

On the Rise of Payment Firms

Tobias Berg, Frankfurt School of Finance & Management Valentin Burg, Humboldt University Berlin Jan Keil, Humboldt University Berlin Manju Puri, Duke University, FDIC and NBER

April 2022

Motivation

Motivation

- Rise of payment firms: one of the most significant changes to financial industry in the last decade
- This paper:
 - Document the rise of payment firms
 - Provide evidence of importance of payment firms for E-Commerce sales, using 3mn observations from E-Commerce firm
- Key findings:
 - E-Commerce drives rise in payment firms
 - Clientele effect: ~1/4 of customers abandon purchase when their prefered payment method is not available / not easy to use
 - Documented for Buy-Now-Pay-Later, Credit Card, Paypal

Outline

- 1. Descriptive statistics on the rise of payment firms
- 2. Link rise in E-Commerce to rise in payment firms
- 3. Micro evidence on the importance of payment firms for E-Commerce sales

Data

- Listed firms located in the U.S. with SIC codes
 - 60 (Banks)
 - 61/62 (Brokers, Dealers, Non-depository Institutions)
 - 63/64 (Insurance) and
 - Payment firms
- Classification of payment firms
 - SIC codes 6099 (Functions related to Depository Banking), 6141 (Personal Credit Institutions), or SIC code that does not start with 6
 - AND: contains word "payment" or "merchant solution"
- Cross-checked with Nilson Reports
- 1990-2020. Market Capitalization = $prcc_c \cdot csho$ via Compustat

Largest 10 financial firms by subsector in 2020

		Brokers, Dealers,				
			Non-Dep.			
Rank	Payment Firms	Banks	Institutions	Insurance		
1	Visa	JP Morgan	Morgan Stanley	United Health		
	(465bn)	(387bn)	(124bn)	(332bn)		
2	Mastercard	Bank of America	Blackrock	Anthem		
	(355bn)	(262bn)	(110bn)	(79bn)		
3	PayPal	Citigroup	Charles Schwab	Cigna		
	(275bn)	(128bn)	(100bn)	(74bn)		
4	Square	Wells Fargo	Goldman	Marsh & McLennan		
	(99bn)	(125bn)	(95bn)	(59bn)		
5	American Express	US Bancorp	CME	Progressive Corp		
	(97bn)	(70bn)	(65bn)	(58bn)		
6	FIS	Truist	ICE	Humana		
	(88bn)	(65bn)	(65bn)	(53bn)		
7	Fiserv	PNC	Capital One	Metlife		
	(76bn)	(63bn)	(45bn)	(42bn)		
8	Global Payments	BNYM	Blackstone	Travelers		
	(64bn)	(38bn)	(44bn)	(35bn)		
9	Discover	State Street	MSCI	Centene		
	(28bn)	(26bn)	(37bn)	(35bn)		
10	Fleetcor	First Republic	T. Rowe Price	Verisk		
	(23bn)	(26bn)	(35bn)	(34bn)		

Profitability of payment firms

Market-to-book of payment firms

E-Commerce = Payment Firms

The figure depicts coefficient β of regressions of the form $y = \alpha + \beta x$, where x are weekly stock index excess returns of the main economic sectors and y is the weekly excess stock returns of payment firms. The sample period is from 2004-2021.

Industrials/Real Estate↑ = Financials↑

The figure depicts coefficient β of regressions of the form $y = \alpha + \beta x$, where x are weekly stock index excess returns of the main economic sectors and y is the weekly excess stock returns of financial firms (ex payment firms). The sample period is from 2004-2021.

E-Commerce-minus-BrickAndMortar factor Payment firms: Fama-MacBeth regression (1st stage)

Panel A: Payment sector

	(1)	(2)	(3)	(4)	(5)	
	2004-2021	2004-2021	exclude 2008/2009	exclude 2020/2021	Refined Brick- and-Mortar	
E-Commerce minus Brick- and-Mortar (EMB)		0.244*** (4.255)	0.157*** (2.761)	0.247*** (4.298)	0.162*** (2.821)	
Market	1.136***	1.075***	1.038***	1.081***	1.099***	
	(19.66)	(18.75)	(17.52)	(17.37)	(18.82)	
SMB	-0.0775	-0.144	-0.127	-0.165*	-0.0951	
	(-0.750)	(-1.428)	(-1.239)	(-1.665)	(-0.934)	
HML	-0.0550	0.00431	-0.0564	-0.0164	-0.00997	
	(-0.590)	(0.0476)	(-0.603)	(-0.164)	(-0.107)	
RMW	-0.0221	0.206	0.0683	0.351**	0.143	
	(-0.168)	(1.502)	(0.487)	(2.286)	(1.007)	
CMA	-0.349**	-0.142	-0.286*	-0.0133	-0.226	
	(-2.130)	(-0.862)	(-1.769)	(-0.0775)	(-1.350)	
Constant	0.275	0.145	0.163	0.255	0.185	
	(1.200)	(0.651)	(0.764)	(1.198)	(0.814)	
Observations	216	216	192	192	216	
Adj R ²	0.695	0.718	0.688	0.729	0.705	

E-Commerce-minus-BrickAndMortar factor Financial firms: Fama-MacBeth regression (1st stage)

Panel B: Financials (ex-Payment-Sector)

	(1)	(2)	(3)	(4)	(5)
	2004-2020	2004-2020	exclude 2008/2009	exclude 2020/2021	Refined Brick- and-Mortar
E-Commerce minus		-0.0733**	-0.0628**	-0.0678	-0.105***
Brick-and-Mortar (EMB)		(-1.980)	(-2.023)	(-1.622)	(-2.930)
Market	1.159***	1.177***	1.103***	1.189***	1.184***
	(32.08)	(31.79)	(34.05)	(26.22)	(32.47)
SMB	-0.369***	-0.349***	-0.236***	-0.342***	-0.357***
	(-5.708)	(-5.373)	(-4.214)	(-4.748)	(-5.619)
HML	1.076***	1.058***	0.837***	1.125***	1.047***
	(18.48)	(18.08)	(16.36)	(15.44)	(18.03)
RMW	-0.542***	-0.611***	-0.492***	-0.573***	-0.649***
	(-6.594)	(-6.886)	(-6.418)	(-5.126)	(-7.324)
CMA	-0.545***	-0.607***	-0.459***	-0.642***	-0.625***
	(-5.318)	(-5.700)	(-5.203)	(-5.130)	(-5.992)
Constant	-0.313**	-0.274*	-0.173	-0.340**	-0.255*
	(-2.186)	(-1.908)	(-1.479)	(-2.189)	(-1.795)
Observations	216	216	192	192	216
Adj R ²	0.906	0.907	0.908	0.897	0.909

Micro Evidence

German E-commerce company selling furniture

- 3mn observations

Setting:

- 1. Customer proceeds with items to check-out & enters information
- 2. Retailer offers payment options
- 3. Customer selects payment option
- 4. Retailer decides about additional verification (if Credit Card is used)
- 5. Customer purchases ("conversion")

Do customers "stick" to preferred payment methods? \rightarrow Clientele Effect? Or do they switch to easily available low-cost alternatives?

Payments Used at the Retailer

Payments Used at the Retailer

Order of analysis

We analyze three payment types

- 1. Credit cards
- 2. PayPal
- 3. BNPL

For each of the three types, we have an (exogenous) shock to the availability / ease of use of that particular payment type

Credit cards and BNPL: RDD design PayPal: IV design

Credit Card: Additional Verification Requirment

- Internal transaction risk score (higher score = higher fraud risk)
- Customers above 0.7: additional identity verification check (e.g. PIN)
- Customers below 0.7: no check

Credit Card: Discontinuity at the Threshold

- Suited for a slightly fuzzy RDD
- Verification check jumps from around 4% to 100%
- Conversion rate drops from 76% to 54%

(A) Probability to Require Verification Check

(B) Probability of a Successful Conversion

Credit Card: No manipulation of score

- Customers typically not aware of existence of transaction risk score
- Even if they are, they don't know exact method for calculating score

(c) Histogram of Forcing Variable fitted values from regressions on either side of the discontinuity.

Credit Card: Estimation

We exploit discontinuities for a fuzzy RDD to estimate a LATE for customers with credit scores around the verification threshold via 2SLS

$$T_{i,t} = \alpha_1 \underline{S}_{i,t} + \alpha_2 S_{i,t} + \alpha_3 \underline{S}_{i,t} \times S_{i,t} + \alpha_4 X_{i,t} + \eta_w + \sigma_c + \varepsilon_{i,t}$$
(1)

$$Y_{i,t} = \beta T^{i,t} + \delta_1 S_{i,t} + \delta_2 \underline{S}_{i,t} \times S_{i,t} + \delta_3 X_{i,t} + \eta_w + \sigma_c + \mu_{i,t}$$
(2)

- 1. First stage
 - Ti,t: Likelihood that retailers requires verification
 - \underline{S} : indicator for the score being above threshold or below
 - S : score-point distance to the threshold
- 2. Second stage
 - $Y_{i,t}$: Purchase (yes/no)
 - T^{i,j}: Predicted treatment dummy from (1)

Credit Card: Results

- Recall: 10 / 100 customers choose Credit Card
- 24.8%-25.7% of those abort purchases (=2-3 of the 100 customers)
- Reducing sales by 2.5%

Dependent Variable: Conversion (1/0)	(1)	(2)	(3)
Requiring Verification (1/0)	-0.248^{***}	-0.250^{***}	-0.257***
Controls	(0.000)	(0.000)	(0.000)
Customer		Yes	Yes
Website Visit		Yes	Yes
Fixed Effects			
County			Yes
Week			Yes
Day-of-Week			Yes
Time-of-Day			Yes
Kleibergen-Paap Robust F-Stat	25,258	22,405	27,309
Observations	14,477	14,474	14,446

PayPal: Outages

- Outages at PayPal are rare but do occur
- We use a Google search index for problems using PayPal in Germany
- Extremely high values (>99.5 percentile) = "PayPal Outage" (1)
- Normal values (<95 percentile) = normal times (0)

PayPal: Estimation

• Effect of an outage on all customers estimated via

 $Y_{i,t} = \beta Z_h + \delta X_{i,t} + \eta_w + \sigma_c + \mu_{i,t}$ (3)

- Z_h : PayPal outage dummy variable (1: outage, 0: no outage)
- $Y_{i,t}$: Conversion dummy (1: purchase, 0: abortion)

Important:

- Google search-based proxy is noisy (,,1" does not imply that all customers are affected by the outage during the entire time)
- Payment via PayPal decreases by approximately 10% during PayPal outages
- Identification less ideal than for BNPL and credit card (we do not know the underlying drivers of Paypal outages)

PayPal: Results

- 3.3% of ALL customers abort the purchase
- Recall: 30 / 100 customers choose PayPal
- 3.3 / 30 that typically use PayPal abort (or ~10%)
- Not all PayPal customer affected by outage \rightarrow conservative estimation >20% of those whose are affected abort the transaction

Conversion (1/0)	(1)	(2)	(3)	
PayPal Outage (1/0)	-0.061^{***} (0.000)	-0.046^{***} (0.000)	-0.033*** (0.000)	
Controls				
Customer		Yes	Yes	
Website Visit		Yes	Yes	
Fixed Effects				
County			Yes	
Week			Yes	
Day-of-Week			Yes	
Time-of-Day			Yes	
	0.010 (50	0.010.444	0.000.0(5	

Dependent Variabl

Observations 2,818,650 2,818,644 2,803,265

Buy-Now-Pay-Later: Creditworthiness cutoff

- Credit score (higher score = lower default risk)
- Customers above threshold: most are offered BNPL
- Customers below threshold: most are not offered BNPL

BNPL: Discontinuity at the Threshold

Descriptive evidence:

- BNPL offer likelihood jumps from 0% to 40%
- Likelihood using BNPL increases from 0% to 25%
- Conversion rate increases from 67% to 73%
- +40PP of customers with access to BNPL leads to +6PP higher conversion rate $\rightarrow 6/40 \sim 15\%$ of customers only buy because BNPL is offered

BNPL: No manipulation of score

• Customers don't know exact method for calculating score

(c) Histogram of Forcing Variable fitted values from regressions on either side of the discontinuity.

BNPL: Estimation

We exploit discontinuities for a fuzzy RDD to estimate a LATE for customers with credit scores around the BNPL threshold via 2SLS

$$T_{i,t} = \alpha_1 \underline{S}_{i,t} + \alpha_2 S_{i,t} + \alpha_3 \underline{S}_{i,t} \times S_{i,t} + \alpha_4 X_{i,t} + \eta_w + \sigma_c + \varepsilon_{i,t}$$
(1)

$$Y_{i,t} = \beta T^{i,t} + \delta_1 S_{i,t} + \delta_2 \underline{S}_{i,t} \times S_{i,t} + \delta_3 X_{i,t} + \eta_w + \sigma_c + \mu_{i,t}$$

$$\tag{2}$$

- 1. First stage
 - Ti,t: Likelihood that retailers offers BNPL
 - \underline{S} : indicator for the score being above threshold or below
 - S : score-point distance to the threshold
- 2. Second stage
 - $Y_{i,t}$: Purchase (yes/no)
 - T^{i,j}: Predicted treatment dummy from (1)

BNPL: Results

- 16.5% of ALL customers abort the purchase if BNPL is not offered
- Recall: 50 / 100 customers choose BNPL
- So 16.5 / 50 that typically use BNPL abort (or 30%)

Dependent Variable:			
Conversion (1/0)	(1)	(2)	(3)
BNPL Offer (1/0)	0.152**	0.171**	0.165**
	(0.013)	(0.047)	(0.042)
Controls			
Customer		Yes	Yes
Website Visit		Yes	Yes
Fixed Effects			
County			Yes
Week			Yes
Day-of-Week			Yes
Time-of-Day			Yes
Kleibergen-Paap Robust F-Stat	38	60	60
Observations	14,418	14,411	14,320

Conclusion

- We document the rise of payment firms
- Rise is closely linked to E-Commerce
- Clientele effect:
 - Customers' payment choices are sticky
 - Reluctance to switch to other payment type if favorite is not offered / favorite payment type not easy to use
- Can help to explains the existence of multiple payment firms that all have significant bargaining power over E-Commerce firms