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Motivation

• Rise of payment firms: one of the most significant changes to financial
industry in the last decade

• This paper: 

– Document the rise of payment firms

– Provide evidence of importance of payment firms for E-Commerce sales, 
using 3mn observations from E-Commerce firm 

• Key findings:

– E-Commerce drives rise in payment firms

– Clientele effect: ~1/4 of customers abandon purchase when their prefered
payment method is not available / not easy to use

– Documented for Buy-Now-Pay-Later, Credit Card, Paypal
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Outline

1. Descriptive statistics on the rise of payment firms

2. Link rise in E-Commerce to rise in payment firms

3. Micro evidence on the importance of payment firms 
for E-Commerce sales
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Data

• Listed firms located in the U.S. with SIC codes 
• 60 (Banks)
• 61/62 (Brokers, Dealers, Non-depository Institutions)
• 63/64 (Insurance) and 
• Payment firms

• Classification of payment firms
• SIC codes 6099 (Functions related to Depository Banking), 6141 

(Personal Credit Institutions), or SIC code that does not start with 6
• AND: contains word “payment” or “merchant solution”

• Cross-checked with Nilson Reports

• 1990-2020. Market Capitalization = prcc_c ∙ csho via Compustat
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Largest 10 financial firms by subsector in 2020
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Profitability of payment firms



Market-to-book of payment firms



E-Commerce↑ = Payment Firms↑ 
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The figure depicts coefficient β of regressions of the form y = α + βx, where x are weekly stock index excess returns of the 
main economic sectors and y is the weekly excess stock returns of payment firms. The sample period is from 2004-2021. 



Industrials/Real Estate↑ = Financials↑ 

The figure depicts coefficient β of regressions of the form y = α + βx, where x are weekly stock index excess returns of the 
main economic sectors and y is the weekly excess stock returns of financial firms (ex payment firms). The sample period is 
from 2004-2021. 



E-Commerce-minus-BrickAndMortar factor
Payment firms: Fama-MacBeth regression (1st stage)



E-Commerce-minus-BrickAndMortar factor
Financial firms: Fama-MacBeth regression (1st stage)



Micro Evidence
German E-commerce company selling furniture

 3mn observations

Setting:

– 1. Customer proceeds with items to check-out & enters information

– 2. Retailer offers payment options

– 3. Customer selects payment option

– 4. Retailer decides about additional verification (if Credit Card is used)

– 5. Customer purchases (“conversion”)

Do customers “stick” to preferred payment methods? → Clientele Effect?

Or do they switch to easily available low-cost alternatives? 13



Payments Used at the Retailer
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Payments Used at the Retailer
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Order of analysis
We analyze three payment types

1. Credit cards

2. PayPal

3. BNPL

For each of the three types, we have an (exogenous) shock to the availability / 
ease of use of that particular payment type

Credit cards and BNPL: RDD design

PayPal: IV design
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Credit Card: Additional Verification Requirment
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• Internal transaction risk score (higher score = higher fraud risk)

• Customers above 0.7: additional identity verification check (e.g. PIN)

• Customers below 0.7: no check



Credit Card: Discontinuity at the Threshold
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• Suited for a slightly fuzzy RDD

• Verification check jumps from around 4% to 100%

• Conversion rate drops from 76% to 54%



Credit Card: No manipulation of score
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• Customers typically not aware of existence of transaction risk score

• Even if they are, they don’t know exact method for calculating score



Credit Card: Estimation

We exploit discontinuities for a fuzzy RDD to estimate a LATE for customers with
credit scores around the verification threshold via 2SLS

1. First stage

• Ti,t: Likelihood that retailers requires verification

• S : indicator for the score being above threshold or below

• S : score-point distance to the threshold

2. Second stage

• Yi,t: Purchase (yes/no)

• Ti,j: Predicted treatment dummy from (1)
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Credit Card: Results
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• Recall: 10 / 100 customers choose Credit Card

• 24.8%-25.7% of those abort purchases (=2-3 of the 100 customers)

• Reducing sales by 2.5%



PayPal: Outages
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• Outages at PayPal are rare but do occur
• We use a Google search index for problems using PayPal in Germany
• Extremely high values (>99.5 percentile) = “PayPal Outage” (1)
• Normal values (<95 percentile) = normal times (0)



PayPal: Estimation

• Effect of an outage on all customers estimated via

• Zh : PayPal outage dummy variable (1: outage, 0: no outage)

• Yi,t: Conversion dummy (1: purchase, 0: abortion)

Important: 

• Google search-based proxy is noisy („1“ does not imply that all customers are
affected by the outage during the entire time)

• Payment via PayPal decreases by approximately 10% during PayPal outages

• Identification less ideal than for BNPL and credit card (we do not know the
underlying drivers of Paypal outages)
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PayPal: Results

24

• 3.3% of ALL customers abort the purchase
• Recall: 30 / 100 customers choose PayPal
• 3.3 / 30 that typically use PayPal abort (or ~10%)
• Not all PayPal customer affected by outage  conservative estimation >20% of those 

whose are affected abort the transaction



Buy-Now-Pay-Later: Creditworthiness cutoff
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• Credit score (higher score = lower default risk)

• Customers above threshold: most are offered BNPL 
• Customers below threshold: most are not offered BNPL



BNPL: Discontinuity at the Threshold
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Descriptive evidence:

• BNPL offer likelihood jumps from 0% to 40%

• Likelihood using BNPL increases from 0% to 25%

• Conversion rate increases from 67% to 73%

• +40PP of customers with access to BNPL leads to +6PP higher conversion 
rate  6/40 ~15% of customers only buy because BNPL is offered



BNPL: No manipulation of score
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• Customers don’t know exact method for calculating score



BNPL: Estimation

We exploit discontinuities for a fuzzy RDD to estimate a LATE for customers with
credit scores around the BNPL threshold via 2SLS

1. First stage

• Ti,t: Likelihood that retailers offers BNPL

• S : indicator for the score being above threshold or below

• S : score-point distance to the threshold

2. Second stage

• Yi,t: Purchase (yes/no)

• Ti,j: Predicted treatment dummy from (1)
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BNPL: Results
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• 16.5% of ALL customers abort the purchase if BNPL is not offered

• Recall: 50 / 100 customers choose BNPL

• So 16.5 / 50 that typically use BNPL abort (or 30%)



Conclusion

• We document the rise of payment firms

• Rise is closely linked to E-Commerce

• Clientele effect: 

• Customers’ payment choices are sticky

• Reluctance to switch to other payment type if favorite is not offered / 
favorite payment type not easy to use

• Can help to explains the existence of multiple payment firms that all have 
significant bargaining power over E-Commerce firms 
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