CEO HOMETOWN FAVORITISM IN CORPORATE ENVIRONMENTAL POLICIES

Wei Li¹ Qiping Xu² Qifei Zhu³

¹Shanghai University of Finance and Economics ²University of Illinois Urbana Champaign ³Nanyang Technological University

ABFER, May 2022

MOTIVATION

- Corporations play a vital role in environmental sustainability.
 - In 2020 alone, facilities in the U.S industry sectors released three billion pounds of toxic chemicals.
- An emerging literature seeks to uncover how corporate environmental sustainability is shaped by external forces such as the presence of institutional investors and the influence of capital markets.
 - Akey and Appel, 2019; Dyck, Lins, Roth, and Wagner, 2019; Krueger, Sautner, and Starks, 2020; Naaraayanan, Sachdeva, and Sharma, 2020; Shive and Forster, 2020; etc.

This paper: How corporate insiders (i.e., CEOs) affect corporate environmental policies and pollution outcomes?

MOTIVATION

Empirically challenging to identify the effect of managerial preferences on CSR (manager trait $X \rightarrow$ firm behavior Y).

Preferences are often not revealed or well identified.

- Over 99% CEOs agree on the importance of sustainability issues (HBS review, Winston 2019).
- Post-2000: around 200,000 non-compliance cases investigaged by the EPA with over \$800 billion of legal penalties.
- Inconclusive debate on whether CEO truly have a personal impact on corporate policies.
 - Much of the managerial style effects can be explained by the matching between firms and CEOs through the board (Fee, Hadlock, and Pierce, 2013).

THIS PAPER:

We overcome these challenges by studying the effect of **CEO hometown attachment** on **plant-level** pollution.

- ► CEOs' personal preferences are location-specific.
- Granular data with firm-year FE research design allow us to exploit within-firm variation across plants.
- Plant-level pollution and waste management activities can be precisely measured – linking environmental performance and firm resource allocation to establish the channels.

HOMETOWN ATTACHMENT

CEOs are more reluctant to pollute near their birthplaces.

- Psychology research suggests that hometown is the places that people feel a "sense of belonging" and get incorporated into one's identity (Fullilove 1996, Dahl and Sorenson 2010).
- People have a stronger desire to maintain a good image in their hometowns, where their good deeds are more salient and memorable (Relph 1976).
- Place attachment encourages individual environmentally responsible behavior (Vaske and Kobrin 2001, Hernandez et al. 2010).
- Hometown linkages in business decisions: CEOs favoritism towards hometown labors (Yonker 2017), M&A targets (Jiang, Qian, and Yonker 2019), and R&D (Lai, Li, and Yang 2020)

MAIN FINDINGS:

Q: Do firms pollute less near CEOs' hometowns?

- ▶ YES: hometown plants' emission is 20% lower than peer plants, conditional on production scale.
- ▶ Within firm-year, location-year, and industry-year.
- Post CEO turnovers where "hometown" label changes.
 - Pollution increases in outgoing CEOs' hometown plants.
 - Pollution drops in incoming CEOs' hometown plants.
- Q: Channels for CEOs to reduce hometown toxic releases?
 - Investing more in pollution prevention.
 - Implementing waste management activities post-production: recycling, energy recovery, and treatment.

Q: Is the observed reduction in hometown plants optimal for shareholders?

- Cross-sectional: most pronounced in poorly-governed firms.
- Reduced by the 2003 dividend tax cut, which aligned managerial incentives better.
- Interpretation: pollution reduction as a form of agency conflict.

1. Data

DATA SOURCES: TOXIC RELEASE DATA

The EPA's Toxic Release Inventory (TRI)

- Plant-level pollution emission from 1992 to 2018
- The total amount of toxic release for each chemical
- Waste management activities

The National Establishments Time-series (NETS) database

Plant-level production scale information

DATA SOURCES: CEO HOMETOWN DATA

- CEO identitiers: ExecuComp (covers S&P 1500 companies)
- ► CEO birthplaces: Marquis Who's Who/Notable Names/Google
- ▶ Hometown indicators: D(Hometown State), D(≤ 100 miles)

(a) CEO Count

(b) Plant Count

2. Pollution Reduction in CEOs' Hometowns

DO FIRMS POLLUTE LESS NEAR CEOS' HOMETOWNS?

$$log(1 + Pollution_{p,s,i,j,t}) = \alpha + \beta_1 D(Hometown State) + \beta_2 D(HQ State) + \beta_3 Log(Employees) + \beta_4 Chemical Counts + FEs + \epsilon_{p,s,i,j,t}$$

Plant p, in parent firm i year t, in industry j, located in state s

- Firm-year FEs (α_{i,t}): time varying firm characteristics, including firm-CEO matching
- lindustry-year FEs $(\alpha_{j,t})$: pollution intensity across industries
- State-year FEs (\alpha_{s,t}): local environment regulations, economic development, etc.

DO FIRMS POLLUTE LESS IN CEOS' HOMETOWNS?

▶ Pollution is about 20% lower for hometown plants

	Log(Total Release)								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
D(Hometown State)	-0.413*** (0.086)	-0.152* (0.090)	-0.230** (0.091)	-0.220*** (0.076)					
$D(\leq 100 \text{ miles})$					-0.483*** (0.093)	-0.216** (0.091)	-0.413*** (0.091)	-0.332*** (0.078)	
D(0 – 50 miles)									-0.372*** (0.098)
D(50 - 100 miles)									-0.251** (0.105)
D(100 - 300 miles)									0.056 (0.056)
D(300 - 500 miles)									-0.008 (0.052)
D(HQ State)	0.250*** (0.071)	0.399*** (0.070)	0.344*** (0.069)	0.052 (0.054)	0.201*** (0.071)	0.380*** (0.071)	0.329*** (0.071)	0.034 (0.056)	0.032 (0.056)
Log(1+Employees)				0.104*** (0.012)				0.113*** (0.013)	0.113*** (0.013)
Chemical Counts				0.354*** (0.007)				0.357*** (0.007)	0.357*** (0.007)
Observations	41633	41633	41633	41633	39616	39616	39616	39616	39616
Adjusted R ²	0.393	0.404	0.513	0.625	0.391	0.403	0.512	0.625	0.625
Parent-year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Plant state-year FE	N	Y	Y	Y	N	Y	Y	Y	Y
Plant Industry-year FE	N	N	Y	Y	N	N	Y	Y	Y

CHANNELS: WASTE MANAGEMENT ACTIVITIES

1. Source reduction (aka pollution prevention)

- to reduce/eliminate the production of toxic chemicals

2. Post production: recycling; energy recovery; treatment

MECHANISMS: SOURCE REDUCTION

Panel (a): Source Reduction Activity Count						
	(1)	(2)				
D(Hometown State)	0.197**					
	(0.098)					
$D(\leq 100 \text{ miles})$		0.284**				
		(0.138)				
Observations	187789	187789				
Adjusted R ²	0.206	0.206				
Controls	Y	Y				
Parent-year FE	Y	Y				
Chemical-year FE	Y	Y				

Panel (b):	Total Waste Gene	rated
	(1)	(2)
D(Hometown State)	-0.135*** (0.050)	
$D(\leq 100 \text{ miles})$		-0.089*
		(0.051)
Observations	41545	41545
Adjusted R ²	0.578	0.578
Parent-year FE	Y	Y
Plant state-year FE	Y	Y
Plant industry-year FE	Y	Y

MECHANISMS: FURTHER WASTE MANAGEMENT

	% Recycled	% Recovery	% Treatment	% Released
	(1)	(2)	(3)	(4)
$D(\leq 100 \text{ miles})$	1.421***	1.206***	0.593	-3.222***
	(0.435)	(0.456)	(0.787)	(0.867)
Observations	37621	37621	37621	37621
Adjusted R ²	0.250	0.315	0.337	0.370
Controls	Y	Y	Y	Y
Parent-year FE	Y	Y	Y	Y
Plant state-year FE	Y	Y	Y	Y
Plant industry-year FE	Y	Y	Y	Y

EVIDENCE FROM CEO TURNOVERS

- A subsample of firms with CEO turnovers:
- The predecessor and successor have difference hometown states
- Re-run plant-level regressions with plant fixed effects

	Log(Total Release)	
	(1)	(2)
D(Hometown to Nonhometown)*D(Post)	0.415**	
	(0.181)	
		00**
D(Nonhometown to Hometown)*D(Post)		-0.572**
		(0.264)
D(Post)	0.0503	0.0106
	(0.034)	(0.069)
$\log(1 + \text{Employees})$	0.0683	0 127**
208(1 + 2bio)000)	(0.089)	(0.061)
	()	()
Chemical Counts	0.161***	0.223***
	(0.027)	(0.026)
Observations	4617	4684
Adjusted R ²	0.971	0.975
Parent-year FE	Y	Y
Plant state-year FE	Y	Y
Plant FE	Y	Y

3. Hometown Favoritism and Firm Value

HOMETOWN-POLLUTION REDUCTION AND FIRM VALUE

- Manager-initiated CSR is unlikely to be optimal for firm value
- Empirically difficult to directly assess the value implication of hometown-pollution reduction.

Our approach:

- 1. Cross-sectional variation in the **quality of corporate governance**.
- 2. An exogenous reduction in agency conflicts driven by the 2003 dividend tax cut.

Agency issue: Cross-Sectional Analyses

	Log(Total Release)		
	(1)	(2)	(3)
D(Hometown State)*D(High G-index)	-0.228*		
	(0.136)		
D(Hometown State)*D(High E-index)		-0.501***	
		(0.133)	
D(Hometown State)*D(I ow Analysts)			-0 273**
			(0.118)
			(0.110)
Observations	30285	29356	41596
Adjusted R ²	0.640	0.639	0.625
Parent-year FE	Υ	Y	Y
Plant state-year FE	Y	Y	Y
Plant industry-year FE	Υ	Y	Y
Controls	Y	Y	Y

Agency issue: The 2003 dividend tax cut

- Reduces the highest statutory dividend tax rate from 35% to 15%, affecting wealthy people the most.
- ► Lower dividend tax rate ⇒ fewer agency-motivated projects, in particular for CEOs' with high stock ownership (Chetty and Saez (2010); Masulis and Reza (2015); Cheng, Hong, and Shue (2020)).
- A triple-difference regression design:

$$\begin{split} \text{Log}(\text{Pollution}) + & \beta_3 D(\text{Hometown State}) * D(\text{Post 2003}) * \% \text{CEO Ownership} \\ &= \alpha + \beta_1 D(\text{Hometown State}) * D(\text{Post 2003}) \\ &+ \beta_2 D(\text{Hometown State}) * \% \text{CEO Ownership} \\ &+ \text{Controls} + \text{FEs} + \epsilon_{p,i,s,t}, \end{split}$$

Agency issue: The 2003 dividend tax cut

Dependent variable	Log(Tota	Log(Total Release)		
	(1)	(2)		
D(Hometown State)×				
D(Post 2003)*% CEO Ownership	0.318***	0.619***		
	(0.089)	(0.232)		
% CEO Ownership	0.131	0.227**		
	(0.080)	(0.091)		
D(Post 2003)	-0.233**	-0.291***		
	(0.098)	(0.110)		
D(Hometown State)×				
% CEO Ownership ²		-0.009		
		(0.012)		
D(Post 2003)*% CEO Ownership ²		-0.054**		
		(0.024)		
Observations	35728	35728		
Adjusted R ²	0.905	0.905		
Controls	Y	Y		
Parent-year FE	Y	Y		
Plant state-year FE	Y	Y		
Plant industry-year FE	Y	Y		
Plant FE	Y	Y		

Agency issue: The 2003 dividend tax cut

4. Cross-sectional Drivers

FIRM-LEVEL POLLUTION EMISSION

Does CEO hometown favoritism affect firm-level pollution?

▶ Yes, when parent firms' operations overlap with CEOs' hometown

	Log(Total Release)		
	(1)	(2)	
Frac Hometown Plant	-1.229***		
	(0.311)		
D(Hometown in HQ)		-0.638***	
		(0.119)	
Parent industry-year FE	Y	Y	
Headquarter state-year FE	Y	Y	
Controls	Y	Y	

FIRM CSR RATINGS AND FINANCIAL CONSTRAINTS

Hometown favoritism is more pronounced among firms with worse CSR ratings or financial constraints

- CEOs prioritize environmental protection in their hometowns
- Disengagement in abatement likely reflects cost considerations

	Log(Total Release)				
	(1)	(2)	(3)	(4)	
D(Hometown State)*D(Low KLD Score)	-0.353**				
	(0.145)				
D(Hometown State)*D(Low ENV Score)		-0.361**			
		(0.167)			
D(Hometown State)*D(Text FC)			-0.295**		
			(0.139)		
D(Homotown State)*D(High Default Rick)				0 220**	
D(Hometown State) D(High Delault Risk)				-0.320	
				(0.130)	
Parent-year FE	Y	Y	Y	Y	
Plant state-year FE	Y	Y	Y	Y	
Plant industry-year FE	Y	Y	Y	Y	
Controls	Y	Y	Y	Y	

CONCLUSIONS

- How managerial personal preferences interact with corporate CSR activities
- Hometown favoritism leads firms to reduced pollution emissions at plants closer to CEOs' hometowns
- Hometown pollution reduction is achieved by allocating more corporate resources to pollution abatement activities
- A form of agency issues: Such CSR activities are likely suboptimal for the firm, but internalize the environmental externalities from a societal perspective