios each show different patterns across sub-

samples. The investment portfolio’s returns are largely consistent over time and statistically

significant in both halves of the sample. The profitability portfolio follows the opposite pat-

tern as the value portfolio, performing worse in the first half of the sample than the second,

though again the difference is statistically insignificant. The size portfolio has small and

statistically insignificant returns in both halves of the sample.11

2.3. Autocorrelation Estimates

As discussed in the Introduction, a number of recent studies document short-term au-

tocorrelation in characteristic-sorted portfolio returns, or more generally analyze portfolio

timing strategies that are inherently based on time-variation in expected returns. Before

we estimate our model we present similar reduced form analyses for the four characteristic

sorted portfolios that we analyze.

Estimates of the autocorrelation structure for individual portfolios are inherently impre-

cise because realized returns are much more volatile than plausible variations in expected

returns. Furthermore, autocorrelation estimates have a well-document downward bias in

small samples (Kendall, 1954; Marriott and Pope, 1954). To illustrate these difficulties, we

11We use value-weighted portfolios on both the long and short side, a construction which never produced
a positive size effect.
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first present autocorrelation estimates we generate in simulated samples from our model

under a variety of assumptions about H and γ. In these simulations, we fix the model

parameters and generate 50,000 samples with 226 observations, the number of quarters in

our sample.12 For each simulated return series, we estimate return autocorrelations using

regressions of quarterly returns on averages of recent past returns:

rt = a+ bL

(
1

L

L∑
l=1

rt−l

)
+ εt, (11)

where L is the number of past quarters that we average.

Panel A of Table 2 presents average values, as well as 95% confidence intervals, for the

autocorrelation coefficient b̂ across samples that are simulated under a variety of plausible

parametric assumptions. Specifically, we include shocks with half-lives, H, that are 2.5,

5, and 10 years, and first-order autocorrelations, γ, that equal 2.5%, 5%, and 10%. For

each parameterization, we also report the standard deviation of annualized Sharpe ratios

conditional on past returns, σ(Cond. Sharpe), that is implied by that parameterization.

These values indicate that even seemingly small values for γ (2.5% or 5%) can generate

economically meaningful – though plausible – variations in conditional Sharpe ratios.

The first row of Panel A in Table 2 reports the coefficient estimates when H = 0 and

thus returns are distributed i.i.d. Despite this, the average autocorrelation coefficients are

negative due to the aforementioned downward bias. The reason for this bias is that we are

estimating both the mean and autocorrelation of rt. Because the estimate of the mean is

always the in-sample average, the data will appear to mean-revert to this average even when

there is no true mean reversion. The bias is stronger the longer the past return window

because there is a smaller effective sample size. To take an extreme example, if we divide the

12The remaining model parameters we use for the simulations are µ = 0 and σr = 6.89%, the full-sample
standard deviation for the value portfolio. These choices have no effect on our results as autocorrelation
estimates with intercepts are invariant to linear transformations of rt.
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sample in two, one half will appear above-average and the other below-average, suggesting

mean reversion, in every random sample.

The other rows in Panel A of Table 2 show the autocorrelation estimates that obtain

when expected returns exhibit persistent variation, i.e., H > 0 and γ > 0. Two observations

emerge from the reported estimates. First, the downward bias continues to affect autocorrela-

tion estimates even when expected returns are persistent, especially with longer past return

windows. Second, and more importantly, the confidence intervals for the autocorrelation

estimates are quite wide and include negative values in every parameterization.

Panel B of Table 2 presents estimates of Equation (11) for the historical samples of the

quarterly returns of the value, investment, profitability, and size portfolios. The first column

shows that all four portfolios have positive b4, indicating that past-year returns positively

predict next-quarter returns. The second and third columns show that longer past-return

windows have point estimates with varying signs.

We do not report standard errors or bias corrections in Panel B of Table 2 because Panel

A shows that both depend heavily on the magnitude and persistence of the variations in

expected returns. In most cases, the confidence intervals for different parameterizations in

Panel A include all of the point estimates in Panel B, which means that one cannot reject

any of the posited autocorrelation structures. Even economically large coefficients, such as

b̂40 = −0.73 for the investment portfolio, lie in the 95% confidence interval for everything

from the i.i.d. parameterization to H = 10 and γ = 5%.

For three out of the four characteristic-sorted portfolios the autocorrelation estimates do

not reject any reasonable parameterization of our model. The size portfolio is the exception;

one can convincingly reject the i.i.d. null at the one-year lag. In addition, the i.i.d. null

hypothesis is rejected for one-year and ten-year returns with p-values of 0.0% and 4.7%,

respectively, in a pooled regression that combines the returns of the four portfolios.13 In a

13We conduct this test by estimating bL in a pooled panel regression with portfolio fixed effects, and
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pooled regression with only value, investment, and profitability, we reject the i.i.d null at one

and ten year lags with p values of 0.1% and 15.2%, respectively. The reason we can jointly

but not individually reject this null is that the coefficients for all four portfolios tend to be

above the i.i.d. benchmark, but just not enough to reject on an individual basis.

3. OLS, GLS, and Maximum Likelihood Estimations

As the previous section shows, the autocorrelation patterns observed in the historical returns

of characteristic-sorted portfolios are consistent with a range of different assumptions about

the magnitude of persistent variation in conditional expected returns. In this section, we

formally analyze the impact of such variation on the estimates of unconditional expected

returns using OLS and GLS regressions and maximum likelihood estimations.

3.1. OLS and GLS Standard Error Corrections

We start by estimating unconditional expected returns µ and their accompanying stan-

dard errors using OLS regressions of the observed returns series rt on a constant. The OLS

estimate µ̂OLS is a consistent estimator of µ, even when conditional expected return vary as

in our model. The correct standard errors for µ̂OLS depend on the covariance matrix of the

residuals ψt = rt − µ.14

The typical approaches to adjust standard errors are the White (1980) correction for po-

tential heteroskedasticity and Newey and West (1987), which corrects for both heteroskedas-

ticity and autocorrelation up to a small number of lags. When expected returns are time-

varying and persistent, both of the standard approaches produce understated standard errors.

The reason is that persistent variations in expected returns generate small but long-lasting

comparing our estimate in observed data to the distribution of estimates in samples simulated by re-sampling
observed months with replacement, retaining any cross-sectional relations among the portfolios.

14We use ‘correct standard errors’ as an informal shorthand for the correct specification of the asymptotic
distribution of µ̂.
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correlations in ψt that extend beyond the windows considered by Newey and West (1987).

Formally, our model generates the residuals

ψt = µt−1 − µ+ εt, (12)

which implies that ψt have long-lasting autocorrelations due to persistent variations in µt.

As we show using simulations in Section 3.2, even if we extend the number of lags in Newey

and West (1987) to match or exceed the half-lives of shocks to expected returns, standard

errors remain under-estimated because the lags are too large a fraction of the observed data

for the asymptotic results in Newey and West (1987) to hold.

If we know the values of H and γ, we can correct OLS standard errors for the result-

ing autocorrelation in ψt using the structure of our model. When residuals have a known

covariance matrix Σ, the asymptotic variance of µ̂OLS is:

T 2Var(µ̂OLS) = 1′Σ1, (13)

where 1 is a T × 1 vector of ones (see Section 4.5 of Cameron and Trivedi (2005)). In our

model, Σ is fully specified by H and γ, as shown in Equation (4).

We also estimate µ in a GLS regression, which uses the covariance matrix Σ implied by H

and γ to adjust both the standard error and the point estimate µ̂. While the OLS estimates

are based on an equally-weighted average of the returns in the sample, the GLS estimates

utilize an average weighted by the amount of orthogonal information each observation con-

tains about the unconditional expected return. When conditional expected returns exhibit

persistent variations, the observations in the middle of the sample are somewhat redundant

because they ‘over-sample’ the same epoch of conditional expected returns. As illustrated

by the first panel of Figure 1, GLS therefore overweights observations at the beginning and

end of the sample. This effect is larger for higher H, and reverses when γ is negative.
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3.2. OLS and GLS Estimation Results

Table 3 shows how different assumptions about the parameters H and γ affect OLS and

GLS point estimates and standard errors for unconditional expected returns µ. As a point

of comparison, we also provide the Newey-West standard errors calculated with lags equal

to the half-life H (expressed as the number of quarters). Across all four portfolios, Newey-

West standard errors increase little or not at all with H. Model-implied standard errors, by

contrast, more than double when H = 5 years and γ = 5% – a scenario that Table 2 shows

we cannot reject for any of these portfolios.15 With this autocorrelation structure, we no

longer reject the null that µ = 0 at the 5% level for any of the four portfolios.16

The GLS correction to µ̂ discussed above has minimal impact on the point estimates for

the profitability portfolio, but noticeably decreases point estimates for value, investment, and

size. The reason for this decrease is that the latter three portfolios had unusually low returns

at the beginning and/or ends of the sample, which GLS infers as being more independent

from the observations in the middle.

The overall takeaway from Table 3 is that accounting for plausible degrees of persistent

variation in conditional expected returns results in substantially higher standard errors for

the estimates of unconditional expected returns. Thus, the standard assumption in the lit-

erature of i.i.d. returns tends to overstate the precision with which the expected returns of

characteristic-sorted portfolios are estimated.

15The only exception is that the size portfolio has a higher b4 than predicted by this scenario, meaning it
is even more persistent and standard errors for µ̂ should be even larger.

16In untabulated results, we simulate the small-sample distribution of average returns using our model
for each H and γ. We find that the asymptotic model-implied standard errors are almost identical to their
small-sample counterparts, meaning that in this setting the bias in Newey and West (1987) is due to the
mis-specification of autocorrelation rather than sample size.
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3.3. Maximum Likelihood Tests

Our next set of tests use maximum likelihood estimates of our statistical model. Unlike

the least squares regressions in the previous subsections, maximum likelihood estimation

requires distributional assumptions, but allows us to estimate all of the model parameters,

including those that govern the persistent variation of returns.

3.3.1. Tests for µ = 0

We test the null hypothesis that the unconditional expected return µ equals zero under a

variety of assumptions about the structure of time-variations in conditional expected returns.

For each assumption, we estimate the model using maximum likelihood twice, first with no

constraints on µ and then restricting µ = 0. In both cases we restrict H to be less than

or equal to 20 years because µ is not identified when H approaches infinity. Using these

estimates, we compute the p-value for the µ = 0 null using a likelihood ratio test.

The first set of columns in Panel A of Table 4 test whether µ = 0 assuming no time

variation in expected returns (i.e. H = 0 so returns are i.i.d.). Testing µ = 0 under

this assumption is analogous to using OLS with no standard error correction, and so the

likelihood-ratio p-values are quite low for value, investment, and profitability.

The next set of columns in Panel A of Table 4 relax the i.i.d. assumption and estimate

the values of H and γ that maximize the likelihood of observing the historical data.17 We

find that the p-value for the hypothesis that µ = 0 increases for all three portfolios once we

allow for the possibility of time-varying means. As the panel shows, when µ is restricted to

be zero, the model fits the data by using larger values of H combined with positive values of

γ. This combination explains the observed past returns as arising from positive realizations

17As discussed in Section 1, we estimate the parameters summarizing the covariance matrix of returns
θ = [µ,H, σr, γ] directly rather than the underlying parameters Ω = [µ, λ, σε, σδ, ρ, ] because the later are
not fully identified. We restrict our estimates of θ to the range for which there exists at least one possible Ω
yielding the same covariance matrix of returns.
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of persistent expected returns that eventually dissipate. Because such persistent variation

is difficult to reject empirically, it offers a plausible alternative to large µ, increasing the

p-values for rejecting the µ = 0 hypothesis above 5% in all cases.

3.3.2. Restrictions on H and γ

Next, we use maximum likelihood estimates to assess the plausibility of the various

assumptions about H and γ that we made in our linear regression analyses in Section 3. For

each assumption, we re-estimate the model by restricting H and γ to their assumed values,

and use likelihood ratios relative to the unrestricted model to test whether we can reject the

restriction. We also use likelihood ratios to test whether we can reject the hypothesis that

µ = 0 given the restrictions on H and γ.

Panel B of Table 4 presents the results. For value, investment, and profitability, the

likelihood ratio tests cannot reject any of the restrictions on the structure of time-variation

in expected returns, including the IID hypothesis and the possibility of extremely-persistent

and economically large shocks (H = 10 years, γ = 5%). Consistent with the evidence in

Table 3, Panel B of Table 4 also shows that these alternatives have material affects on our

inferences about µ = 0, with p-values for µ = 0 going from below 2% in the i.i.d. case to

above 10% in some specifications for all three characteristic-sorted portfolios.

While the results for value, investment, and profitability suggest that the data offer very

little guidance about the magnitude of persistent variations in expected returns, the results

for the size portfolio show that this is not always the case. For size, as the reduced-form

evidence in Table 2 suggests, there is strong autocorrelation in returns with a half life between

one and two years. As a result, Panel B of Table 4 shows the maximum likelihood estimator

strongly rejects both the i.i.d. restriction and the restriction that H = 10. This contrast

shows it is not always true that ‘anything goes’ when our model is applied to data, but

instead that the returns for value, investment, and profitability are particularly inconclusive.
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4. Bayesian Analysis

The analysis in the previous section shows that the historical data are consistent with a

variety of substantially different return generating processes. A natural next step is to ask

how investors with different prior views about these alternatives interpret the historical data

in making their investment decisions. We examine this normative question in this section.

Specifically, we pursue a Bayesian analysis that specifies prior likelihoods of different model

parameterizations and uses the observed data to calculate posterior likelihoods. We also

compute posteriors for moments that are likely to affect investors’ portfolio decisions, such

as the near-term and long-term Sharpe ratios for each portfolio.

4.1. Prior Beliefs

We specify prior beliefs over a transformation of the parameters that is focused on Sharpe

ratios rather than expected returns because Sharpe ratios have a clearer connection to asset

pricing theory and economic intuition.18 Specifically, we specify priors over µsr, the un-

conditional Sharpe ratio of portfolio returns; H, the half-life of shocks to expected returns;

σr, the unconditional standard deviation of portfolio returns; σsr, the standard deviation

of conditional Sharpe ratios; and ρ, the correlation between unexpected returns shocks to

expected returns. We tabulate µsr, H, σr, and σsr in annualized units.

These parameters map into the underlying model parameters Ω as follows:

µsr =
µ

σε
, H =

log(0.5)

log(λ)
N, σ2

r =
λ2σ2

δ

1− λ2
+ σ2

ε ,

σ2
sr =

λ2σ2
δ/(1− λ2)
σ2
ε

, ρ = ρ.

18Another advantage of this transformation is that the same Sharpe ratio priors can be applied across
all characteristic-sorted portfolios and regardless of the amount of financial leverage applied to a portfolio
investment.
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We consider a variety of priors on µsr and H, summarized in Panel A of Table 5. For

µsr, we first consider normal prior distributions centered at -0.4, 0, and 0.4, all with a

standard deviation of 0.25. These priors can be interpreted as beliefs that the portfolio has

unconditional Sharpe ratios that are likely to be negative, likely to be near-zero, or likely to

be positive.19 For the value portfolio, these three analysts can be viewed as having growth,

neutral, or value inclinations. We also examine an uninformative prior where any µsr between

-2 and 2 is equally likely.20

To illustrate the effect that prior beliefs about H have on Bayesian inferences about

expected returns, we consider three dogmatic priors and one agnostic prior. The dogmatic

priors assert that H = 0 (making returns i.i.d.), H = 2.5 years, or H = 5 years with certainty.

The agnostic prior, by contrast, views H as unknown and uniformly distributed between 0

and 10 years.

We consider uniform priors over wide ranges for the remaining parameters. The prior for

the volatility of annual returns, σr, is uniformly distributed between 10% and 20%.21 The

prior for the standard deviation of conditional Sharpe ratios, σsr, is uniformly distributed

between 0 to 1.22 The correlation between unexpected returns and shocks to expected

returns, ρ, is likely to be negative given the inverse relation between prices and expected

returns. In contrast to market returns, however, characteristic-sorted portfolio returns should

be driven primarily by cash-flow news rather than discount rate news. Based on these

observations, we specify the prior on ρ to be uniformly distributed in the interval [−0.5, 0].

19We use ±0.4 as the center for our Sharpe ratio distributions to roughly match the US equity market’s
estimated Sharpe ratio.

20Uniform distributions over wider supports give nearly-identical results because the data strongly reject
unconditional Sharpe ratios above 2 or below -2 for for the portfolios we study when H is less than 10 years.

21This is the only prior that would need to shift as the leverage applied to a portfolio changes.
22In the most extreme case, this implies that conditional Sharpe ratios occasionally deviate from their

unconditional means by as much as 2. While this extreme case is implausible given active asset management
chasing and reducing large Sharpe ratio opportunities, as we emphasize below the true conditional Sharpe
ratio may not be observable, and Sharpe ratios that are achievable by conditioning only on past returns will
be much less extreme.
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To provide further intuition for the set of priors we study, Panel B of Table 5 presents

the distribution of economically-intuitive moments implied by the priors specified in Panel

A. We calculate these moments by simulating 50,000 draws from each prior and calculating

the value of each moment implied by each parameter draw. The first set of columns shows

that µ, the unconditional expected return, has a prior mean that is about −5.3%, zero, or

5.3%, depending on the prior specification. The middle set of columns show that the prior

mean values of one-lag return autocorrelation, γ, are positive in all cases, indicating that

the positive effect due to persistence of expected returns outweighs the negative effect due

to ρ < 0, though the 95% confidence intervals do include negative values.

The parameter σsr governs the volatility of the true conditional Sharpe ratio of returns,

which is not observable to econometricians and may not be perfectly observable to investors

in practice. If investors instead have to use past returns, combined with beliefs about model

parameters, to forecast future returns, the relevant economic magnitude is the volatility of

Sharpe ratios conditional on past returns. We compute this volatility in the steady state,

conditioning on an infinite history of past returns to forecast next-period returns. These

forecasts remain imperfect in the steady state because the current µt is unobservable and

can only by imperfectly filtered from past return observations.

The last set of columns in Panel B in Table 5 show that these conditional Sharpe ratios can

vary substantially as the priors about H increase and allow for more persistence in returns.

However, despite the relatively wide range of priors for σsr, the ability to predict portfolio

returns using past returns is somewhat limited, with the prior mean of σ(Cond. Sharpe)

around half the prior mean of σsr.

4.2. Posteriors for Unconditional Expected Returns and Sharpe Ratios

We estimate the posterior distribution for each of 16 priors (four for H and µsr each)

and each of four characteristic-based portfolios, making 64 prior-data pairs. We generate
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50,000 posterior draws for each prior-data pair using the algorithm detailed in Appendix B.

We compute the posterior for the full parameter vector Ω. However, as discussed above,

we cannot separately identify all five parameters in Ω in our frequentist estimations, which

manifests in extremely wide posteriors for ρ and σδ in the Bayesian analysis. For each

posterior we therefore compute the four identified components of θ, namely µ, σr, H, and γ.

Also, instead of γ, we present σ(Cond. Sharpe), which is easier to interpret.

Tables 6 through 9 and Figures 2 through 5 report the results for each of the four

characteristic-sorted portfolios. As these results show, different priors result in substantially

different inferences about unconditional expected returns µ and Sharpe Ratios µsr. For

instance, Bayesian analysts’ posteriors for µ and µsr are wider as their priors for H increase,

making the possibility of zero or negative µ much more likely. The intuition is the same

as for the frequentist analysis above: the data do not strongly reject the possibility that

unconditional expected returns are zero or negative and that the historical performance is

explained by persistent but dissipating positive shocks to conditional expected returns.

The Bayesian analysis also produces an insight that is distinct from the frequentist anal-

ysis: the extent to which priors about µsr affect posteriors about µ and µsr depends on the

analyst’s prior about H. Bayesian analysts who believe H = 0 largely agree about µ and

µsr despite large differences in priors. On the other hand, Bayesian analysts whose priors

are that H is, or might be, large have substantial differences in their posterior beliefs about

µ and µsr despite observing 56 years of data. For example, means of posteriors about the

value portfolio’s µsr are clustered between 0.25 and 0.32 for the H = 0 prior, but vary from

0.14 to 0.30 for the H ∼ U(0, 10) prior.

The reason priors about H matter for posteriors about µ is that Bayesian analysts ‘shrink’

observed in-sample averages towards the mean of their prior, and the extent of this adjust-

ment depends on H. If the analyst believes H equals zero and thus returns are i.i.d., the

data are more informative about unconditional expected returns and thus the posterior hews
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closer to the in-sample average. If the analyst believes H is or may be larger than zero, the

data are less informative and so the posterior depends more on their prior. As a result, the

posterior Sharpe ratios vary more across priors for µsr (rows in Figures 2 through 5) when

priors for H are larger.

Tables 6 through 9 also show that the posterior distributions for H and σ(Cond. Sharpe)

differ very little from the corresponding prior distributions for the value, investment, and

profitability portfolios, which is consistent with the evidence in Tables 2 and 4 that the data

offer little guidance on the autocorrelation structure for these portfolios. The size portfolio,

by contrast, has posterior distributions for H that are farther from zero than the prior and

have means below the prior mean of five years, indicating the data push Bayesian analysts

towards lower H.23 Furthermore, the mean posterior σ(Cond. Sharpe) is much higher for

size than the other portfolios, and unlike the other portfolios its confidence interval excludes

zero, meaning the evidence tilts in favor of positive autocorrelation. Still, posteriors for the

size portfolio’s H and σ(Cond. Sharpe) are quite wide, leaving room for many potential

interpretations of the data.

Just as priors about H affect posteriors about µsr, priors about µsr also affect posteri-

ors about H. Analysts with bearish priors on µsr are more amenable to interpreting the

observed positive Sharpe ratios as arising from extremely persistent (high H) variations in

conditional Sharpe Ratios, leading them to tilt their H posteriors higher than analysts with

positive priors on µsr that are more comfortable with large unconditional Sharpe Ratios

explaining the observed data. Tables 6 and 9 show this is indeed the case: for the portfolios

with substantial average returns in our sample (value, investment, and profitability), poste-

riors about H have higher means for analysts with bearish priors about µsr. This effect is

small quantitatively, however, because there is so little power in measuring H.

23The prior for H is uniformly distributed between 0 and 10, meaning the 95% confidence interval is
[0.25, 9.75].
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4.3. Posteriors for Conditional Sharpe Ratios

In addition to forming inferences about unconditional expected returns and Sharpe ratios,

the Bayesian analysis of our model allows us to compute posterior distributions of conditional

Sharpe ratios through each period in our historical sample. These conditional Sharpe ratio

distributions are computed using the posterior distributions for model parameters based

on the full sample of data, and conditioning on the full sample of returns.24 Figure 6

plots the time-series of posterior means for the four characteristic-sorted portfolios for the

‘agnostic’ prior specification with µsr ∼ U(−2, 2) and H ∼ U(0, 10). As the figure shows, the

variations in conditional Sharpe ratios are economically substantial but plausible, generally

varying between 0 and 0.8 on an annualized basis. The exception is size, which, despite

having estimates of unconditional Sharpe ratios near zero, has conditional Sharpe ratios

varying from -0.75 to above one. These fluctuations arise due to a combination of the large

variations in rolling average returns presented in Figure ?? and the posterior beliefs tilted

towards strong persistence in Table 9.

Finally, we compute posterior distributions of forward-looking conditional Sharpe ratios

for the quarter immediately following the end of our sample period (Q1 of 2020). These pos-

teriors differ from the unconditional posteriors because they use nearby trends in portfolio

returns to extrapolate to future performance. When γ > 0, the extrapolation is positive,

meaning that near-term expected returns are higher (lower) than long-term expected returns

when recent returns are higher (lower) than the full-sample average. When γ < 0, the ex-

trapolation is negative, meaning near-term expectations reverse the recent trends. Figure

1 illustrate these patterns by plotting influence functions, defined as the impact each ob-

24Note that even with the full sample of data we do not observe conditional expected returns in each
period and instead need to estimate them using realized returns and model parameters. These results should
be interpreted as a measure of full-sample economic significance (such as an R2) rather than feasible Sharpe
ratios that inform real-time trading strategies.
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servation has on the posterior belief about conditional expected returns in 2020 for a few

pararametrizations. The Bayesian posteriors integrate these influence functions across the

posterior distribution of parameters.

Panel B of Figures 2 through 5 present the mean and 95% confidence intervals for pos-

terior beliefs about the 2020 conditional Sharpe ratios of each portfolio. As the first rows

shows, conditional and unconditional Sharpe ratios are the same when H = 0. When

H > 0, however, both value and investment have smaller conditional Sharpe ratios than

unconditional. 25 For the value portfolio, which had particularly poor recent performance

as discussed above, the pessimistic or neutral Bayesian analysts believes conditional Sharpe

ratios in 2020 are centered near zero and could even be quite negative.

Because the profitability portfolio performed better in recent years than earlier in the

sample, we find the opposite effect in Figure 4: posteriors about 2020 Sharpe ratios are

higher than posteriors about the unconditional Sharpe ratio. As with the bearish view of

value and investment, the bullish view for profitability is stronger for larger values of H than

smaller ones.

5. Conclusion

Time-variation in expected returns is an overlooked but important source of uncertainty

about the long-term performance of characteristic-based portfolios. The uncertainty is both

direct – the data offer little guidance on the magnitude and persistence of expected return

shocks – and indirect – the fact that there may be persistent variations in conditional ex-

pected returns causes the data to be much less informative about unconditional expected

returns. Because the data are less informative, analysts with different priors can have sub-

stantially different posterior views despite observing more than five decades of return data.

25These effects are stronger for the 2020 forecasts than they are for longer-horizon forecasts because the
model predicts that the temporary conditional expected returns that prevail today will mean revert over
time.
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Our results have implications for practitioners and academics interested in characteristic-

sorted portfolios. Financial institutions now offer a multitude of relatively passive investment

products, such as ETFs and mutual funds, that aim to exploit the long-term links between

returns and characteristics that have been identified in academic research. At the same

time, there exist active hedge funds that attempt to time the variations in characteristic

return premia that are described in the more recent literature. Our Bayesian analysis offers

guidance for both groups as to how much they should use recent performance to guide their

decisions, as well as the near- and medium-term performance outlooks for these portfolios.

Overlooking the uncertainty caused by time-variation in expected returns could also

offer a partial explanation for the ever-increasing number of characteristics or factors that

predict returns (McLean and Pontiff (2016), Harvey, Liu, and Zhu (2016)). The ease with

which finance research uncovers such anomalies raises doubts about whether the documented

return patterns point to genuinely long-term return premia. We offer a potential alternative

explanation: historical returns are often driven by economic or behavioral conditions that

may persist for decades but not indefinitely.
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Appendix A. Autocorrelations in Monthly Returns

As described in Section 2.1, we analyze a sample of quarterly returns for characteristic-
based portfolios rather than the monthly returns typically studied in the literature. We do
so because monthly returns exhibit strong first-order autocorrelations that may be caused
by lead-lag effects, under-reaction, or some other transitory source of persistence. While
an interesting topic on its own, this form of autocorrelation is not the topic of this paper,
namely slow-moving but persistent variations in expected returns. These two phenomenon
are likely to co-exist, and so to avoid biasing our estimates towards large but quickly-reverting
variations, we use quarterly rather than monthly data.

Appendix Figure 1 illustrates the magnitude of the autocorrelations at monthly lags l = 1
through l = 60 for the four portfolios we study, as well as the autocorrelations estimated in
a pooled regression including all four portfolios. The first-order autocorrelation is the single
largest coefficient for any of the 60 months for value, investment, and profitability, as well
as in pooled regressions. Quarterly data does not exhibit a strong first-order autocorrelation
(see Table 2) because the two- and three-month autocorrelation in Appendix Figure 1 are
much smaller and statistically insignificant.

Appendix B. Sampling Bayesian Posteriors

We draw samples of N = 50, 000 observations from the posterior distribution of model
parameters Ωpost using the following procedure:

1. Draw N observations Ωprior
i , i ∈ [1, N ] from the prior distribution.

2. Accept Ωprior
1 as the first observation of the posterior distribution Ωposterior

1 .

3. For observations i = 2 . . . N :

(a) Evaluate the conditional likelihood of the data D given the ith draw from the
prior parameters as well as the i− 1st draw from the posterior parameters:

Lpropose = L(D|Ω = Ωprior
i ), (14)

Lprevious = L(D|Ω = Ωposterior
i−1 ). (15)

(b) If Lpropose ≥ Lprevious, accept Ωposterior
i = Ωprior

i .

(c) If Lpropose ≤ Lprevious, accept Ωposterior
i = Ωprior

i with probability Lpropose
Lprevious , and oth-

erwise retain Ωposterior
i = Ωprior

i−1 .
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Appendix Figure 1: Monthly Autocorrelograms

This figure presents autocorrelations of monthly returns for value, investment, profitability, and size port-
folios, as defined in the header of Table 1, as well the autocorrelation estimated in a pooled regression
containing all four portfolios. We estimate the autocorrelation for each lag l independently. The horizontal
lines represent the 95% confidence interval for autocorrelation coefficients under the zero-autocorrelation null
hypothesis. Our sample consists of 678 monthly observations from Q3 1963 through Q4 2019.

Panel A: Value

Panel B: Investment
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Appendix Figure 1: Monthly Autocorrelograms (continued)

Panel C: Profitability

Panel D: Size

Panel E: Pooled
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Pástor, L’uboš and Robert F Stambaugh, 2009, Predictive systems: Living with imperfect
predictors, The Journal of Finance 64, 1583–1628.
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Figure 1: GLS Influence Functions and Return Autocorrelations

This figure presents the weights GLS uses when calculating unconditional (Panel A) and conditional end-of-
sample (Panel B) average returns under a variety of assumptions about the correlation matrix of returns. H
represents the half life of shocks to expected returns, in years. γ is the first-order autocorrelation of returns
driven by persistence shocks to expected returns and correlations between realized returns and shocks to
expected returns.
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Figure 2: Posterior Sharpe Ratios for Value Portfolio

This figure presents posterior beliefs for the Sharpe Ratios of a portfolio formed by sorting stocks on value,
as defined in the header of Table 1. Panel A presents beliefs about the unconditional Sharpe Ratio, Panels
B and C about the conditional Sharpe Ratios in Q1 of 2020 and Q4 of 2029, respectively. Each panel shows
posteriors for twelve possible priors, combining three possible priors for the unconditional Sharpe Ratio, µsr,
with four possible priors for the half-life of shocks to conditional Sharpe Ratio, H. All Sharpe Ratios and
H are annualized. Our sample consists of 226 quarterly observations from Q3 1963 through Q4 2019.

Panel A: Unconditional Sharpe Ratio

Panel B: Sharpe Ratio for 2020 Conditional on 1963–2019 Returns
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Figure 3: Posterior Sharpe Ratios for Investment Portfolio

This figure presents posterior beliefs for the Sharpe Ratios of a portfolio formed by sorting stocks on invest-
ment, as defined in the header of Table 1. Panel A presents beliefs about the unconditional Sharpe Ratio,
Panels B and C about the conditional Sharpe Ratios in Q1 of 2020 and Q4 of 2029, respectively. Each panel
shows posteriors for twelve possible priors, combining three possible priors for the unconditional Sharpe
Ratio, µsr, with four possible priors for the half-life of shocks to conditional Sharpe Ratio, H. All Sharpe
Ratios and H are annualized. Our sample consists of 226 quarterly observations from Q3 1963 through Q4
2019.

Panel A: Unconditional Sharpe Ratio

Panel B: Sharpe Ratio for 2020 Conditional on 1963–2019 Returns
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Figure 4: Posterior Sharpe Ratios for Profitability Portfolio

This figure presents posterior beliefs for the Sharpe Ratios of a portfolio formed by sorting stocks on prof-
itability, as defined in the header of Table 1. Panel A presents beliefs about the unconditional Sharpe Ratio,
Panels B and C about the conditional Sharpe Ratios in Q1 of 2020 and Q4 of 2029, respectively. Each panel
shows posteriors for twelve possible priors, combining three possible priors for the unconditional Sharpe
Ratio, µsr, with four possible priors for the half-life of shocks to conditional Sharpe Ratio, H. All Sharpe
Ratios and H are annualized. Our sample consists of 226 quarterly observations from Q3 1963 through Q4
2019.

Panel A: Unconditional Sharpe Ratio

Panel B: Sharpe Ratio for 2020 Conditional on 1963–2019 Returns
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Figure 5: Posterior Sharpe Ratios for Size Portfolio

This figure presents posterior beliefs for the Sharpe Ratios of a portfolio formed by sorting stocks on size,
as defined in the header of Table 1. Panel A presents beliefs about the unconditional Sharpe Ratio, Panels
B and C about the conditional Sharpe Ratios in Q1 of 2020 and Q4 of 2029, respectively. Each panel shows
posteriors for twelve possible priors, combining three possible priors for the unconditional Sharpe Ratio, µsr,
with four possible priors for the half-life of shocks to conditional Sharpe Ratio, H. All Sharpe Ratios and
H are annualized. Our sample consists of 226 quarterly observations from Q3 1963 through Q4 2019.

Panel A: Unconditional Sharpe Ratio

Panel B: Sharpe Ratio for 2020 Conditional on 1963–2019 Returns
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Figure 6: Posteriors on Conditional Sharpe Ratios Across Time

This figure presents posterior beliefs for Sharpe Ratios of value, investment, profitability, and size portfolios,
as defined in the header of Table 1. Posterior distributions are formed using the prior that µsr ∼ N(0, 0.4)
and H ∼ U(0, 10)) and the full sample of data. For each possible parameterization, we compute the expected
value of conditional expected returns in each quarter of the sample using the full sample of realized returns.
We then plot the average of this quantity across posterior draws for the value portfolio in Panel A, investment
in Panel B, profitability in Panel C, and size in Panel D. Our sample consists of 226 quarterly observations
from Q3 1963 through Q4 2019.

Panel A: Value

Panel B: Investment
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Figure 6: Posteriors on Conditional Sharpe Ratios Across Time (Continued)

Panel C: Profitability

Panel D: Size
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Table 1: Historical Performance of Characteristic-Sorted Portfolios

This table presents statistics summarizing the historical performance of value-weighted quintile portfolios
formed on value, investment, profitability, and size characteristics. The value portfolio is based on sorting
firms by their book-to-market ratios, the investment portfolio on sorting by the annual growth rate of total
assets, the profitability portfolio on sorting by operating profits divided by book equity, and the size portfolio
on sorting by market capitalization, as in Fama and French (2015). The investment portfolio is long firms in
the lowest quintile and short firms in the highest quintile, while the other three portfolios are long the highest
quintile and short the lowest. For each portfolio, we compute market-neutral returns by hedging out market
risk using the full-sample market β. We present the mean annualized quarterly return and annualized Sharpe
ratio in the full sample, two subsamples, and for the difference between the subsamples. Standard errors
based on iid re-sampling of the calendar quarters in our sample are in parenthesis. Our sample consists of
226 quarterly observations from Q3 1963 through Q4 2019.

Mean (annualized %) Sharpe Ratio (annualized)
All 1963–1991 1992–2019 Diff All 1964–1990 1991–2019 Diff

Value 4.37 5.52 3.21 -2.30 0.32 0.42 0.22 -0.20
(1.83) (2.57) (2.61) (3.68) (0.13) (0.19) (0.19) (0.27)

Investment 4.72 4.25 5.20 0.95 0.44 0.44 0.45 0.02
(1.41) (1.99) (2.01) (2.84) (0.13) (0.19) (0.19) (0.27)

Profitability 4.91 3.51 6.33 2.82 0.47 0.36 0.57 0.20
(1.40) (1.98) (1.97) (2.79) (0.13) (0.19) (0.19) (0.27)

Size 0.35 1.66 -0.99 -2.66 0.02 0.10 -0.07 -0.17
(2.02) (2.82) (2.87) (4.02) (0.14) (0.19) (0.19) (0.27)
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Table 2: Autocorrelations of Characteristic-Sorted Portfolios

This table presents statistics summarizing the autocorrelation of value, investment, profitability, and size
portfolios, as defined in the header of Table 1. For each characteristic-sorted portfolio, we run overlapping
time-series regressions of quarterly returns rt on a constant and rolling averages of past quarterly returns
from months t− L through t− 1:

rt = a+ bL

(
1

L

L∑
l=1

rt−l

)
+ εt, (16)

Panel A presents average coefficients bL in 226-quarter samples simulated under various parameterizations of
the model. The parameter γ is the first-order autocorrelation of returns implied by each parameterization,
and H is the half-life of shocks to expected returns (in years). Panel B show estimates for the market-neutral
portfolios. Standard errors based on iid re-sampling of the calendar months in our sample are in parenthesis.
The joint significance row presents the fraction of simulations for which the sum of the b̂ across the four
portfolios exceeds the sum in observed data. Our sample consists of 226 quarterly observations from Q3
1963 through Q4 2019.

Panel A: Model Simulations

Parameterization Avg. Coefficients [95% Conf. Interval]

H γ σ(Cond. Sharpe) b4 b20 b40

IID 0.00 -0.03 -0.20 -0.49
[-0.32,0.22] [-1.08,0.38] [-2.14,0.45]

2.5 2.5% 0.12 0.04 0.01 -0.21
[-0.24,0.30] [-0.79,0.53] [-1.65,0.61]

2.5 5% 0.22 0.11 0.13 -0.05
[-0.19,0.36] [-0.62,0.61] [-1.38,0.69]

2.5 10% 0.38 0.22 0.30 0.12
[-0.08,0.48] [-0.36,0.71] [-1.02,0.78]

5 2.5% 0.15 0.04 0.02 -0.15
[-0.25,0.29] [-0.79,0.56] [-1.61,0.66]

5 5% 0.26 0.10 0.17 0.03
[-0.20,0.00] [-0.61,0.37] [-1.31,0.66]

10 2.5% 0.12 0.09 0.02 -0.00
[0.00,0.00] [-0.27,0.28] [-0.86,0.56]

10 5% 0.20 0.15 0.07 0.14
[0.00,0.00] [-0.23,0.35] [-0.68,0.67]

Panel B: Estimates for historical data

b4 b20 b40

Value 0.19 0.05 0.24
Investment 0.21 -0.29 -0.73
Profitability 0.21 -0.24 0.16
Size 0.47 0.20 0.34

Pooled 0.30 0.06 0.18
iid p-value 0.0% 24.5% 4.7%

Pooled (without size) 0.20 -0.13 -0.01
iid p-value 0.1% 45.1% 15.2%
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Table 3: OLS and GLS with Time-Varying Expected Returns

This table presents estimates of unconditional expected returns of value, investment, profitability, and size
portfolios, as defined in the header of Table 1, under a variety of assumptions about the magnitude and
persistence of variations in conditional expected returns. The model-implied autocorrelation structure of
returns are summarized by H, the half-life of shocks to expected returns (in years), and γ, the first-order
autocorrelation of realized returns. We estimate unconditional expected returns using both OLS and GLS.
We calculate standard errors using Newey and West (1987) and the model-implied correlation matrix of the
regression error terms. Our sample consists of 226 quarterly observations from Q3 1963 through Q4 2019.

Panel A: Value

H (years) 0 2.5 5 10

γ (%) 0 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37
Newey-West (1.83) (1.86) (1.86) (1.86) (1.86) (1.86) (1.81) (1.81)
Model (1.83) (2.39) (2.84) (3.57) (2.77) (3.46) (3.27) (4.24)

GLS µ̂ (%) 4.37 4.19 4.07 3.92 3.99 3.78 3.79 3.45
Model (1.83) (2.39) (2.83) (3.55) (2.75) (3.42) (3.24) (4.17)

Panel B: Investment

H (years) 0 2.5 5 10

γ (%) 0 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 4.72 4.72 4.72 4.72 4.72 4.72 4.72 4.72
Newey-West (1.41) (1.63) (1.63) (1.63) (1.55) (1.55) (1.46) (1.46)
Model (1.42) (1.84) (2.19) (2.76) (2.14) (2.67) (2.52) (3.27)

GLS µ̂ (%) 4.72 4.52 4.41 4.30 4.28 4.05 4.01 3.62
Model (1.42) (1.84) (2.18) (2.74) (2.13) (2.64) (2.50) (3.22)

Panel C: Profitability

H (years) 0 2.5 5 10

γ (%) 0 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91
Newey-West (1.39) (1.47) (1.47) (1.47) (1.32) (1.32) (1.41) (1.41)
Model (1.39) (1.81) (2.15) (2.70) (2.10) (2.62) (2.48) (3.21)

GLS µ̂ (%) 4.91 4.96 5.02 5.12 4.94 5.02 4.87 4.94
Model (1.39) (1.81) (2.14) (2.68) (2.09) (2.59) (2.45) (3.16)

Panel D: Size

H (years) 0 2.5 5 10

γ (%) 0 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
Newey-West (2.00) (2.96) (2.96) (2.96) (3.15) (3.15) (2.83) (2.83)
Model (2.00) (2.61) (3.10) (3.90) (3.02) (3.78) (3.57) (4.63)

GLS µ̂ (%) 0.35 0.26 0.17 0.00 0.26 0.15 0.33 0.21
Model (2.00) (2.61) (3.09) (3.87) (3.01) (3.74) (3.54) (4.55)
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Table 4: Maximum Likelihood Hypothesis Tests

This table presents parameter estimates and hypothesis tests based on maximum-likelihood estimates of our
model for value, investment, profitability, and size portfolios, as defined in the header of Table 1. Panel
A presents estimates of µ, the unconditional expected return; σr, the unconditional standard deviation of
returns; H, the half-life of time-variations in conditional mean returns; and γ, the first-order autocorrelation
of factor returns. µ, σr, and H are all annualized. The rows labelled µ = 0 re-estimate the model with µ
restricted to zero, and give a p-value for this restriction based on a likelihood ratio test. Panel B presents a
variety of hypothesis tests for different restrictions on H and γ. For each restriction, we present the estimated
γ, and likelihood-ratio p-values for both the H and γ restrictions (Rest. p-value) and µ = 0 given the H and
γ restrictions. Our sample consists of 226 quarterly observations from Q3 1963 through Q4 2019.

Panel A: Tests for µ = 0

IID Time-varying means
µ (%) σr (%) p-value (%) µ (%) σr (%) H (years) γ (%) p-value (%)

Value 4.37 13.76 4.60 13.75 14.87 -0.58
µ = 0 0.00 13.93 1.8% 0.00 13.90 20.00 2.73 10.2%

Investment 4.72 10.62 5.19 10.61 9.38 -0.92
µ = 0 0.00 10.88 0.1% 0.00 10.82 14.66 5.25 5.7%

Profitability 4.91 10.42 4.96 10.42 20.00 -0.43
µ = 0 0.00 10.70 0.0% 0.00 10.62 20.00 4.46 5.7%

Size 0.35 15.02 0.31 15.02 1.33 15.44
µ = 0 0.00 15.03 86.3% 0.00 15.04 2.16 14.84 37.8%

Panel B: Restrictions on H and γ

Restrictions H (years): 2.5 5 10

γ (%): IID - 2.5 5 - 2.5 5 - 2.5 5

Value Rest. p-value (%) 45.2 45.2 60.7 40.1 46.0 51.4 31.2 73.9 46.1 28.4
µ = 0 p-value (%) 1.8 7.1 8.1 15.4 9.5 14.9 27.6 9.6 24.5 42.0

Investment Rest. p-value (%) 30.3 41.3 71.5 65.6 30.3 51.6 40.0 95.1 39.1 28.6
µ = 0 p-value (%) 0.1 6.3 1.5 4.5 8.9 4.5 13.0 5.5 11.2 27.4

Profitability Rest. p-value (%) 54.8 55.8 68.8 44.8 55.9 61.5 35.5 54.8 58.1 34.5
µ = 0 p-value (%) 0.0 1.1 0.6 2.1 2.0 1.9 5.6 4.2 4.9 12.3

Size Rest. p-value (%) 0.0 29.2 2.2 8.3 5.3 1.0 2.6 1.2 0.5 0.8
µ = 0 p-value (%) 86.3 100.0 92.2 97.5 100.0 93.1 100.0 100.0 92.6 96.8
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Table 5: Priors

This table presents summary statistics for the variety of prior distributions we use for our Bayesian estimates.
Panel A lists the possible priors we consider for µsr, the annualized unconditional Sharpe ratio; H, the half
life of variations in conditional Sharpe ratios in years; σr, annualized unconditional return volatility; σsr, the
annualized volatility of conditional Sharpe ratios; and ρ, the correlation between shocks to realized returns
and conditional Sharpe ratios. N indicates a normal distribution, U indicates a uniform distribution, and a
number indicates a dogmatic prior that the parameter equals a that value. Panel B presents the means and
95% confidence intervals for prior distributions of µ, the annualized unconditional expected return; γ, the
first-order autocorrelation of returns; and σ(Cond. Sharpe), the standard deviation across time of Sharpe
ratios conditional on all past realized returns. The conditional Sharpe Ratio distribution is based on the
joint return distributions implied by each model parameterization and not observed data.

Panel A: Priors on Transformed Parameters

H µsr σr (%) σsr ρ

0 N(−0.4, 0.4) U(10, 20) U (0, 1) U(−0.5, 0)
2.5 N(0, 0.4)
5 N(0.4, 0.4)

U (0, 10) U(−2, 2)

Panel B: Moments of Priors

µ (%) γ (%) σ(Cond. Sharpe)

H µsr mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) -5.30 [-15.90,5.16] - - - -
0 N(0, 0.4) -0.01 [-10.47,10.42] - - - -
0 N(0.4, 0.4) 5.32 [-5.10,16.05] - - - -
0 U(−2, 2) -0.02 [-25.84,25.70] - - - -

2.5 N(−0.4, 0.4) -5.34 [-16.07,5.07] 4.81 [-0.58,15.44] 0.19 [0.00,0.52]
2.5 N(0, 0.4) -0.04 [-10.42,10.37] 4.76 [-0.59,15.41] 0.19 [0.00,0.52]
2.5 N(0.4, 0.4) 5.29 [-5.10,15.98] 4.78 [-0.58,15.43] 0.19 [0.00,0.52]
2.5 U(−2, 2) -0.05 [-25.88,25.72] 4.76 [-0.58,15.45] 0.19 [0.00,0.52]

5 N(−0.4, 0.4) -5.30 [-15.94,5.11] 5.58 [-0.25,16.49] 0.25 [0.00,0.61]
5 N(0, 0.4) 0.01 [-10.47,10.47] 5.60 [-0.26,16.47] 0.25 [0.00,0.61]
5 N(0.4, 0.4) 5.23 [-5.18,15.94] 5.61 [-0.26,16.54] 0.25 [0.00,0.61]
5 U(−2, 2) 0.00 [-25.75,25.93] 5.56 [-0.25,16.41] 0.25 [0.00,0.61]

U(0, 10) N(−0.4, 0.4) -5.32 [-16.03,4.99] 4.91 [-1.91,16.37] 0.23 [0.00,0.63]
U(0, 10) N(0, 0.4) -0.02 [-10.48,10.38] 4.90 [-1.79,16.37] 0.23 [0.00,0.63]
U(0, 10) N(0.4, 0.4) 5.29 [-5.14,15.98] 4.92 [-1.76,16.40] 0.23 [0.00,0.63]
U(0, 10) U(−2, 2) -0.01 [-25.81,25.82] 4.90 [-1.83,16.38] 0.23 [0.00,0.63]
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Table 6: Posteriors for Value Portfolio

This table presents summary statistics for the posterior distributions of our model’s parameters given data for
the value portfolio, as described in the header of Table 1. µ is the unconditional mean return, in annualized
percent. σr is the unconditional volatility of returns, in annualized percent. H is the half life of variations
in conditional Sharpe Ratios, in years. γ is the first-order autocorrelation in realized returns implied by
the model’s parameters, in percent. The twelve possible priors are summarized in Table 5. We present the
mean and 95% confidence intervals for each parameter and prior. We estimate the model using an M.C.M.C.
procedure described in the Appendix. Our sample consists of 226 quarterly observations from Q3 1963
through Q4 2019.

Prior µ σr H σ(Cond. Sharpe)

µsr H (years) mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) 3.41 [-0.10,6.73] 12.69 [12.69,14.99] - - - -
0 N(0, 0.4) 3.94 [0.55,7.37] 12.62 [12.62,14.95] - - - -
0 N(0.4, 0.4) 4.47 [1.04,7.89] 12.58 [12.58,14.98] - - - -
0 U(−2, 2) 4.35 [0.72,8.02] 12.56 [12.56,14.98] - - - -

2.5 N(−0.4, 0.4) 2.59 [-2.95,6.92] 12.74 [12.74,15.30] - - 0.14 [0.00,0.46]
2.5 N(0, 0.4) 3.45 [-1.40,7.70] 12.70 [12.70,15.25] - - 0.13 [0.00,0.45]
2.5 N(0.4, 0.4) 4.42 [-0.12,8.84] 12.69 [12.69,15.26] - - 0.13 [0.00,0.44]
2.5 U(−2, 2) 4.18 [-1.09,9.19] 12.67 [12.67,15.27] - - 0.13 [0.00,0.45]

5 N(−0.4, 0.4) 1.72 [-4.93,6.81] 12.74 [12.74,15.36] - - 0.19 [0.00,0.56]
5 N(0, 0.4) 3.16 [-2.65,7.89] 12.72 [12.72,15.32] - - 0.16 [0.00,0.54]
5 N(0.4, 0.4) 4.33 [-0.75,9.26] 12.69 [12.69,15.32] - - 0.15 [0.00,0.52]
5 U(−2, 2) 4.03 [-2.68,10.05] 12.71 [12.71,15.33] - - 0.17 [0.00,0.54]

U(0, 10) N(−0.4, 0.4) 1.86 [-5.33,6.78] 12.78 [12.78,15.38] 5.12 [0.35,9.77] 0.18 [0.00,0.58]
U(0, 10) N(0, 0.4) 3.28 [-2.42,7.86] 12.70 [12.70,15.32] 4.84 [0.34,9.75] 0.16 [0.00,0.54]
U(0, 10) N(0.4, 0.4) 4.38 [-0.62,9.21] 12.67 [12.67,15.30] 4.78 [0.30,9.73] 0.15 [0.00,0.53]
U(0, 10) U(−2, 2) 4.01 [-2.90,9.64] 12.67 [12.67,15.31] 4.80 [0.26,9.74] 0.15 [0.00,0.56]
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Table 7: Posteriors for Investment Portfolio

This table presents summary statistics for the posterior distributions of our model’s parameters given data
for the investment portfolio, as described in the header of Table 1. µ is the unconditional mean return, in
annualized percent. σr is the unconditional volatility of returns, in annualized percent. H is the half life
of variations in conditional Sharpe Ratios, in years. γ is the first-order autocorrelation in realized returns
implied by the model’s parameters, in percent. The twelve possible priors are summarized in Table 5. We
present the mean and 95% confidence intervals for each parameter and prior. We estimate the model using
an M.C.M.C. procedure described in the Appendix. Our sample consists of 226 quarterly observations from
Q3 1963 through Q4 2019.

Prior µ σr H σ(Cond. Sharpe)

µsr H (years) mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) 3.83 [1.27,6.56] 9.76 [9.76,11.61] - - - -
0 N(0, 0.4) 4.24 [1.60,6.92] 9.71 [9.71,11.59] - - - -
0 N(0.4, 0.4) 4.66 [2.06,7.26] 9.73 [9.73,11.56] - - - -
0 U(−2, 2) 4.74 [2.01,7.51] 9.75 [9.75,11.55] - - - -

2.5 N(−0.4, 0.4) 2.51 [-2.25,6.26] 9.87 [9.87,11.84] - - 0.22 [0.00,0.51]
2.5 N(0, 0.4) 3.49 [-0.76,7.15] 9.81 [9.81,11.83] - - 0.20 [0.00,0.50]
2.5 N(0.4, 0.4) 4.41 [0.47,8.11] 9.80 [9.80,11.81] - - 0.19 [0.00,0.50]
2.5 U(−2, 2) 4.52 [-0.02,9.27] 9.82 [9.82,11.79] - - 0.20 [0.00,0.50]

5 N(−0.4, 0.4) 1.62 [-4.25,6.07] 9.90 [9.90,11.91] - - 0.27 [0.00,0.60]
5 N(0, 0.4) 3.11 [-2.03,7.15] 9.83 [9.83,11.87] - - 0.23 [0.00,0.58]
5 N(0.4, 0.4) 4.27 [-0.20,8.30] 9.81 [9.81,11.83] - - 0.21 [0.00,0.58]
5 U(−2, 2) 4.28 [-1.88,9.44] 9.83 [9.83,11.87] - - 0.23 [0.00,0.59]

U(0, 10) N(−0.4, 0.4) 1.81 [-4.54,6.29] 9.86 [9.86,11.92] 5.15 [0.59,9.76] 0.26 [0.00,0.61]
U(0, 10) N(0, 0.4) 3.29 [-1.81,7.11] 9.84 [9.84,11.83] 4.55 [0.36,9.66] 0.22 [0.00,0.59]
U(0, 10) N(0.4, 0.4) 4.34 [0.04,8.23] 9.79 [9.79,11.84] 4.49 [0.35,9.66] 0.20 [0.00,0.58]
U(0, 10) U(−2, 2) 4.25 [-1.84,9.27] 9.81 [9.81,11.83] 4.55 [0.38,9.76] 0.22 [0.00,0.59]

47



Table 8: Posteriors for Profitability Portfolio

This table presents summary statistics for the posterior distributions of our model’s parameters given data
for the profitability portfolio, as described in the header of Table 1. µ is the unconditional mean return, in
annualized percent. σr is the unconditional volatility of returns, in annualized percent. H is the half life
of variations in conditional Sharpe Ratios, in years. γ is the first-order autocorrelation in realized returns
implied by the model’s parameters, in percent. The twelve possible priors are summarized in Table 5. We
present the mean and 95% confidence intervals for each parameter and prior. We estimate the model using
an M.C.M.C. procedure described in the Appendix. Our sample consists of 226 quarterly observations from
Q3 1963 through Q4 2019.

Prior µ σr H σ(Cond. Sharpe)

µsr H (years) mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) 3.98 [1.36,6.70] 9.63 [9.63,11.39] - - - -
0 N(0, 0.4) 4.37 [1.72,6.94] 9.57 [9.57,11.38] - - - -
0 N(0.4, 0.4) 4.81 [2.28,7.40] 9.53 [9.53,11.33] - - - -
0 U(−2, 2) 4.92 [2.27,7.59] 9.54 [9.54,11.36] - - - -

2.5 N(−0.4, 0.4) 3.25 [-0.88,6.65] 9.66 [9.66,11.60] - - 0.15 [0.00,0.47]
2.5 N(0, 0.4) 4.12 [0.53,7.27] 9.61 [9.61,11.56] - - 0.13 [0.00,0.45]
2.5 N(0.4, 0.4) 4.88 [1.53,8.22] 9.61 [9.61,11.55] - - 0.13 [0.00,0.45]
2.5 U(−2, 2) 4.98 [1.18,8.90] 9.63 [9.63,11.56] - - 0.13 [0.00,0.46]

5 N(−0.4, 0.4) 2.87 [-2.28,6.49] 9.71 [9.71,11.63] - - 0.18 [0.00,0.55]
5 N(0, 0.4) 3.92 [-0.32,7.51] 9.65 [9.65,11.61] - - 0.16 [0.00,0.53]
5 N(0.4, 0.4) 4.77 [0.92,8.48] 9.61 [9.61,11.60] - - 0.15 [0.00,0.52]
5 U(−2, 2) 4.93 [0.23,9.65] 9.62 [9.62,11.61] - - 0.16 [0.00,0.54]

U(0, 10) N(−0.4, 0.4) 2.71 [-2.78,6.52] 9.67 [9.67,11.67] 5.09 [0.38,9.82] 0.19 [0.00,0.58]
U(0, 10) N(0, 0.4) 3.89 [-0.51,7.51] 9.62 [9.62,11.64] 4.77 [0.37,9.75] 0.16 [0.00,0.54]
U(0, 10) N(0.4, 0.4) 4.79 [1.19,8.42] 9.60 [9.60,11.57] 4.61 [0.25,9.72] 0.14 [0.00,0.51]
U(0, 10) U(−2, 2) 4.96 [0.56,9.47] 9.60 [9.60,11.56] 4.66 [0.44,9.70] 0.15 [0.00,0.53]
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Table 9: Posteriors for Size Portfolio

This table presents summary statistics for the posterior distributions of our model’s parameters given data
for the size portfolio, as described in the header of Table 1. µ is the unconditional mean return, in annualized
percent. σr is the unconditional volatility of returns, in annualized percent. H is the half life of variations
in conditional Sharpe Ratios, in years. γ is the first-order autocorrelation in realized returns implied by
the model’s parameters, in percent. The twelve possible priors are summarized in Table 5. We present the
mean and 95% confidence intervals for each parameter and prior. We estimate the model using an M.C.M.C.
procedure described in the Appendix. Our sample consists of 226 quarterly observations from Q3 1963
through Q4 2019.

Prior µ σr H σ(Cond. Sharpe)

µsr H (years) mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) -1.07 [-4.63,2.46] 13.78 [13.78,16.33] - - - -
0 N(0, 0.4) 0.26 [-3.23,3.76] 13.78 [13.78,16.36] - - - -
0 N(0.4, 0.4) 1.55 [-1.75,4.99] 13.77 [13.77,16.36] - - - -
0 U(−2, 2) 0.38 [-3.59,4.48] 13.77 [13.77,16.33] - - - -

2.5 N(−0.4, 0.4) -3.15 [-8.57,2.02] 13.81 [13.81,16.55] - - 0.42 [0.19,0.56]
2.5 N(0, 0.4) -0.02 [-5.07,5.06] 13.78 [13.78,16.56] - - 0.41 [0.17,0.56]
2.5 N(0.4, 0.4) 3.21 [-1.91,8.39] 13.78 [13.78,16.59] - - 0.41 [0.19,0.57]
2.5 U(−2, 2) 0.09 [-7.95,7.92] 13.81 [13.81,16.59] - - 0.42 [0.18,0.57]

5 N(−0.4, 0.4) -3.90 [-9.83,1.92] 13.97 [13.97,16.81] - - 0.49 [0.19,0.65]
5 N(0, 0.4) -0.05 [-5.76,5.63] 13.96 [13.96,16.78] - - 0.47 [0.14,0.64]
5 N(0.4, 0.4) 3.83 [-1.94,9.68] 13.95 [13.95,16.76] - - 0.48 [0.17,0.64]
5 U(−2, 2) -0.08 [-10.61,10.56] 13.96 [13.96,16.79] - - 0.48 [0.18,0.64]

U(0, 10) N(−0.4, 0.4) -3.33 [-9.13,2.05] 13.77 [13.77,16.65] 3.57 [0.80,9.10] 0.42 [0.15,0.65]
U(0, 10) N(0, 0.4) -0.10 [-5.26,5.09] 13.75 [13.75,16.66] 3.25 [0.82,8.94] 0.40 [0.14,0.64]
U(0, 10) N(0.4, 0.4) 3.29 [-1.90,9.08] 13.79 [13.79,16.71] 3.51 [0.84,9.11] 0.42 [0.15,0.64]
U(0, 10) U(−2, 2) 0.18 [-8.91,9.75] 13.76 [13.76,16.66] 3.59 [0.84,9.06] 0.42 [0.15,0.65]
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