Discussion of "Incentives and firm investment: Evidence from China's reform" by He, Liao, and Wang March 17, 2022

Kjetil Storesletten

Fink Professor of Economics, University of Minnesota

Motivation

- Paper studies EVA reform in China where management of SOE firms is evaluated (by SASAC) applying common cost of capital, 5.5%
- Paper provides causal evidence by exploiting staggered implementation of reform
 - Identifying assumption: implementation of reform is independent of firm performance
- Assume that ...
 - debt is the only source of external finance (reasonable)
 - firms can freely choose debt level (questionable)

Motivation (cont)

• Before EVA: assume that firms maximize $\max\{(1 - \tau_{Yi})F(D + E) - (E + D) * r_D\}$

Foc:

$$F'(D+E) = \frac{1}{1-\tau_{Yi}}r_D$$

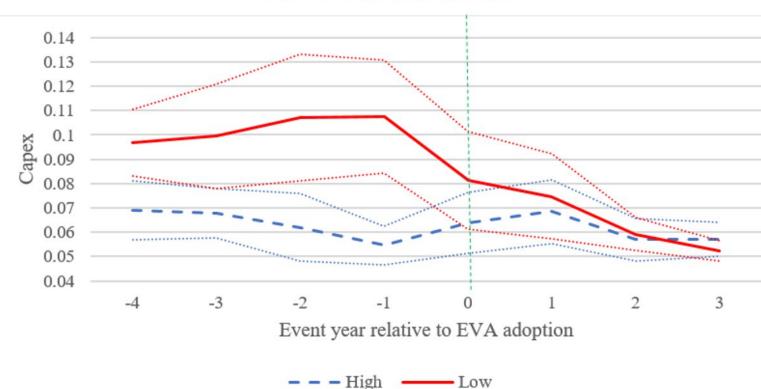
• After EVA: assume that firms maximize $\max\{(1 - \tau_{Yi}) F(D + E) - (E + D) * 5.5\%\}$

• FOC:

$$F'(D+E) = \frac{5.5\%}{1-\tau_{Yi}}$$

Motivation (cont)

- Suppose capital and output wedges are purely pecuniary
- Then: maximizing return on equity (ROE) implies

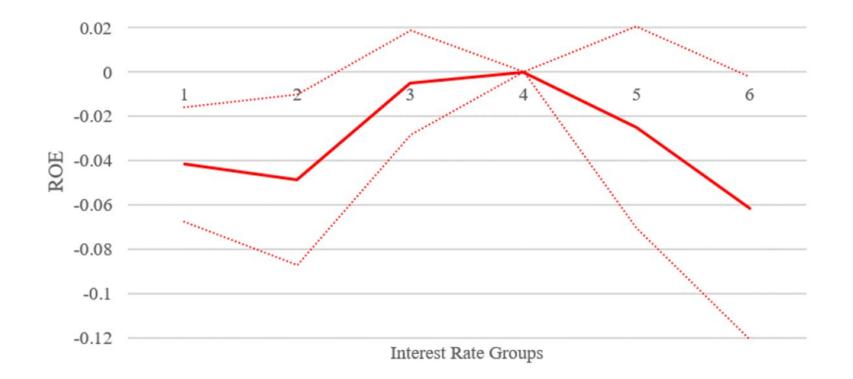

$$F'(D+E) = \frac{r_D}{1 - \tau_{Yi}}$$

• Implies that EVA will LOWER ROE for firms with $r_D \neq \frac{5.5\%}{1-0.25} = 7.3\%$

Implications of EVA

- Let r_D be marginal cost of debt.
- Measure r_D as average interest on interest-bearing debt
- EVA induce SOEs with high r_D to invest less than firms with low r_D
- EVA will affect allocative efficiency of capital
- Main questions of paper:
- 1. Did EVA increase investments for SOEs with high r_D ? ANSWER: yes
- 2. Did EVA lower ROE for SOEs with $r_D \neq 7.3\%$? ANSWER: yes
- 3. How did EVA affect efficiency? ANSWER: unclear

Convergence in investment rates in raw data


Panel A: The treated SASACs

Main result: dependent var.=capex/assets

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Post × InterestRate	0.256***	0.233***	0.240***	0.186***	0.175***	0.179***	0.190***
	(2.71)	(2.68)	(2.62)	(4.13)	(4.31)	(3.37)	(3.17)
Post	-0.032***	-0.026***	-0.030**	-0.005			
	(-3.13)	(-2.76)	(-2.54)	(-0.99)			
InterestRate	-0.368***	-0.357***	-0.321***	-0.196***	-0.156***	-0.183**	-0.170**
	(-4.16)	(-4.20)	(-4.60)	(-4.46)	(-2.92)	(-2.90)	(-2.88)
Tobin's Q		0.003***	0.004***	0.007***	0.006***	0.005**	0.004**
		(3.22)	(4.27)	(4.21)	(3.77)	(2.93)	(2.24)
CashFlow		0.232***	0.215***	0.106***	0.101***	0.087***	0.078***
		(10.26)	(7.63)	(5.57)	(5.32)	(7.29)	(6.77)
Log(Assets)			0.005*	-0.016***	-0.017**	-0.021*	-0.027**
			(1.84)	(-2.82)	(-2.76)	(-2.02)	(-2.83)
Leverage			-0.036**	-0.058***	-0.048**	-0.039*	-0.028
			(-2.46)	(-3.13)	(-2.53)	(-2.14)	(-1.73)
Observations	4,716	4,716	4,716	4,682	4,648	4,628	4,616
R-squared	0.025	0.107	0.118	0.471	0.514	0.549	0.591
Firm FE	NO	NO	NO	YES	YES	YES	YES
Year FE	NO	NO	NO	YES	NO	NO	NO
SASAC*Year FE	NO	NO	NO	NO	YES	YES	YES
Industry*Year FE	NO	NO	NO	NO	NO	YES	YES
Province*Year FE	NO	NO	NO	NO	NO	NO	YES

Result 2: lower ROE for firms with $r_D \neq 7.3\%$

Panel B: with the province*year fixed effects

Potential problem

- Measure r_D as realized interest rate payments on debt
- Paper assumes that r_D equals expected interest rate
- What about default risk?
- Empirical fact: almost zero default in data set
- Possible reason: SASAC bails out failing firms
- Implication: management cares only about return if success
 - Overinvestment
 - Too much leverage and risk
- Two problems for paper:
- 1. SASAC/bank's response: borrowing constraints for risky firms
- 2. Realized r_D could have survivor bias, might ignore SASAC bailout and presence of borrowing constraints

Potential problem (cont.)

- No perfect solution to potential mismeasurement of r_D ... although paper does control for leverage
- Did banks/SASAC change borrowing limits for firms after EVA? ...possibly
 - Paper should look into this

EVA and allocative efficiency of capital (cont.)

- Paper pursues a Hsieh and Klenow (2009) exercice
 - No data on industrial value-added.
 - Follow Chen and Song (2013) and measure MRPK as MRPK=log(before tax operating profit/lagged fixed assets)
- Result: no evidence of reduction in dispersion in MRPK after EVA
- Why?
 - measurement error (difficult to measure MRPK)
 - Differences across industries in risk-adjusted cost of capital (beta)
 - Could also be due to correlation between capital and output wedges

EVA and allocative efficiency of capital

- Allocative efficiency: equate marginal product of capital across firms
- Hsieh and Klenow (2009): distortion is increasing in *var*(log(*MRPK*_i))
- Before EVA

$$MRPK^{ROE}_{i} = \frac{1 + \tau_{Ki}}{1 - \tau_{Yi}} \times r_{i}$$

- After EVA $MRPK^{EVA}{}_{i} = \frac{(1 + \tau_{Ki})(0.25 \pi)r_{i} + 5.5\%}{1 \tau_{Yi}}$
- Suppose the efficient r_i is constant $(r_i = r)$ and $(\pi = 0.25)$

EVA and allocative efficiency of capital (cont.)

$$var(\ln(MRPK^{ROE}_{i})) = var(\ln(1 + \tau_{Ki})) + var(\ln(1 - \tau_{Yi})) -2cov(\ln(1 + \tau_{Ki}), \ln(1 - \tau_{Yi})) \approx var(\tau_{Ki}) + var(\tau_{Yi}) + 2cov(\tau_{Yi}, \tau_{Ki})$$

$$var(\ln(MRPK^{EVA}_{i})) = var(\ln(1 - \tau_{Yi})) \approx var(\tau_{Yi})$$

- Whether distortion is larger or smaller under EVA depends on covariance b/w capital wedge & output wedge
 - Worse distortion if firms with high r_D also have large output taxes $\tau_{Yi} > 0$
 - Smaller distortion if firms with high r_D have output subsidies, $\tau_{Yi} < 0$

EVA and allocative efficiency of capital (cont.)

- Empirical evidence on $cov(\tau_{Yi}, \tau_{Ki})$:
- corr (r_D, political connection) = -0.038 corr (r_D, direct subsidies) = +0.101** corr (r_D, effective tax rates) = -0.069

... cross-sectional correlations based on averages across all years

SOEs w/large r_D tend to have ...

- Large subsidies (low τ_{Yi}) [significant]
- ... and low effective tax rates (low τ_{Yi})
 - suggests $cov(\tau_{Yi}, \tau_{Ki}) < 0$
- Less political connections (high τ_{Yi})
 - suggests $cov(\tau_{Yi}, \tau_{Ki}) < 0$