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Abstract

The phenomenal rise of cryptocurrencies and decentralized finance have promi-
nently featured “staking”: Besides offering a convenience yield for transactions as
digital media of exchange, tokens are frequently staked (and slashed) for base-layer
consensus generation or for incentivizing economic activities and platform develop-
ment, and consequently earn stakers rewards in the same tokens. To provide insights
into the economics of staking and its asset pricing implications, we build a continuous-
time model of a token-based economy where agents heterogeneous in wealth dynam-
ically solve their wealth allocation (stake-transact-consume) problems. We cast the
interactions as a mean field game with stochastic control and systematic shocks, which
underscores aggregate staking ratio as a key variable linking staking to token pricing
and equilibrium reward rate. Empirical findings on all major stakable tokens corrobo-
rate the model predictions. In particular, staking ratio has a positive correlation with
reward rates in the cross section and has a negative correlation in the time series.
Higher reward rates attract greater future staking, increasing an individuals’ staking
allocation and the staking ratio in aggregate, which in turn predicts positive excess
returns. Finally, we use transaction convenience to rationalize violations of the uncov-
ered interest rate parity and significant carry premia (e.g., a long-short carry yields a
Sharpe ratio of 1.6) in the cryptocurrency data.
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1 Introduction

The past decade witnessed the explosive growth in cryptocurrencies, which totaled 2.5

trillion USD by the end of 2021, and a rising interest in Decentralized Finance (Harvey et

al., 2021), which totaled over 130 billion USD as of Feb 2022. The world is also just starting

to understand the categorization of tokens and valuations of digital assets (e.g., Cong et al.,

2021d; Cong and Xiao, 2021). The recent phenomenon of token staking (value locking and

yield farming, see, e.g., Augustin et al., 2022) for higher-layer DeFi innovations as well as

for base layer consensus formation (e.g., through Proof-of-Stake, as discussed in John et al.,

2022) further calls for a unified framework to understand the use of tokens as transaction

media, investment assets, and deposit-like or collateral instruments for earning rewards.

To this end, we offer the first study relating various utility-based functions tokens provide

to users (e.g., transaction convenience via medium of exchange and rewards via staking) to

token prices, from both theoretical and empirical angles. We start by building a continuous-

time model of an economy with token-based digital networks, where agents heterogeneous in

wealth optimally conduct transactions on a (blockchain) platform subject to endogenous pro-

ductivity shocks, stake tokens to earn rewards from both newly minted tokens and fees, and

consume offline. Tokens derive value by enabling users to complete economic transactions

on the digital platform, making them a hybrid of money and investable assets. Stakable

tokens further serve as collateral and represent claims to rewards. Our model captures

the following two distinguishing features of Proof-of-Stake consensus protocols and stakable

projects. First, such tokens are used on platforms that support specific economic transactions

or broader use in on-chain-based projects. This generates utility flows in, e.g., transaction

convenience discussed in (Cong et al., 2021d; Biais et al., 2020). Second, the rate of stak-

ing rewards that an agent earns is influenced by other agents’ behavior in aggregate, but

individuals take it as given when making decisions.1

The equilibrium reward rate then is a fixed point determined by the whole distribution of

heterogeneous agents, each solving an optimal dynamic control problem taking the market
1Polkadot (DOT) constitutes an example: the reward rate for validators is determined by the current

aggregate staking ratio. The less DOTs are staked, the higher the yield is for a planned amount of reward.
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states as given. We apply the mean field game (MFG) solution to solve for the equilibrium,

which marks a novel application of the methodology to economics beyond macroeconomics

and inequality issues, in the presence of systemic shocks. We show that staking ratio, de-

fined as the ratio of aggregate tokens staked in the economy to the total quantity of tokens

in supply, proves crucial for token pricing and reward rate determination in equilibrium.

Related to the TVL (total value locked) ratio that practitioners emphasize, it constitutes a

new predictor for token price dynamics. Uncovered interest rate parity (UIP) is naturally

violated and our model predicts profitable carry trade strategies. We then empirically cor-

roborate model predictions in comprehensive data covering all major stakable tokens and

DeFi projects.

Specifically, agents in our model derive utilities from consumption over an infinite hori-

zon with a time discount. They allocate and adjust their holdings of staked tokens, tradable

tokens, and numeraire under a budget constraint, trading off staking rewards, transaction

convenience, and numeraire convenience for offline (off-chain or off-platform) consumption.

Transaction convenience endogenously increases platform productivity, which stochastically

evolves, while the staking reward rate is jointly determined by aggregate reward and tokens

staked. The staking ratio involves the weighted average of individual staking choices, which

in turn is shaped by the agents’ wealth distribution. The resulting reward rate also natu-

rally affects agents’ wealth dynamics by altering their opportunity sets. Therefore, agents’

individual dynamic optimizations interact and co-evolve with the wealth distribution in such

an MFG.

The resulting equilibrium is characterized by a so-called Master Equation in MFG frame-

works, which captures the value function that related to individual states and also influenced

by the system states with systematic shocks. The staking reward rate is determined by a

fixed point problem. Token price dynamics are fully endogenous and are described by a

partial differential equation akin to the Black-Merton-Scholes formula. We simplify the

equation to an ordinary differential equation concerning the total token valuation, subject

to intuitive boundary conditions such that tokens are worthless for unproductive platforms

and are worth the entire wealth in the economy if the platform is infinitely productive.
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We derive three main model implications concerning the economics of staking and its

asset pricing implications. First, the staking reward is positively related to the staking

ratio in the cross section. While more staking reduces the reward rate for any given reward

quantity, more tokens as rewards increase the staking yield, which naturally attracts more

staking, creating a higher staking ratio in aggregate and for individual agents.

Second, the expected price appreciation increases with the aggregate staking ratio, and

both the price drift and staking ratio are functions of platform productivity. In equilibrium,

agents stake more when the platform productivity is low, yet that is exactly the time that

more wealth can be potentially allocated onto the platform in future. A higher staking ratio

also feeds back to the productivity growth, which increases future demands for tokens and

their prices.

Third, there are general predictable excess returns to staking over holding the numeraire,

which arise as a compensation for the losses in transaction and consumption convenience.

This third implication is particularly interesting when we relate stakable tokens to traditional

assets such as currencies. The token price can be treated as an exchange rate against

numeraire (such as USD), whereas the reward rate can be viewed as a deposit interest

rate of the token. Then the model implies that the classical uncovered interest rate parity

(UIP) fails.2 We also derive the expression for crypto carry following the general definition

of carry (Koijen et al., 2018). Higher carry (equivalent to a higher reward rate) attracts

greater staking, generating excess price appreciation. As an aggregation of reward rate and

price appreciation, the excess return is therefore higher. The staking reward distribution

mechanically reduces the reward rate under excessive staking ratio. Consequently, carry

predicts lower excess returns in the time series than in the cross-section.

For empirical analysis, we obtain data on 66 tokens from stakingrewards.com that cover

all major stakable cryptocurrencies from July 2018 to November 2022. Our empirical findings

support the model predictions. First, we document that a higher reward ratio for staking

significantly and positively relates to a higher staking ratio. As the aggregate reward (relative
2UIP implies that the expected returns on default-free deposits across currencies are equalized, and thus

the expected excess return should be zero. However, there are predictable excess returns that arise as a
compensation for convenience loss. This explanation shares similar idea with Valchev (2020).
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to the total amount of tokens) increases by 0.1 units, the corresponding staking ratio increases

by 7.9%. Moreover, the reward rate has a predictable effect on changes in staking ratio in

both cross-section and time series. On average, a 1% increase in reward rate in the previous

week increases the staking ratio in the following week by about 0.024%. This property

is robust to adding both two-way fixed effect and control variables including market cap

and token return volatility. However, its significance decreases with longer time intervals,

reflecting to some extent the mechanical downward adjustment of the reward rate when more

tokens are staked (because the same staking rewards have to be divided among more staked

tokens) and the fact that in practice, tokens are locked for a prolonged time.

We also verify in the data that a larger staking ratio predicts greater price appreciation

in subsequent weeks. When the staking ratio increases by 1%, the corresponding token price

appreciates by 0.066% in the following week. Considering that the variation of staking ratio

is often large, especially in the cross section, this effect is relevant for investment decisions.

Crypto market return and size factors do not explain the predictive power of the staking

ratio, which is closely related to market liquidity and depth, and reflects the fact that tokens

can be commodity-like.3 Staking reduces the supply of liquid cryptocurrencies, and hence

pushes up the token’s prices and increases the convenience yields of tokens. This is similar to

how under capital constraints, using commodities as collateral for raising funds increases the

spot price and the convenience yield of the underlying commodities (Tang and Zhu, 2016).

Finally, to test for violations of UIP, we follow Fama (1984)’s method and obtain that

the estimated β significantly deviates from zero, and is even close to ´1, where β should be

zero under UIP. In a corollary, we construct a carry trade strategy that goes long high-carry

crypto assets and shorts low-carry assets, yielding a Sharpe ratio of 1.60 due to that assets

with higher carry generate greater returns. We further document how crypto carry predicts

excess returns almost one-for-one in then cross-section, with a reduced albeit significant effect

in the time series. Intuitively, a higher reward rate attracts more staking, which persists over

the locked period, reducing the reward rate going forward and thus the total expected return.
3Commodities Futures Trading Commission (CFTC) regards cryptocurrencies as commodities, see, e.g.,

https://www.cftc.gov/sites/default/files/2019-12/oceo_bitcoinbasics0218.pdf.
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Our study adds to the literature on blockchain economics and cryptocurrency markets.4

In particular, we build on the tokenomics framework of Cong et al. (2021d) and Cong et

al. (2021c) to add to emerging studies on Proof-of-Stake protocols (e.g., Fanti et al., 2019;

Saleh, 2021; Benhaim et al., 2021) and debates on the environmental and scalability issues

associated with Proof-of-Work (PoW) protocols (e.g., Cong et al., 2021e; Hinzen et al., 2019).

We also add to an emerging literature on DeFi (e.g., Park, 2021; Cong et al., 2022) For

example, Li et al. (2022) empirically describe the DeFi landscape on a major decentralized

exchange.

The most closely related paper to ours is John et al. (2022) which theoretically examines

native PoS crypto assets that serve primarily as investment vehicles, whereas we focus on the

platform tokens with a combination of utility flow and investment function while endogeniz-

ing agents’ dynamic consumption off the network. While both studies demonstrate that the

equilibrium staking ratio increases in staking rewards, John et al. (2022) finds that staked

asset value can exhibit a non-monotonic relationship with block rewards and cause redis-

tribution when agents have heterogeneous trading horizons. In contrast, we explore agents’

heterogeneity in wealth and how equilibrium staking ratio predicts future price dynamics.

A recent article by Augustin et al. (2022) characterize the risk and return tradeoffs of yield

farming using data from PancakeSwap. We offer a theoretical framework to think about

returns to staking and also examine UIP violations and crypto carry concerning the cross

section of tokens, offering likely the first study of equilibrium DeFi staking with empirical

evidence to corroborate our model predictions.

A sizable literature documents uncovered interest rate parity (e.g., Fama, 1984; Lustig

et al., 2019). Carry and its predictability has been analyzed not only for currencies but

also for other assets such as equities (e.g., Fama and French, 1998; Griffin et al., 2003; Hou

et al., 2011), bonds (e.g., Ilmanen, 1995; Barr and Priestley, 2004), and commodities (e.g.,
4Existing studies mostly examine issues related to consensus algorithms (Biais et al., 2019; Saleh, 2021),

cryptocurrency mining (e.g., Cong et al., 2021e; Lehar and Parlour, 2020), scalability (e.g., Abadi and
Brunnermeier, 2018; John et al., 2020), fee designs Easley et al. (2019); Basu et al. (2019); Huberman et al.
(2021), DeFi (e.g., Harvey et al., 2021; Capponi and Jia, 2021), ICOs (e.g., Lyandres et al., 2019; Howell et
al., 2020), pricing of crypto assets (e.g., Liu et al., 2019; Cong et al., 2021a; Prat et al., 2019), manipulation
and regulation (e.g., Griffin and Shams, 2020; Li et al., 2021; Cong et al., 2021b, n.d.), or digital currencies
(e.g., Gans et al., 2015; Bech and Garratt, 2017; Chiu et al., 2019; Cong and Mayer, 2021).
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Bailey and Chan, 1993; Casassus and Collin-Dufresne, 2005; Tang and Xiong, 2012). Koijen

et al. (2018) applies a general concept of carry and finds that carry predicts returns in both

the cross-section and time series. We add by documenting UIP violations and carry among

cryptocurrencies (and with fiat currencies). We theoretically rationalize the observations

and link carry to tokenomics, complementing recent empirical work by Franz and Valentin

(2020) which documents deviations of covered interest parity in cryptocurrencies.

The remainder of this paper is structured as follows. Section 2 describes institutional

background and stylized facts concerning staking. Section 3 proposes a dynamic model of

the staking economy. Section 4 solves the model and derives implications. Section 5 presents

corroborating empirical evidence. Section 6 discusses crypto carry. Section 7 concludes.

2 Institutional Background, Data, and Stylized Facts

Staking in general involves two broad categories of activities: those related to pan-PoS

consensus protocols and those in higher layer DeFi applications.

2.1 Staking Mechanisms

Consensus generation in PoS. Fundamentally, blockchain functions to generate a rel-

atively decentralized consensus to enable economic interactions such as value or informa-

tion exchanges (e.g., Cong and He, 2019). Permissionless blockchains, with Bitcoin as the

best-known example, have historically relied on variants of the PoW protocol. Because of

scalability and environmental issues of PoW (Cong et al., 2021e; John et al., 2020), PoS

protocols have gained popularity and momentum for both permissioned and permissionless

blockchains, with major market players adopting and incumbents such as Ethereum contem-

plating a conversion (Irresberger et al., 2021).

Under PoS, agents who stake native tokens have opportunities to append blocks and earn

block rewards and fees as compensation. There are mainly two ways to participate. The first

is to run a validator node, staking pool, or masternode by holding native tokens and incurring

the costs including hardware costs and time spent on maintenance. The more one stakes,
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the more likely one is to be selected and compensated for their participation(Saleh, 2021,

contains more details). Note that holding a token does not necessarily mean participating

in staking. The second way is through delegation. Agents only need to delegate their tokens

to an existing node or a pool to receive a reward earned by the node/pool. This route is

flexible and friendly for players with less tokens and allows them to share risk (Cong et al.,

2021e). In practice, agents incur negligible physical costs (as opposed to the high entry cost

of PoW mining or directly maintaining a node in PoS). Our study includes all protocols

using pan-PoS protocols, such as Proof-of-Credit (POC) used in Nuls, which are variants of

the above mechanisms.

We take Solana as a concrete example.5 Solana is an open-source project implementing

a new, high-performance, permissionless blockchain. It enables transactions to be ordered

as they enter the network, rather than by block, which makes Solana one of the fastest

blockchains in the world and the rapidly growing ecosystem in crypto, with thousands of

projects spanning DeFi, NFTs, Web 3.0 and more. Solana uses Proof-of-Stake (PoS) as its

consensus mechanism. The performance is improved by its innovative protocol, Proof-of-

History (PoH). Solana’s Proof-of-Stake is designed to quickly confirm the current sequence

of transactions produced by the PoH generator, vote and select the next PoH generator,

and punish misbehaving validators. A block in the context of Solana is simply the term

used to describe the sequence of entries that validators vote on to achieve confirmation.

Validators within Solana’s PoS consensus model are the entities responsible for confirming

if these entries are valid. SOL is the name of Solana’s native token, which can be passed

to nodes in a Solana cluster in exchange for running an on-chain program or validating its

output. Stakers delegate SOL to validators to help increase these validators’ voting weight.

Such action indicates a degree of trust in the validators. Stakers delegate to ensure validators

cast honest votes and hence ensure the security of the network. The more stake delegated to

a validator, the more often this validator is chosen to write new transactions to the ledger,

and then the more rewards the validator and its delegators earn.
5The descriptions are basically taken from the official documentation of Solana, see https://docs.sol

ana.com. We also refer to blockdaemon.com for some additional overviews, see https://blockdaemon.co
m/platform/validator-node/how-solana-staking-works/.
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Staking (value lockup) in DeFi. Incentivizing desirable behavior and guarding against

misbehavior are crucial in DeFi applications. To this end, staking programs are popular

and important in practice, which applies to a balance of tokens under custody in a smart

contract. Users on DeFi platforms receive staking rewards as a form of interest payment from

their token balance staked (Harvey et al., 2021). Synthetix is an example of an open-source

DeFi protocol on Ethereum involving staking in its SNX tokens. Users can create and trade

derivative tokens and gain exposure to assets like gold, bitcoin, and euros without having to

actually own them. These derivative assets are collateralized by the platform tokens (SNX)

which, when locked in the contracts, enables their issuance. In return, each transaction

generates a small fee distributed to SNX collateral providers. Another example is Chainlink,

the leading decentralized oracle network. Oracle nodes stake LINK tokens to compete for

service tasks and to ensure truthful reporting while depositors stake tokens to help with the

alert system for bribery resistance and network security. In return, these agents earn staking

rewards from both newly issued tokens and fees.

In practice, DeFi staking may involve different lock-up periods and multiple tokens.6 The

risks of being slashed and losing the staked tokens are also different. Without getting bogged

down with specific threshold requirements and operational differences across various DeFi

protocols and smart contracts, DeFi staking can be characterized as simply earning rewards

by collateralizing the tokens for some functionalities in the network. From the stakers’

perspective, staking shares the spirit of certificates of deposit or risky illiquid investments.

Reward determination and slashing. In most staking programs, including PoS chains,

on-chain projects and DeFi platforms, the total rewards used to incentivize staking or its

determination mechanism are pre-specified and announced. Therefore, the aggregate reward

for a specific time window is common knowledge.

In PoS, the blockchain branch is randomly selected from the whole staking pool. That is,

the staking reward is randomly distributed to stakeholders based on the number of staked

coins they hold as a probability weight. For example, if an investor stakes 10 coins while the
6MakerDAO is a good example. The profits generated from DAI can be viewed as a yield on ETH staking,

and our framework can be used to understand the price impact on ETH.
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aggregate staked amount of this branch is 100, then the investor has a 10% probability of

appending to the branch and receiving the staking reward. As the above process continuously

repeats, we can calculate the expected reward by multiplying the aggregate reward and the

probability. Similarly, on DeFi platforms, stakers share the rewards from transaction fees or

pre-determined emissions (minting of new tokens).

staking reward rate is naturally compared to the interest rate. However, unlike deposit

rates set by the banks, the staking reward rate is jointly determined by the announced

staking reward and the aggregate tokens staked. Online Appendix C.1 details the staking

programs for the tokens in our sample.

In addition to the opportunity costs, stakers also face the risk of losing the staked to-

kens due to possible security attacks, illegal verification, and storage failures. In order to

discourage validator misbehavior, most projects propose a punishment mechanism known as

slashing. A pre-defined percentage of a validator’s tokens are lost when it does not behave

consistently or as expected on the network. The two prominent cases causing slashing are

downtime and double signing, with the latter involving much larger penalties typically.

Market and information. In PoS, validators compete in the amount of staking to earn

rewards. To incentivize more delegates, they develop a reward distribution plan at the node

level. Potential delegators can freely choose among these nodes or delegate through some

intermediaries. Therefore, nodes engage in price competition for delegated stakes. For DeFi

platforms, staking reward rates are typically equal for participants, but some white-listed

groups may have priority in staking. Most stakable tokens are launched on mainstream

cryptocurrency exchanges. Investors can easily invest in these staking projects and trade

these tokens with cryptocurrency assets such as Bitcoin and Ethereum.

Information on staking programs, including participation rules, reward distribution plan,

total staked value (or total value locked, TVL, which includes non-native tokens), and even

information of all the validators, are open and can be easily obtained on official websites of

projects. Third party websites also specialize in collecting real-time information on staking

projects; examples include Stakingrewards.com and EarnCryptoInterest. In particular, an
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important variable in our analysis, the staking ratio, which captures the total number of

tokens staked as a fraction of the total number of tokens, is public knowledge.

2.2 Data

We acquire data from Stakingrewards.com, one of the largest websites that collect infor-

mation on staking and offer both historical and real-time data of most stakable assets. Our

sample covers daily observations of 66 stakable tokens with the largest market capitalization

and longest time span, including 48 base layer pan-PoS protocols and 29 higher layer DeFi

platform tokens.7 By the end of 2021, the in-sample tokens consists 80.35% of the total

market capitalization of the PoS market, and 97.88% of the DeFi market. The aggregation

of the two accounts for 37.78% of the total cryptocurrency market capitalization (64.34%,

excludes Bitcoin).8 The sample period covers July 2018 through Nov 2022, which covers the

initial birth and rapid growth of “staking”, as well as the bear market during 2022. Our

sample covers not only the top stakable assets with the greatest market values, but also all

the stakable assets with a market value of more than 100 million US dollars as of the earlier

period (Aug 2020).9 The additional information about staking is typically aggregated from

official websites of each token, including staking participation methods, reward sharing rules,

real-time staking amount (staking ratio), etc. Note that there may exist multiple staking

participation methods for one token. We always choose the participation method with the

lowest capital threshold and risk, such as delegating, voting, etc. Please see Online Appendix

C.1 for details about staking participation.

Table 1 contains summary statistics of the tokens. In most of our analysis, we aggregate

the daily observations into weekly data because daily data contains much more noise. We

also aggregate data into monthly windows for robustness. The summary statistics show a
7Note that this classification is not a partition, as some tokens have both properties. Solana, for example,

uses the PoS mechanism while building the DeFi ecosystem. The classification we use here is the same as
some mainstream cryptocurrency data sites, including Coinmarketcap etc.

8The corresponding information of total market cap, PoS market cap are generated from CoinMarketCap
and StakingRewards.com respectively. Among them, Ethereum is considered a stakable asset (ETH 2.0) and
is contained in the 48 pan-PoS tokens.

9This somewhat avoids selection bias, as the sample contains such tokens that have high market capital-
ization in the early years but are close to “death” as of 2022, such as terra.

10



large dispersion in the status of staking participation and price appreciation among tokens:

the mean staking reward rate ranges from 0.02% to 75.20%, while the mean staking ratio

ranges from 6.30% to 98.02%.

2.3 Empirical Patterns in Staking and Token Pricing

Aggregate trends. The staking economy has proliferated in recent years. First, for layer

1, the shift of focus away from PoW and onto the PoS consensus algorithms have been evident

and timely.10 The PoS share has increased substantially over time from 5% in October of

2019 to over 20% in October 2021. As of Oct. 2021, the PoS market cap is $326.775 Billion,

up from $21.117 Billion a year ago. The annual growth rate reached 1,550%, while the overall

crypto market cap is up by 673%.

Meanwhile, more than 60 stakable DeFi assets, 27 masternodes and more than 50 main-

stream crypto assets can be staked for rewards on DeFi platforms by the end of 2021. The

entire staking economy has grown to over 4 million total users. Stakers earn a weighted-

average 8% (or an equal-weighted 15%) annual staking reward rate approximately with a

40.91% weighted-average staking ratio.

Violations of uncovered interest rate parity. The Uncovered Interest Rate Parity

(UIP) is an important benchmark in traditional international exchange models, especially

in exchange rate determination. It implies that the difference in interest rates between two

countries will equal the relative change in currency foreign exchange rates over the same

period. However, UIP violation is widely documented in empirical studies (e.g., Backus

et al., 1993; Engel, 1996, 2016): An increase in the domestic interest rate relative to the

foreign one is associated with an increase in the excess return on the domestic currency

over the foreign currency (the “UIP Puzzle”). Many explanations for the UIP violation

have been proposed in previous studies, ranging from time-varying risks including liquidity

and volatility risk (e.g., Bekaert, 1996; Verdelhan, 2010; Gabaix and Maggiori, 2015; Lustig
10According to 2021 Staking Ecosystem Report 2021 published by StakingRewards in Oct. 2021, at https:

//cms.stakingrewards.com/wp-content/uploads/2021/10/2021-Staking-Ecosystem-Report-1.pdf.

11



et al., 2011), peso problems (e.g., Burnside et al., 2011), to time-varying convenience yield

differentials (e.g., Valchev, 2020; Jiang et al., 2021).
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Table 1: Summary statistics: staking reward rate, staking ratio and price change.

Token Reward Rate, r Staking Ratio, Θ Daily Return Token Reward Rate, r Staking Ratio, Θ Daily Return
(%, Annual) (%) (%) (%, Annual) (%) (%)

Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

1inch 3.23 5.99 13.49 9.24 ´0.39 6.32 kusama 14.14 0.79 53.58 10.81 0.52 6.38

aave 4.16 0.97 23.21 1.80 0.30 6.35 kyber 4.27 2.44 27.08 2.98 0.18 5.65

aion 6.57 1.32 26.10 3.28 0.17 6.72 livepeer 63.63 31.17 63.64 4.70 ´0.27 11.48

algorand 6.54 3.10 58.01 9.15 0.03 6.03 lto 7.31 1.23 24.59 4.40 0.67 7.14

ark 9.29 0.52 54.55 1.40 ´0.04 6.27 matic 24.13 12.50 24.96 3.81 0.76 7.38

avalanche 10.11 2.17 65.78 8.49 0.65 7.39 mina 12.11 1.24 98.02 4.48 ´0.18 7.38

band 12.99 1.54 80.36 1.64 0.20 6.79 mirror 42.09 24.44 32.88 7.21 ´0.32 6.10

bifi 8.38 3.33 47.47 15.67 0.21 6.83 near 11.98 2.01 36.77 4.40 0.45 7.14

binance-sc 12.52 5.19 67.99 12.62 0.16 4.54 nem 0.02 0.01 41.39 1.41 ´0.16 4.78

bitbay 2.25 0.50 45.86 6.68 0.96 19.71 neo 2.53 1.29 0.05 5.45

cardano 5.96 2.13 66.10 10.24 0.35 5.83 nuls 9.17 0.97 44.26 4.05 0.17 6.89

cosmos 9.68 1.32 67.93 6.52 0.15 6.22 oasis 15.72 2.24 48.22 3.43 0.12 6.97

cronos 8.95 0.30 14.55 0.50 ´0.60 4.91 pancakeswap 75.20 26.27 37.89 2.57 0.07 6.85

curve 3.22 1.79 73.78 19.06 0.08 7.01 peakdefi 44.14 16.63 34.66 24.78 ´0.29 5.75

dash 6.28 0.28 52.45 2.45 ´0.09 5.62 polkadot 12.18 1.76 60.59 5.38 0.42 6.18

decred 6.48 1.84 54.26 4.57 0.13 5.14 qtum 5.68 0.87 16.86 2.49 0.09 5.26

dfinity 15.17 2.14 49.47 0.50 ´0.74 5.71 secret 26.95 2.62 49.48 4.34 0.50 7.49

dodo 67.60 4.56 42.47 3.85 ´0.88 5.83 smartcash 2.49 0.53 7.77 0.77 0.12 6.40

elrond 17.91 7.00 53.42 6.88 0.64 6.33 snx 26.56 21.19 62.41 15.12 0.33 6.37

eos 4.67 3.72 38.08 23.83 0.02 5.06 solana 8.41 2.86 70.87 8.57 0.67 6.68

eth2.0 11.61 11.87 6.30 2.62 0.46 3.89 stafi 20.94 3.20 21.17 3.33 ´0.04 8.12

fantom 30.30 25.39 58.27 9.77 0.66 8.79 stake-dao 22.74 9.09 34.70 4.83 ´0.14 8.16

flow 9.31 1.13 57.87 10.58 ´0.63 5.24 sushi 10.44 4.57 31.78 3.00 ´0.35 6.44

harmony 10.54 0.77 45.29 6.03 0.59 7.38 tezos 6.58 1.39 72.36 9.21 0.05 5.76

icon 17.42 3.46 27.30 6.52 0.20 6.15 tron 3.79 1.28 24.64 5.00 0.14 5.08

idex 6.89 6.81 34.09 12.78 0.27 7.54 wanchain 8.12 0.56 24.77 1.66 0.19 6.24

injective 4.35 0.18 97.34 0.83 ´0.38 6.55 waves 4.39 1.44 64.61 11.87 0.24 5.99

iotex 10.15 3.62 41.81 6.17 0.09 6.62 wax 3.00 1.95 61.08 22.38 0.29 6.05

irisnet 10.64 0.59 33.83 1.92 0.40 8.12 yearn 4.75 2.68 8.35 9.26 0.32 6.97

kava 18.66 19.30 66.36 10.89 0.32 6.30 zcoin 16.04 3.28 56.88 10.18 0.35 4.72

Notes: According to the reward distribution mechanism, there is no concept of staking ratio for neo.
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Figure 1: UIP violation in cryptocurrency markets.
This figure empirically visualizes the violation of uncovered interest rate parity (UIP) in the cryptocurrency
market based on the data as Table 1 summarizes. We treat the US dollar as local currency and the 1Y
treasury interest rate as the local interest rate. The data is from the Federal Reserve. For the tokens in
our sample, we convert the data into weekly data. Each point in the figure indicates a weekly data point
for a particular token. The staking reward rate (annualized) is used as foreign interest rate, and the x-axis,
the interest rate spread, is calculated as the foreign interest rate minus the local interest rate. The y-axis
is the excess return in the next week, including the interest rate spread and the price appreciation. Since
the tokens are priced in US dollars, the price change is the change in foreign exchange rates. The grey line
shows a linear trend of the scatter points.

We find that UIP is also violated in cryptocurrencies. Since token price and staking

reward rate can be compared to exchange rates and interest rates, we can directly document

crypto UIP violations. Specifically, if we treat the U.S. dollar as a local currency, then the

change of token price (denominated in US dollar) is equivalently considered as the change in

foreign exchange rates. Moreover, earning staking reward rates is similar to earning interest

rates. Figure 1 illustrates a plot of the excess return in the next week against the interest

rate spread calculated as the “foreign interest rate” minus the “local interest rate.” Each

blue circle in the figure indicates a weekly data point for a particular token and the grey line

shows a fitted line. If UIP holds, the slope should be close to zero. However, the observed

upward slope implies that an increase in the foreign interest rate relative to the local one

is associated with an increase in the excess return on the cryptocurrency over the local

currency, i.e., the so-called “the UIP puzzle.” We discuss the implications of UIP violations
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further after introducing our staking model.

3 A Dynamic Model of the Staking Economy

In our model, heterogeneous agents optimally allocate individual wealth in a continuous-

time economy with a digital network subject to productivity shocks. The native token

adoption and staking reward rate are endogenously determined. We capture the interac-

tion among agents and the evolution of aggregate system states using an MFG theoretical

approach, which has been used in macroeconomics (e.g., Achdou et al., 2022), and also de-

scribing, e.g., trade crowding (Cardaliaguet and Lehalle, 2018) and mining competition (Li

et al., 2019). Online Appendix C.2 introduces the theoretical foundation and extensions of

MFG. We also introduce an important state variable, the staking ratio, defined as the ratio

of tokens staked in the economy to the total amount of tokens. It is an aggregation of the

agents’ controls as well as an important system state that influences token prices and agents’

optimizations.

3.1 Setup

Time is continuous and infinite.11 A continuum of agents conducts peer-to-peer transac-

tions on a blockchain platform or a general digital marketplace while participating in staking

programs either in providing network consensus or to contribute to certain DeFi protocols.

A generic consumption good serves as the numeraire and the medium of exchange on the

platform is its native token.

Platform productivity and token price. As in Cong et al. (2021d), platform produc-

tivity At captures the general usefulness and functionality of the digital platform, and thus

reflects the convenience users obtain by transacting on the platform using its tokens. We

assume that At evolves according to a Geometric Brownian Motion:

dAt “ µApΘtqAtdt ` σAAtdZt, (1)
11We also obtain the main results under a finite-horizon model in earlier versions of the paper.
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where Zt is the primary source of uncertainty for the platform economy. Θt is the endogenous

staking ratio, i.e., the ratio of the aggregate number of staked tokens to the total number

of tokens, which will be derived later. In both the base layer (pan-PoS consensus protocols)

and the higher layer (DeFi applications) staking economy, staked tokens contribute to the

development of the platform by maintaining node operations, facilitating the achievement of

consensus, and increasing the security level of the network, respectively. Therefore, the drift

of platform productivity At is endogenous. We assume µApΘtq
1 ě 0 so that a higher staking

ratio improves the platform productivity more.

Without loss of generality, we denote the token price (in numeraire) as Pt, whose dynamics

follow a general diffusion process with endogenous and potentially time-varying µt and σt:

dPt “ µtPtdt ` σtPtdZt. (2)

Agents, adoption, and convenience. Agents of unit measure is indexed by i and each

is characterized by her current wealth wi,t. Each agent makes consumption-portfolio choices

among staked (locked) tokens, non-staked (tradable) tokens, and numeraire (consumption

goods or fiat). An agent becomes a platform user if she holds tokens either for staking or

transactions on the platform.

Users gain convenience from holding tokens and conducting economic activities on the

platform. Since staked tokens are locked from the staker’s perspective, they can only derive

transaction convenience from non-staked (tradable) tokens, which we model similarly as in

Cong et al. (2021d,c): For an agent holding xt (in numeraire, positive) worth of tradable

tokens on the platform, she derives a utility flow:

dvpxtq “ dvt “ x1´α
t putAtq

αdt ´ φdt. (3)

Even though we focus on token convenience as a medium of exchange, the reduced-form

convenience could also include other utility flows such as governance and voting rights.

The marginal transaction convenience Bv
Bx

ą 0 and decreases with xt with α P p0, 1q.

ut “ upwtq ą 0 is the user type that reflects heterogeneity in transaction needs and is a
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function of wealth wt since agents only differ in wt. At any time t, agents can choose not to

participate and collect zero utility. Agents adopting the platform need to incur a flow cost φ

per unit of time for platform adoption to realize the transaction convenience as the second

term in (3) shows. It captures the required effort and attention for participation.

Following Bansal and Coleman (1996) and Valchev (2020), the convenience of holding

the numeraire is reflected in the reduction of transaction costs in consumption. We denote

the transaction cost as Ψt “ Ψtpyt, nt, Atq ě 0, where yt and nt are consumption and

numeraire holdings respectively. Naturally, BΨ
By

ą 0 and BΨ
Bn

ă 0. Then ´BΨ
Bn

ą 0 reflects the

marginal convenience yield of holding the numeraire. As a relative concept, the convenience

of numeraire also relates to the platform. When the platform productivity is lower, the

relative convenience of numeraire is higher. Thus we assume BΨ
BA

ă 0.

We later specify that the token convenience and transaction costs enter agents’ wealth

dynamics rather than utility, for two reasons: First, token convenience flow and transaction

costs are indeed in monetary form in practice, corresponding to business profits and liquidity

costs on real balances, respectively. Second, this approach is functionally equivalent to

accounting them in the utility function (Feenstra, 1986), and is a standard approach in the

literatures on convenience yields of bonds, for example.

Staking rewards. Staking rewards incentivize agents to stake their tokens to either gener-

ate consensus records in a base layer or participate in some DeFi program, such as a liquidity

pool or insurance pool. In practice, staking rewards come from additional token issuance

(emission) or fees others pay. The reward schedule is typically public information at the time

of staking, and can be at least estimated based on real-time blockchain data (see details in

Online Appendix C.1). To model staking rewards, we denote the total amount of tokens at

time t as Qt, which satisfies

dQt “ EpQt, Atqdt. (4)

We denote the aggregate rewards generated by the transaction fee by a random variable

Ft “ τtQt ě 0, the randomness can capture unexpected reward shock and volatility in
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yield observed in practice.12 If the system involves only a constant emission for rewards,

then the total amount of tokens distributed as staking rewards at time t, Rt, comes from a

combination of emission and fees:

Rt “ EpQt, Atq ` FtpQt, Atq “ ιtQt ` τtQt. (5)

The growth rate of token supply implies an inflation rate ιt. However, agents are not

staking because holding tokens for transactions are subject to this inflation. Staked tokens

are subject to the same inflation. Instead, inflation matters for allocating funds on-chain

versus off-chain (assuming the numeraire does not have inflation).13 All staked tokens are

fungible and consequently all stakers face an instantaneous reward rate akin to interest rates

on bank deposits:

rt ”
Rt

Lt

, where Lt is the aggregate amount of staked tokens at t. (6)

To capture the cost of node operation and risk of slashing, we assume that stakers incur

costs at a rate ct ă rt proportional to their staking amount.14 Then if someone stakes kt

tokens (ktPt dollars), by Itô’s Lemma, the resulting wealth increments satisfy:

dpktPtq “ ktdPt ` Ptprt ´ ctqktdt “ pktPtqrpµt ` rt ´ ctqdt ` σdZts. (7)

3.2 Agents’ Problem and Staking as Optimal Control

At time t, an agent with wealth wt chooses the level of consumption yt, and holds a port-

folio consisting of lt numeraire-equivalent amount of staked tokens, xt numeraire-equivalent
12We need no additional assumptions about Ft for both the theoretical and numerical analysis. In practice,

the expected aggregate transaction fee weakly increases with At. In our baseline model, τ is a mean zero
random variable. We also extend it to a random variable with non-negative mean τ̄ , and even consider the
case that τ̄ increases with At, which has little impact on the main properties in the present work.

13For simplicity, we do not model the various horizons for locking—the focus of John et al. (2022)—and
in continuous time requires the tokens to be locked for dt. In our empirical tests, we only require agents to
know the next period’s reward emission.

14The time-varying nature of ct captures the fact that gas fees and risks of slashing could change over
time. However, this is not crucial for our key economic insights.
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amount of tradable tokens and nt numeraire, where xt, lt, nt P r0, wts, nt “ wt ´ xt ´ lt.

Taking as given the system staking reward rate, rt, and wealth distribution mt, each

agent with personal wealth wt decides the controls pyt, xt, ltq to optimize discounted life-time

utility:

max
tys,xs,lsu8

s“t

Et

„
ż 8

t

e´ϕps´tqUpysqds

ȷ

, (8)

where Upytq is the agent’s instant utility from consumption, which is strictly increasing and

concave, and ϕ is the discount rate. Because the staked tokens cannot be traded, the agent

also faces the budget constraint:

yt ď wt ´ lt. (9)

The agent’s wealth dynamics have to satisfy:

dwt “ rpxt ` ltqµt ` ltprt ´ ctq ` vt ´ yt ´ Ψtsdt ` pxt ` ltqσtdZt

“ fpyt, xt, lt;wt,mt, rt, Atqdt ` gpyt, xt, lt;wt,mt, rt, AtqdZt.
(10)

We write the indirect utility function as:

Jpt, wt, At;mt, rtq “ max
tys,xs,lsu8

s“t

Et

„
ż 8

t

e´ϕps´tqUpysqds

ȷ

. (11)

We then derive the Hamilton-Jacobi-Bellman (HJB) equation:

ϕJpt, w,A;m, rq “ Hpw,
BJ

Bw
,

B2J

Bw2
;m, r,Aq ` µAA

BJ

BA
`

1

2
pσAAq2

B2J

BA2
, (12)

where we omitted the time subscript, t, for simple exposition and Hp¨q is the generalized

Hamiltonian defined as:15

Hpw, ξ, ζ;m, r,Aq “ max
ty,x,lu

"

Upyq ` ξfpy, x, l;w,m, r, Aq `
ζ

2
gpy, x, l;w,m, r, Aq2

*

. (13)
15The generalized Hamiltonian is the corresponding Hamiltonian of the stochastic maximum principle as

Yong and Zhou (1999) introduces in Chapter 3.2, which adds the risk adjustment, i.e., is related to the
diffusion term. Its connection to the HJB equation derived through the dynamic programming approach is
also introduced in Chapter 5. We adopt this notation and write HJB equation more compactly as in (12).
Such a representation also facilitates the later proofs and derivations.
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3.3 Dynamic Equilibrium

We now solve for a Markovian equilibrium for the MFG. As mentioned, we denote the

density function of agents’ wealth w at time t as mt “ mtpwtq. Assume all the investors

have non-negative and finite wealth. m is an absolutely continuous density on the state

space W “ r0, w̄s. In this section, we first formally introduce the staking ratio, Θt, which

endogenously depends on mt. Then we analyze the cross-sectional states in equilibrium,

including the determination of reward rate, rt, and the market clearing condition. Finally,

we take the evolution of the wealth distribution mt into account, and derive the dynamic

equilibrium.

Staking ratio. As mentioned in Section 3.1, there is an important global variable, Θt,

the ratio of the aggregate number of staked tokens to the total number of tokens under the

current given system states. The formula of Θt can be endogenously derived from the agents’

perspective:

Θt “ Θpmt, rt, Atq “
Lt

Qt

“

ş

W
lpwt,mt, rt, Atqmtdwt

ş

W
rxpwt,mt, rt, Atq ` lpwt,mt, rt, Atqsmtdwt

. (14)

Agents stake taking as given the reward rate. That is, the staking ratio is a function

of the current reward rate rt. Through the HJB equation and the continuity assumption

of m, it can be shown that Θt is continuous in rt. Staking ratio is important because it

links individual choices with global states. It can be viewed and tracked on the public data

websites such as StakingRewards.com or the official platform of the tokens. Therefore, Θt

in public information at time t in practice.

Equilibrium reward rate. For simplicity, we assume that agents can always update

their information about the wealth distribution after the realization of dt, which means mt

is given and available for all the agents. This assumption entails no additional requirement of

rationality for the agents, and also makes sense in practice thanks to the relatively high trace-

ability of network addresses and their transactions. Some websites (e.g., IntoTheBlock.com)

also provide gathered information, which makes it less difficult for agents to access it.

20



According to the reward distribution mechanism as (6) shows, the resulting reward rate

rt is updated by the aggregate of agents’ controls, Θt. In equilibrium, we obtain a fixed point

problem in rt:

rt “
Rt

QtΘpmt, rt, Atq
. (15)

We denote the equilibrium reward rate and staking ratio as r˚
t and Θ˚

t “ Θpmt, r
˚
t , Atq.

We naturally define ρt as the staking reward ratio,

ρt ”
Rt

Qt

“ ιt ` τt. (16)

It indicates the number of tokens used for rewards as a percentage of the total amount

of tokens on the platform. In contrast to staking reward rate in (6), ρt is a system state

and completely independent of agents’ staking activities. Since ρt has a one-to-one cor-

respondence to the equilibrium r˚
t , the equilibrium staking ratio can also be represented

as Θpmt, ρt, Atq, which is convenient for comparative statics, while Θpmt, rt, Atq facilitates

transition analysis.16

Token market clearing. In aggregate, the total quantity of tokens Qt is equal to the sum

of individuals’ token holdings:

QtPt “

ż

W

pxt ` ltqmtdwt “ {xt ` lt, (17)

where lt “ lpwt,mt, rt, Atq and xt “ xpwt,mt, rt, Atq are the value of staked and non-staked

(tradable) token holdings respectively, and {xt ` lt represents (wealth weighted) average value

of xt ` lt, which is essentially the total wealth allocated to the platform since the agents are

of a unit measure.

Combining (14) and (17), we obtain:

PtLt “ PtQtΘt “

ż

W

ltmtdwt. (18)

16In practice, ρt and rt are both important characteristics in the staking economy. In most staking
economies, especially most PoS chains, the aggregate reward ratio is fixed or at least can be estimated, while
the staking reward rate features the actual return that agents will earn like deposit rate.
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This equation is only related to the staked tokens, which can be considered as the market

clearing conditions in the staking market. Naturally, the token price Pt that satisfies the

market clearing condition should simultaneously clear both the staking and non-staking

market. Otherwise, arbitrage opportunities arise.

The Mean-Field Game Equilibrium. Recall each agent’s wealth evolves according to

(10), in which Zt stands for a systematic shock. This shock impacts all the agents and

thus causes mt to be a flow of measures (Cardaliaguet et al., 2019), or more precisely, the

flow of conditional marginal measures of agents’ wealth given the realization of Zt. MFGs

with systematic shocks also appear in macroeconomics (e.g., the discrete-time heterogeneous

agents models, Krusell and Smith, 1998). Just like classical MFG models, such a system can

be described by a system of PDEs, i.e., the HJB equation, and the Fokker-Planck (FP for

short) equation, with two functions, the value function and the wealth density, as unknowns.

The difference is that the PDEs here are stochastic due to the systematic (platform produc-

tivity) shocks, which makes them less tractable (e.g., the games with major player and the

systematic shock, Huang, 2010) and less compatible with the concept of Nash equilibrium

(Cardaliaguet et al., 2019). We thus take an alternative analytic approach utilizing the so-

called master equation (Lions, 2011), which is an infinite-dimensional equation set in the

space of measures.17

Specifically, we define the value function, U “ Upw,m,Aq : R ˆ P2pRq ˆ R Ñ R, where

P2pRq is the space of Borel probability measures on R with finite second-order moment. It

represents the value of the game to an agent with wealth w when the wealth distribution

is m and the platform productivity is A. Then Upw,m,Aq is the advanced version of the

indirect utility function Jpt, w,A;m, rq as (11) defines, in which the density m is no longer a

given state but an argument. According to (12), the value function is time independent. In

addition, the reward rate r is determined cross-sectionally by m. Under standard regularity

conditions (e.g., Cardaliaguet et al., 2019, see also Online Appendix C.2), Upw,m,Aq satisfies
17Cardaliaguet et al. (2019), Cardaliaguet and Souganidis (2020, 2021), and Bertucci (2021) offer theoret-

ical foundations for the MFG master equation. See also Online Appendix abcde.
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the following master equation:

ϕUpw,m,Aq “H

ˆ

w,
BU

Bw
pw,m,Aq,

B2U

Bw2
pw,m,Aq;m, r,A

˙

`

ż

R

δU

δm
pw,m,A, yq ¨

BH

Bξ

ˆ

w,
BU

Bw
py,m,Aq,

B2U

Bw2
py,m,Aq;m, r,A

˙

dmpyq

´

„
ż

R

B

By

δÛ

δm
pw,m,A, yqdmpyq ` 2

ż

R

B

Bw

δÛ

δm
pw,m,A, yqdmpyq

`

ż

RˆR

B2

ByBy1

δ2Û

δm2
pw,m,A, y, y1qdmpyqdmpy1q

ȷ

´
B2Û

Bw2
pw,m,Aq

´

„

µAA
BU

BA
pw,m,Aq `

1

2
pσAAq2

B2U

BA2
pw,m,Aq

ȷ

,

(19)

where Û : R ˆ P2pRq ˆ R Ñ R, Ûpw,m,Aq “ BH
Bζ

pw, BU
Bw

, B2U
Bw2 ;m, r,Aq ¨ Upw,m,Aq “

1
2
gpy˚, x˚, l˚;w,m, r, Aq ¨ Upw,m,Aq. δÛ

δm
: R ˆ P2pRq ˆ R ˆ R Ñ R, and δ2Û

δm2 : R ˆ P2pRq ˆ

R ˆ R ˆ R Ñ R are the first and second order derivatives of Û with respect to the measure

m respectively. The formal definitions of these derivatives are provided in Online Appendix

C.3.

Let us understand the intuition behind the master equation. The right hand side contains

five terms. The first term is the generalized Hamiltonian, which plays a similar role in the

HJB equation as in (12). The next three terms capture the decomposition of the impact of

mt on the forward evolution of the MFG system. Without the systematic shock, the master

equation takes a simpler form which excludes all the terms involving Û , where the second

term represents the impact of the “deterministic” changes in the wealth distribution. The

systematic shock not only affects the agent directly (via the fourth term, B2Û
Bw2 pw,m,Aq), but

also changes the whole situation of the system and thus affects the agent as a player in the

game (via the third term). The last term represents the direct impact of the platform pro-

ductivity, At. The derivation and requirements of solution are detailed in Online Appendix

C.3.

The equilibrium for the whole system is characterized by the value function Upwt,mt, Atq,

agents’ controls, tyt, xt, ltu
8
t“0, and system states, tAt, Pt, rt,Θtu

8
t“0, such that:

1. Upwt,mt, Atq satisfies the master equation (19);
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2. each agent solves her optimization problem;

3. the platform productivity At satisfies the dynamic process in (1);

4. market clears and trt,Θtu solves the fixed point problem in (15).

Note that the whole system is driven by the dynamic process of platform productivity, At.

Given the initial wealth distribution m0 and the initial productivity A0, the realized path of

the variables may differ because it is influenced by the systematic shock.

4 Model Solution and Implications

As Section 3.3 shows, the master equation is time-independent in this discounted infinite

horizon system, which implies that the value function changes in individual state and the

global wealth density, but not directly in time. On the other hand, the systematic shock

from At process renders the evolution path of density mt stochastic. We solve the model

and derive implications that hold widely under general wealth distributions.

4.1 Staking Ratio & Reward

We start by analyzing the optimal decision of a single agent. We define θt as the agent’s

individual staking ratio given reward rate rt at time t.

θt “ θpwt,mt, rt, Atq “
lpwt,mt, rt, Atq

xpwt,mt, rt, Atq ` lpwt,mt, rt, Atq
“

lt
qt
, (20)

where qt “ qpwt,mt, rt, Atq “ xt ` lt is the aggregate value of individual token holding.

At the instant of decision-making, the agent takes the reward rate rt as given. The

marginal transaction convenience is decreasing with xt, the amount of tradable token held.

Naturally, the agent trades off staking reward and transaction convenience. When the reward

rate is higher, the agent should have a higher individual staking ratio θt. Moreover, for a

given user type, when the agent holds very few tokens, staking should be dominated by

non-staking, since the marginal transaction convenience is sufficiently high.
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Proposition 1. Optimal individual staking. For an agent with wealth wt, the optimal

aggregate value of token holding q˚
t is unique and positive. The optimal individual staking

ratio θ˚
t is heterogeneous with respect to agents’ type ut and satisfies

θ˚
t “

$

’

’

&

’

’

%

max

#

0, 1 ´

ˆ

1 ´ α

rt ´ ct

˙
1
α Atut

q˚
t

Itutąu1u

+

, wt ą

ˆ

1 ´ α

rt ´ ct

˙
1
α

Atut,

1 ´ Itutąu2u, otherwise,

(21)

where I is an indicator function, u1 “
φ
At

`

rt´ct
1´α

˘
1´α
α , and u2 “

φ
At

´

φ
wt

¯
1´α
α .

Clearly, agents with different wealth have heterogeneous optimal individual staking ratio.

However, the common denominator is that when the staking reward is greater, agents’ staking

ratio will also be weakly greater. (21) reflects agent’s trade-off between staking reward and

transaction convenience. Specifically, when the marginal transaction convenience becomes

smaller than the staking reward rate, i.e., rt ´ ct ą p1 ´ αqpAtut

x˚
t

qα, the agent starts putting

the excess token positions into the staking pool. The second row of (21) describes an unusual

case that x˚
t exceeds the wealth constraint. Note that agents may choose not to participate

when collecting non-positive transaction convenience. The indicator functions capture the

conditions that agents choose to participate in the corresponding cases. Online Appendix

A.1 proves and explains Proposition 1 in detail.

Substituting the agents’ individual optimal choices into (14), we obtain the aggregate

staking ratio Θpmt, rt, Atq. Intuitively, Θpmt, rt, Atq also weakly increases with reward rate

rt, but prt,Θpmt, rt, Atqq needs to be jointly determined in equilibrium. Suppose that the

reward rate is higher, agents will expect a larger staking ratio, which in turn leads to a

decrease in rt. prt,Θpmt, rt, Atqq should satisfies (15). As mentioned in Section 3.3, the

equilibrium is determined by the system state, the aggregate staking reward ratio ρt.

Proposition 2. Equilibrium staking ratio. Higher total staking reward ratio leads to a

higher system staking ratio in equilibrium, i.e. @ρ1 ą ρ ą 0,

Θpm, ρ1, Aq ě Θpm, ρ,Aq, (22)
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where ρ “ R
Q

is defined as the aggregate staking reward ratio (the number of tokens used for

rewards as a percentage of the total amount of tokens).

Proposition 2 gives a general characterization of how aggregate staking reward affects

staking ratio in equilibrium. For a given platform productivity At, as the aggregate staking

reward ratio ρt increases, the corresponding overall staking ratio Θ increases. Note that

Proposition 2 holds for any given distribution of agents’ wealth mt. The result applies to

both cross-sectional comparison and time series analysis. Note that a higher reward rate rt

does not necessarily lead to higher equilibrium staking ratio. Fixing the aggregate staking

reward, more wealth staked implies a low reward rate.

Figure 2 visualizes the optimal staking choice of heterogeneous agents and the generation

of equilibrium of the staking economy. Here we focus on comparative statics of reward rate

rt, thus the platform productivity At is fixed.18 To simplify the solution and focus on our

main interest, we further specify that Bu
Bw

ą 0 and B2u
Bw2 ă 0, which are consistent with the

reality that richer people have greater demand for the transaction. For each agent, the

individual staking ratio increases with reward rate. As for the comparison among crowds,

the richer agents have greater optimal staking ratios, since after they have put enough tokens

into transactions, there is still wealth left for staking.

As the blue curve in Figure 2 shows, the overall staking ratio Θpmt, rt, Atq, which is

essentially a weighted average of θ, weakly increases with staking reward rate rt. In the grey

area, more agents enter the staking market as the reward rate increases. When the reward

rate continues to increase, all agents have entered the market and they will gradually increase

the proportion of staking. The downward sloping black curve corresponds to (15). These

two curves’ unique intersection (the black dot) gives the equilibrium pr˚
t ,Θ

˚
t q at time t.19

Note that At influences the equilibrium not only by affecting the transaction convenience,

but also by affecting the token price and its dynamics, which we discuss next.
18In fact, as At and Qt given, µt and σt is determined in our model. Here we straightly substitute the

corresponding value, the detailed analysis on token pricing will be discussed in later subsections.
19We also test the same simulation under different wealth distribution in Online Appendix C.4, which

suggests that the implication is robust with general distributions.
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Figure 2: Individual staking decisions and equilibrium staking ratio.
This figure shows the heterogeneous individual staking decisions. For each agent, the individual staking ratio
weakly increases with reward rate. As for the comparison among crowds, the agent who owns more wealth
will have a greater optimal staking ratio, since after they have invested enough tokens for transaction, there
are still tokens left to be used for staking. As Proposition 1 shows, the individual staking ratio curve is
a piecewise function. In the grey interval, more agents enter the staking market as reward rate increases.
When the reward rate continues to increase, all the agents have entered the market and they will gradually
increase the proportion of staking. The blue curve is the the sum of the individual staking curve, which
features the resulting overall staking ratio Θpmt, rt, Atq. The downward sloping black curve draws the points
that satisfies the equilibrium (15). As a result, the only intersection point formed by these two curves is
the equilibrium situation pr˚

t ,Θ
˚
t q under the current system state. Here the system state At is fixed to be

1, ρt “ 5%. µt and σt are endogenously given by the states, which will be analyzed later. The selection of
the parameters takes into account the reality of the staking market and relevant literature (details in Online
Appendix B.).

4.2 Staking Ratio & Price Dynamics

We link staking activities to token prices. In general, the token price appreciates when

more agents’ wealth flows into the platform, whether it is due to high platform productivity

and thus large transaction convenience, or due to greater participation in staking. We are

interested in the drift term µt of token prices, which depends on both agents’ control and

wealth distribution cross-sectionally. Since many of the derivations in this section involve

only the same time t, we omit the distribution state mt for simplicity, which is a given

cross-sectional information for the agents under the assumption as Section 3.3 mentioned.
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Because At is the only state variable containing exogenous shocks, all endogenous vari-

ables are functions of At in equilibrium.20 In addition, the exogenous token supply, Qt, also

affects the price. Denote Pt “ P pAt, Qtq and apply Itô’s Lemma, we obtain:

dPt “

„

BPt

BAt

Atµ
A
t `

BPt

BQt

Qtιt `
1

2

B2Pt

BA2
t

pAtσ
Aq2

ȷ

dt `
BPt

BAt

Atσ
AdZt. (23)

By matching the coefficients to (2), we get:

µt “
1

Pt

„

BPt

BAt

Atµ
A
t `

BPt

BQt

Qtιt `
1

2

B2Pt

BA2
t

pAtσ
Aq2

ȷ

,

σt “
1

Pt

BPt

BAt

Atσ
A.

(24)

Note that BPt

BQt
is negative, thus ι adds negatively to price drifts. In other words, emissions of

staking rewards cause “inflation,” a concern sometimes voiced by holders of stakable tokens.

For each agent with a positive optimal staked value l˚t given rt, the marginal benefits of

staking is strictly larger than marginal transaction benefits. By the F.O.C., l˚t satisfies:

0 “

ˆ

µt ` rt ´ ct `
BΨt

Bnt

˙

BU

Bw
` px̃t ` l˚t qσ2

t

B2U

Bw2
, (25)

where x̃t “

´

1´α
rt´ct

¯
1
α
Atut. (See details in the proof of Proposition 2 in Online Appendix

A.2.) Since the user type is only related to user’s wealth, we define Σt a subset of the

feasible domain of wealth, W . An agent with wealth wi rationally stake tokens if and only

if wi P Σt. By the fixed-point dequation (15), the equilibrium staking ratio Θt ą 0, thus

Σt ‰ H. Integrating w over Σt and substituting into the market clearing condition (18), we

obtain:
0 “

1

σ2
pµ ` r ´ cq

ż

Σ

BwU

BwwU
mdw `

1

σ2

ż

Σ

BwU

BwwU

BΨ

Bn
mdw

` PQΘ `

ˆ

1 ´ α

r ´ c

˙
1
α

A

ż

Σ

umdw,

(26)

where the time subscript is omitted, BwU and BwwU are the abbreviations of BU
Bw

and B2U
Bw2

20In fact, some of the endogenous variables, such as m, are determined by the path tAsu0ďsďt, whereas
under the assumption mentioned above, the past information is already incorporated into their values.
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respectively. Then by substituting (24) and the fixed point (15) into (26), we get:

0 “
BP

BQ
Qι `

BP

BA
AµA `

ˆ

BP

BA

˙2

p
Ix

P
`

QΘ

I
q

`

AσA
˘2

`
1

2

B2P

BA2

`

AσA
˘2

`

´ ρ

Θ
´ c ` In

¯

P,

(27)

where

I “

ż

Σ

BwU

BwwU
mdw, Ix “

A

I

ˆ

1 ´ α

r ´ c

˙
1
α

ż

Σ

umdw, In “
1

I

ż

Σ

BΨ

Bn

BwU

BwwU
mdw. (28)

The resulting pricing equation (27) can be considered as a Black-Scholes-type partial

differential equation (PDE) with the following differences.21 First, the “theta” term in Black-

Scholes equation reflecting the variation of the derivative value over time is absent in (27).

Instead, the term BP
BQ

Qι captures the expected inflation from token issuance. Second, since

At, the fundamental productivity that drives token price, is not tradable, the coefficient

of BP
BA

is AµA rather than zero.22 Third, the additional third term on the RHS originally

comes from the risk term in the F.O.C. as (25) shows and features the price change risk from

holding tokens. Moreover, there is a “flow” term, p
ρ
Θ

´ c ` InqP , that reflects the excess

gain from staking rewards offsetting the staking cost and convenience loss. Note that BΨ
Bn

is

negative, thus In is typically negative.

(27) is a PDE involving P pAt, Qtq, which is difficult to solve. Reconsidering the market

clearing condition and the definition of Qt, we find that P pAt, QtqQt “ {xt ` lt, which is

an alternative form of (17) representing the aggregate wealth allocated to the platform and

is independent of Qt, the aggregate amount of tokens, because all the relevant variables

are endogenous from At. Substituting the preceding equation into (27) and calculating the

partial differentials, we obtain an ordinary differential equation (ODE), with two intuitive

boundary conditions. Proposition 3 concludes the above results.

21The risk free rate of numeraire is normalized to zero.
22If the fundamental productivity is tradable, the coefficient of BP

BA should be rfA, where rf is the risk free
rate and is set to be zero in our model.

29



Proposition 3. Token price and dynamic. Pt is separable with the representation:

Pt “ P pAt, Qtq “
1

Qt

V pAtq, (29)

where V pAtq captures the aggregate wealth allocated to the platform, and satisfies the ODE:

0 “ V 1pAtqAtµ
A
t ` V 1pAtq

2

ˆ

IxpAtq

V pAtq
`

ΘpAtq

IpAtq

˙

pAtσ
Aq2 `

1

2
V 2pAtqpAtσ

Aq2

`

ˆ

ρt
ΘpAtq

´ ct ` InpAtq ´ ιt

˙

V pAtq,

(30)

where I, Ix and In are denoted as in (28). The ODE is solved with a lower boundary

condition,

lim
AtÑ0

V pAtq “ 0, (31)

and an upper boundary condition,

lim
AtÑ8

V pAtq “

ż

W

wtmtpwtqdwt. (32)

The drift µt and diffusion σt in the token price dynamics in (2) are given by

µt “
V 1pAtq

V pAtq
Atµ

A
t `

1

2

V 2pAtq

V pAtq
pAtσ

Aq2 ´ ιt,

σt “
V 1pAtq

V pAtq
Atσ

A.

(33)

The economic implications of (30) are similar to our previous discussion of (27). Note that

the subset of the whole crowd W , Σ, is determined by agents’ trade-offs between transaction

convenience and staking reward. Therefore, Σ is related to At that leads I, Ix and In to

being functions of At. In addition, in (15), the equilibrium reward rate rt is replaced by
ρt

ΘpAtq
. As for the boundary conditions, the lower boundary corresponds to the case that the

platform is unproductive and thus attracts no users (staking rewards would be zero too),

while the upper boundary represents that when At tends to infinity, the population allocates

their entire wealth to the platform. See more details about the numerical solution in Online
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Appendix A.3. Agents expect the token price to appreciate when they expect higher future

productivity. (33) also implies that expected inflation is reflected in the depreciation of token

prices.

As Proposition 3 shows, under a fixed inflation rate, in equilibrium, the expected price

drift, µt, and staking ratio, Θt, are both functions of platform productivity, At. Figure

3 delineates the joint dynamics of these two variables. In general, a greater staking ratio

relates to higher expected price appreciation.23

There are two main economic driving forces. The first is the feedback effect of staking on

the At process. As (1) and (24) show, a high staking ratio increases the productivity drift

µA
t , and then leads to a large price drift µt. This mechanism illustrates the role that staking

plays in platform growth. In PoS, the system state with a relatively high staking ratio implies

a strong network of highly engaged validators, so that the consensus and confirmation are

efficiently reached. As for high layer staking economy such as DeFi applications, with a

certain capital value, a high staking ratio leads to a high TVL (total value locked), which

is recognized as improving the security level of the platform. For both layers of the staking

economy, the staking ratio positively impacts the growth of platform productivity At through

the above mentioned paths respectively, therefore resulting in a greater drift. As a reflection

of the value of the platform, the price drift increases accordingly to (24).

The second force comes directly from productivity At. On the one hand, µt declines in

At. As At grows, agents allocate more wealth on the platform and less off-chain wealth,

thus the potential future price appreciation is reduced, which generates the similar user-base

stabilizing effect of tokens as Cong et al. (2021d). On the other hand, Θt also declines in At,

because higher At results in a larger transaction convenience. Therefore, the joint dynamics

of µt and Θt exhibit a positive relationship. This mechanism also explains the shape of the

curve when the staking ratio is low. When At is so high that most wealth has already been

allocated onto the platform, the price drift is dominated by the increases in token supply in

the form of staking rewards and is therefore negative.

To further decompose the effects, we consider the case where the staking ratio does not
23We also test the same simulation under different wealth distribution in Online Appendix C.4, which

suggests that the implication is robust with general wealth distributions.
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feed back to µA
t , as depicted by the grey dashed curve in Figure 3. For the same staking ratios,

the price drift µt is smaller compared to the blue curve, especially when the staking ratio is

high, which intuitively isolates the second force. At the same time, due to the existence of

the first force, the grey curve still has a positive slope especially when the staking ratio is

low.24

Finally, we note that in Figure 3, a low value of staking ratio predicts negative price drifts.

This is exacerbated when the rewards from emission is a higher percentage of the aggregate

token supply, as we show in Online Appendix C.5. A staking program thus negative impacts

token prices if the rewards from emission are high relative to the equilibrium staking ratio.

Designers of staking programs need to select the emission rate carefully to avoid hurting

token holders through “inflation.”

4.3 Token Excess Returns & UIP Violation

Each token holder takes on the return and risk of token price fluctuation, but loses some

convenience of holding the numeraire. Denote the expected financial excess return of staked

tokens over the numeraire as λt, then:

λt ” Et

“

dPt ` rstaked token‰

“ µt ` rt ´ ct. (34)

Proposition 4. Token excess return. For any agent with any positive wealth, her optimal

aggregate value of token holding, q˚
t , satisfies

λt “ ´
BΨ

Bnt

´
q˚
t σ

2
t BwwU

BwU
`

min t0,MU˚
x ´ MU˚

l u

BwU
, (35)

where ´ BΨ
Bnt

ą 0 is the marginal convenience yield of holding numeraire, and MU˚
l and MU˚

x

is marginal utility of staked and tradable tokens respectively when the agent’s controls are
24Note that the gray curve becomes flat as the staking ratio increases. It is caused by the transaction

threshold φ. As At declines, such flow cost exceeds the transaction convenience that agents can earn.
Heterogeneous agents successively cease to hold tradable tokens, thus the staking ratio rises to one. With
feedback effect, given the same At, the staking ratio is larger (as the scatter points in Figure 3 show), even
close to one, so the “flat” part is not obvious.
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Figure 3: Staking ratio and price dynamics.
This graph shows the relationship between the system staking ratio Θt and the drift term of the token price
µt. The blue curve is the case where the staking ratio feeds back the platform productivity At process (our
main model), while the grey curve shows the case for comparison where the feedback effect does not exist.
The colored scatter points on the two curves mark the corresponding point pΘt, µtq for different values of
lnpAtq respectively. As this graph shows, greater staking ratio relates to higher expected price appreciation.

optimized.

Proposition 4 is a fundamental property, which follows directly from the optimization of

agents without solving the pricing equations. (35) has been rearranged so that the left-hand

side contains only λt, which shows that there are general predictable excess returns that

arise as a compensation for convenience losses. In particular, staked token is compensated

with staking rewards as financial returns for the loss of transaction convenience.

This phenomenon is closely related to the uncovered interest rate parity (UIP) in the

foreign exchange market. A token’s price in numeraire corresponds to the exchange rate,

whereas the staking reward rate corresponds to the concept of interest rate. UIP implies that

the expected returns on default-free deposits across currencies are equalized, and thus the
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expected excess return λt should be zero.25 However, (35) shows that the uncovered interest

parity does not hold, given the predictable excess returns that arise as a compensation for

convenience loss. When the convenience of numeraire increases, staked token is compensated

with higher financial return. This interpretation of UIP violation shares similar ideas with

Valchev (2020) ’s explanation of the UIP puzzle in classical asset types. The second term

on the R.H.S represents the impact of volatility risk. This is consistent with studies using

term structure models (e.g., Bansal, 1997; Lustig et al., 2019), where the difference between

domestic and foreign bond risk premia, expressed in domestic currency, is determined by the

volatility difference of the permanent components of the stochastic discount factors. The

remaining term on the R.H.S. represents the trade-off between staking and non-staking.

(35) further reveals that (i) the excess return λt is a system state that can be considered

exogenous when a single agent makes a decision, and (ii) the convenience of the numeraire

is a relative concept, which in fact reflects the difference in convenience between the nu-

meraire and a token in question. The first fact suggests that (35) also implies a trade-off

between staking and non-staking by the agent. In other words, the staking reward prt ´ ctq

should actually be considered as a compensation for the loss of transaction convenience.

More discussion is provided in Online Appendix A.4. The second fact yields two impor-

tant corollaries. First, even based on the same numeraire, the expected process return can

be different for different tokens, since the convenience of numeraire is a relative concept.

Second, not only can we use a currency such as USD as a numeraire, we can also use any

of the cryptocurrencies as numeraire. Therefore, within the cryptocurrency market, UIP is

violated too.

5 Empirical Findings

We test empirically the three main predictions of our model: (i) Staking reward rate

rt affects agents’ staking choice and thus the overall staking ratio Θt. (ii) Staking ratio Θt

25In the uncovered interest rate parity among currencies, λt “ Et

”

dSt ` iforeignt ´ ilocalt

ı

, where St is the
log exchange rate (foreign currency units per unit of local currency). The corresponding terms in (34) of St,
iforeign and ilocal are respectively dPt, rt ´ ct and the numeraire risk free rate (normalized to zero).

34



predicts price dynamics and token returns. (iii) Uncovered interest rate parity does not work

in the cryptocurrency market.

5.1 Linking Staking Reward Rate to Aggregate Staking

Proposition 2 predicts that a higher staking reward corresponds to a higher system stak-

ing ratio in equilibrium. To test this implication empirically, we calculate the daily average

of aggregate staking reward ratio and staking ratio for each token over its entire sample

period. To compare different tokens, we use the concept of staking reward ratio, i.e., the

total amount of tokens used as staking reward divided by the total amount of issued tokens

(ρ in our model). Figure 4 plots the relationship between staking reward ratio and staking

ratio, in which each token generates one scatter point. The grey dashed line shows the linear

fit of the scattered observations. The positive slope indicates that the reward is positively

related to the staking ratio. Most data points are in the region where the staking reward

ratio is less than 15%. After removing potential outlier points, the blue dashed line shows

that the positive correlation still holds, with an even larger slope. This pattern corroborates

Proposition 2. Since the proposition is based on the equilibrium case, Figure 4 implicitly

illustrates that averaging over the time series roughly conforms to the equilibrium. We also

visualize the relationship with shorter data coverage (up to Oct. 2020) as Figure 4(b) shows,

in which some of the samples included are now near “death” and therefore somewhat respond

to concerns of selection bias. Although there are fewer stakable tokens in the earlier period,

the significant positive correlation between the staking ratio and staking reward ratio still

exists, which suggests the relationship is robust in the sample period.

We further test the implication in panel regressions. We take the staking ratio, Θi,t, as

a dependent variable, and the staking reward ratio, ρi,t, as the main explanatory variable.

The variables are selected during the same period. Table 2 reports the results. As Column

(1) shows, the estimated coefficient of ρi,t is positive and significant at the 1% level. The

value of estimation implies if the aggregate reward increases by 0.1 units, then the staking

ratio will increase by 0.079 (7.9%). Regarding the control variables, crypto assets with

greater market value are more trustworthy, making it more attractive for agents to lock in
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Figure 4: Staking ratio versus staking reward.
This figure plots the relationship between staking ratio Θt and staking reward ratio ρt. In Subplot (A), for
each token, we calculate its mean staking ratio and reward over the entire time interval (up to Nov. 2022)
and then generate one point. The grey dashed line is the linear regression of all scattered points, which shows
a positive correlation between the two variables. After removing the influential points with large rewards,
the linear regression is still upward sloping and even steeper, as shown by the blue dashed line. This plot
visualizes the results of Proposition 2, i.e., a higher aggregate staking reward ratio leads to a higher system
staking ratio. In addition, the size and color of the points indicate the standard deviations of the reward
ratio and staking ratio respectively. In (B), we do the same thing with shorter data coverage (up to Oct.
2020). Although there are fewer tokens, the main relationship between the staking ratio and the staking
reward ratio still holds, which implies robustness in the different sample periods.
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their wealth. Controls that related to the economic structure of the platform itself are also

considered, including the proxy of platform productivity, ai,t, and the share of large asset

users (the so-called big whales) among agents, whalei,t.26 As the baseline model illustrates,

the equilibrium staking ratio not only positively relates to the reward ratio, ρi,t, but also

negatively relates to the platform productivity, At, since it increases transaction convenience

with certain staking rewards. As the extended model with heterogeneous settings shows,

the big whales shall choose higher individual staking ratios, implying that an economy with

larger share of whales should generate larger staking ratio. The results in Table 2 corroborate

the above views. In addition, token ages are also considered, where Y 0
i,t and Y 1

i,t are dummy

variables for tokens less than one year old and more than one year but less than two years old,

respectively. Token ages may affect the staking ratio, especially the earlier ages, since the

platform will experience token distribution to more agents and an inflow of more investors,

which could bring impact. We test the regression on data for different sample periods

and with token-specific, time, and token age fixed effects. We also report the clustered

standard errors together with the fixed effects, which deals with the potential heterogeneity

in the treatment effects as Abadie et al. (2017) discusses. As Table 2 reports, the positive

correlation between staking reward and staking ratio remains robust.27

The previous test focuses on contemporaneous correlations. As Proposition 1 shows,

a higher reward rate rt will lead agents to stake more. Theoretically, the resulting high

staking ratio will decrease the reward rate and evolve to equilibrium. In practice, this

process takes time so that Proposition 1 generates a predictable hypothesis on the staking

ratio. Empirically, we test the prediction by panel regressions as Table 3 reports.

In Table 3, we use the reward rate in the previous period, ri,t´1, as the main independent
26The platform productivity is proxied by the average on-chain transaction processing per second. In

practice, a large number of platforms and blockchains aim to increase the transaction size of the flows
processed on their chains, thus this reflects the platform productivity. Certainly, some other elements are
considered to be the focus of platform improvement, such as transaction security and performance on specific
financial services. However, we believe that the selection of the current proxy variable is still relevant as it
reflects not only the processing capacity of the platform, but also the size of on-chain transaction demands,
and therefore is closely related to the concept of transaction convenience and fits our definition of platform
productivity.

27For robustness, we also test the main regression of Table 2 on both subsamples of base layer pan-PoS
tokens and higher layer DeFi platform tokens respectively (please see Online Appendix C.6).
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Table 2: Staking ratio with respect to the staking reward ratio.
This table tests the relationship between staking ratio, Θi,t, and the aggregate staking reward ratio, ρi,t,
in the same period. The coefficient of ρi,t is significantly positive, which implies higher staking reward
results in a higher staking ratio as Proposition 2 shows. The effect is robust under multiple tests, including
controls (coin age, market value, volatility, the proxies of platform productivity and user type), fixed effects
(token-specific, time, and token age), and different horizons (weekly and monthly). Robust standard errors
clustered by token are reported in parentheses. ˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and
10% respectively.

StakingRatioi,t
7-day 30-day

(1) (2) (3) (4) (5) (6) (7) (8)
ρi,t 0.779˚˚˚ 0.428˚˚˚ 0.452˚˚˚ 0.372˚˚˚ 0.453˚˚˚ 0.794˚˚˚ 0.436˚˚˚ 0.238˚˚˚

p0.030q p0.027q p0.029q p0.032q p0.040q p0.065q p0.066q p0.051q

1
100

logpCapqi,t 3.519˚˚˚ 1.299˚˚˚ 5.199˚˚˚ 0.994 0.696
p0.230q p0.321q p0.499q p0.701q p0.656q

1
100

Volatilityi,t ´0.002 0.313˚˚˚ 0.517˚˚˚ 1.325 ´0.176
p0.075q p0.105q p0.172q p1.145q p1.148q

ai,t ´0.022˚˚˚ ´0.049˚˚˚ ´0.021 ´0.072˚˚˚

p0.006q p0.005q p0.013q p0.014q

whalei,t 0.195˚˚˚ 0.759˚˚˚ 0.149˚˚ 0.026
p0.036q p0.052q p0.071q p0.071q

Y 0
i,t ´0.059˚˚˚ ´0.024

p0.012q p0.022q

Y 1
i,t ´0.017˚˚ ´0.013

p0.008q p0.015q

Fixed Effects
Token Y Y Y Y Y Y
Time Y Y Y Y
Token Age Y Y

Observations 5,660 5,660 4,876 1,364 1,364 1,339 308 308
R2 0.088 0.050 0.102 0.166 0.352 0.089 0.172 0.416
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Table 3: Staking ratio with respect to the staking reward rate.
This table presents the analysis of how people’s staking choices are affected by the reward rate. In Panel
A, we use the reward rate of the previous period, ri,t´1 as independent. The regressions show signifi-
cantly positive coefficient, which implies that larger reward rates predict the positive change of staking ratio
∆StakingRatioi,t . This effect is robust with controls, fixed effects, and in different horizons. Robust standard
errors clustered by token are reported in parentheses. ˚˚˚,˚˚,˚ indicate statistical significance at the 1%,
5% and 10% respectively.

∆StakingRatioi,t
7-day 30-day

(1) (2) (3) (4) (5) (6) (7) (8)
ri,t´1 0.011˚˚˚ 0.026˚˚˚ 0.018˚˚˚ 0.023˚˚˚ 0.018˚˚˚ 0.024˚˚˚ 0.049˚˚˚ 0.009

p0.003q p0.004q p0.004q p0.005q p0.004q p0.005q p0.017q p0.019q

StakingRatioi,t´1 ´0.062˚˚˚ ´0.043˚˚˚ ´0.007˚˚˚ ´0.044˚˚˚ ´0.170˚˚˚

p0.006q p0.006q p0.002q p0.006q p0.027q

Y 0
i,t´1 0.003˚ 0.002 ´0.001 ´0.000 ´0.004

p0.002q p0.002q p0.001q p0.002q p0.008q

Y 1
i,t´1 0.003˚ 0.001 0.001 ´0.000 ´0.002

p0.002q p0.001q p0.001q p0.002q p0.006q

1
100

logpCapqi,t´1 0.073 0.017 0.196˚˚˚ 0.620˚

p0.046q p0.018q p0.074q p0.344q

Volatilityi,t´1 ´0.041 ´0.050 ´0.043 ´0.712
p0.044q p0.039q p0.043q p0.502q

rprice i,t´1 0.008˚˚˚ 0.008˚˚˚ 0.007˚˚ 0.011˚

p0.002q p0.003q p0.003q p0.007q

rMKT t ´0.001
p0.011q

Fixed Effects
Token Y Y Y Y Y Y
Time Y Y Y Y Y

Observations 5,559 5,559 5,559 4,800 4,800 4,800 1,266 1,065
R2 0.003 0.007 0.043 0.031 0.014 0.030 0.007 0.085

variable, and the change in staking ratio, ∆Θi,t “ Θi,t ´ Θi,t´1, as the dependent variable.

The estimated coefficients of reward rate are all significantly positive, which implies a larger

reward rate predicts a positive change in staking ratio. For example, as Column (6) shows,

if the annual reward rate increases by 1%, then the overall staking ratio will increase by

0.024% in the following week. This is a large effect considering the size of the time window

and the magnitude of the change in the rewards rate in the staking economy. Market

cap and token price volatility are used as control variables, since they may be related to

the platform’s userbase and risk, thus affecting the overall staking ratio. Control variables

related to token pricing are also considered, which in combination with Table 4 helps to

understand the endogenous relationship between staking reward rates and price appreciation,
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thus supporting our explanation for the absence of the uncovered interest rate parity.28

Token-specific and time fixed effects are also considered. In addition, we run the test with

the staking ratio Θi,t as the dependent variable. The estimated coefficient of reward rate is

still positive and significant, which are not reported in our main text.29

5.2 Equilibrium Staking Ratio and Token Price Dynamics

Our model shows that the staking ratio positively predicts token price changes. To test

this prediction, we first calculate the log token price change in each period for each token,

rpricei,t “ logp
Pi,t

Pi,t´1
q. We regress rpricei,t on the staking ratio in the previous period. As

many papers have discussed, the market and market value factors have important impacts

on price changes, which also holds for the cryptocurrency market. Therefore, we add the

current period market factor and the previous period log token market cap to the regression

as controls. The calculated data for rMKT is shared by Cong et al. (2021a), and the original

data is collected from CoinMarketCap.com.

Table 4 reveals how staking ratio predicts price appreciation. The estimated coefficient

of staking ratio is significantly positive, which implies that a higher staking ratio predicts

larger token price appreciation. As column (5) shows, if the staking ratio of a token increases

by 1%, its price will appreciate by 0.066% in the next week. Considering there is often a

large variation in the staking ratio, this effect can have a significant impact on price. Such

a baseline regression only takes market and size into account. With the inclusion of more

control variables that have been suggested to affect the token’s pricing in recent studies, the

estimated coefficient on the staking ratio remains significantly positive and even larger, as

shown in column (6). This result remains robust and significant with the addition of control

variables. Therefore, the effect of price appreciation due to the staking ratio is not explained

by other factors. In addition, the estimated coefficients of rMKT and log capitalization are

consistent with related research. As Cong et al. (2021a) discusses, cryptocurrency returns
28Note that the platform-relevant controls, ai,t and whalei,t, are not included. It is because the effects of

these variables are endogenously included in the reward rate, ri,t´1. As mentioned in the model, ri,t and ρi,t
are endogenous and exogenous variables, respectively, thus we chose different controls in Tables 2 and 3.

29Again, we test the main regression of Table 3 using subsamples of base layer pan-PoS tokens and higher
layer DeFi platform tokens respectively. We report in Online Appendix C.6 how our findings are robust.
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exhibit network adoption premia. We also include the corresponding term, ∆Networki ,t´1 ,

as control, which is calculated by taking lag log differences in the total amount of addresses

with non-zero balance on the platform. The estimated coefficient of the network adoption

term is positive and consistent with prior research. However, staking ratio has incremental

predictive power. In the Appendix, we also test the predictive power during bears and bulls,

as Table ?? shows.
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Table 4: Staking ratio and token prices.
This table presents the analysis of how the staking ratio predicts token price appreciation. The main independent is the staking ratio of the previous
period, StakingRatioi,t´1 . The dependent rpricei,t is the log price change. The results show that the coefficient is significantly positive, which
implies that a higher staking ratio will predict higher token price appreciation. Considering that there exists factor effects in the cryptocurrency
market, we also add the market price return rMKTt , the market cap term logpCapqi,t´1 , the network adoption term ∆Networki,t´1 , the previous
return rpricei,t´1 , and additional platform-relevant controls. After adding these controls, the estimated coefficient of staking ratio is still significant.
We also do the test in different horizons and with fixed effects to show the robustness of the results. Robust standard errors clustered by token
are reported in parentheses. ˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and 10% respectively.

rpricei,t
1-day 7-day 30-day

(1) (2) (3) (4) (5) (6) (7) (8) (9)
StakingRatioi,t´1 0.009˚˚˚ 0.032˚˚˚ 0.027˚˚˚ 0.066˚˚ 0.180˚˚˚ 0.170˚˚˚ 0.208˚ 0.416 0.403˚

p0.003q p0.007q p0.007q p0.026q p0.070q p0.055q p0.121q p0.308q p0.230q

rMKTt 0.968˚˚˚ 1.029˚˚˚ 0.844˚˚˚ 0.700˚˚˚ 2.445˚˚˚ 2.257˚˚˚

p0.008q p0.014q p0.074q p0.143q p0.386q p0.552q

logpCapqi,t´1 ´0.002˚˚˚ ´0.003˚˚˚ ´0.004˚˚˚ ´0.027˚˚˚ ´0.033˚˚˚ ´0.034˚˚˚ ´0.120˚˚˚ ´0.133˚˚˚ ´0.114˚˚˚

p0.000q p0.001q p0.001q p0.005q p0.006q p0.008q p0.026q p0.026q p0.031q

rpricei,t´1 0.021˚˚ 0.028˚˚ 0.010 ´0.051 0.137˚˚ ´0.064

p0.009q p0.012q p0.029q p0.032q p0.062q p0.068q

∆Networki,t´1 0.168˚˚˚ 0.182˚˚˚ 0.189 0.289˚˚ 0.849 0.372
p0.027q p0.028q p0.184q p0.142q p1.195q p0.888q

ai,t´1 0.004˚˚˚ 0.005˚˚˚ 0.033˚˚˚ 0.024˚˚˚ 0.050 0.039
p0.001q p0.001q p0.010q p0.008q p0.048q p0.039q

StakingRatioi,t´1 ¨ Y 0
i,t´1 ´0.001 0.007 0.005 0.035 ´0.444˚ ´0.001

p0.005q p0.005q p0.047q p0.037q p0.258q p0.203q

StakingRatioi,t´1 ¨ Y 1
i,t´1 ´0.008˚˚ ´0.004 ´0.039 ´0.034 ´0.199 ´0.122

p0.004q p0.003q p0.035q p0.026q p0.146q p0.099q

Fixed Effects
Token Y Y Y Y Y Y Y Y Y
Time Y Y Y

Observations 41,544 10,887 10,887 5,872 1,530 1,530 1,347 334 334
R2 0.266 0.345 0.009 0.036 0.043 0.028 0.092 0.164 0.075
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5.3 UIP Violation

Uncovered Interest Parity (UIP) plays a central role in exchange rate determination in

most models, which implies that the expected exchange rate depreciation offsets any potential

gains from interest rates. However, numerous empirical studies have shown a so-called “UIP

puzzle” that an increase in the foreign interest rate relative to the local one is associated

with an increase in the excess return on the foreign currency over the local currency. The

popular carry trade strategy is an effective exploitation of UIP violations.

Similar phenomena arise in cryptocurrencies. Staking reward rate can be considered as

interest rate, while token price can be viewed in the context of the exchange rate. Then the

UIP implies that

Et rlogPt`1 ´ logPts “ rft ´ prt ´ ctq, (36)

where rft is the local interest rate at time t.

Our models predicts the failure of UIP in the cryptocurrency market. To empirically test

this, we use the original regression specification in Fama (1984):

λi,t`1 “ αi ` βprft ´ ri,t ` ci,tq ` ϵi,t`1,

where λi,t “ logPi,t`1 ´ logPi,t ` pri,t ´ ci,tq ´ rft ,
(37)

where i represents cryptocurrency i.
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Table 5: Test on the UIP violation.
This table reports the panel regression results of UIP test. The regression model is shown in (37). In each row, we use a different asset as local
currency and report the estimated coefficients of β with different data horizons. The estimated coeficients of β and the corresponding robust
standard errors clustered by tokens are reported. All the results show significantly negative estimation of β, which proves that UIP violates.
Moreover, β ă 0 implies that higher interest rate will predict positive appreciation of exchange rate. The table also shows the results are consistent
with the relevant research results of classic assets, and are robust among currencies and cryptocurrencies.

Local Horizon: 7-day Horizon: 30-day Local Horizon: 7-day Horizon: 30-day
Currency Coef., β Std. Err. R2 Coef., β Std. Err. R2 Currency Coef., β Std. Err. R2 Coef., β Std. Err. R2

Currency & mainstream cryptocurrencies.
US Dollar ´1.02 p0.002q 0.18 ´1.12 p0.030q 0.04 Ethereum ´1.04 p0.001q 0.20 ´1.09 p0.016q 0.05

Bitcoin ´1.02 p0.001q 0.20 ´1.08 p0.018q 0.05

Cryptocurrencies in our sample.
1inch ´0.92 p0.002q 0.27 ´0.72 p0.025q 0.05 kyber ´1.03 p0.001q 0.13 ´1.01 p0.007q 0.03

aave ´1.03 p0.001q 0.16 ´1.14 p0.014q 0.04 livepeer ´0.92 p0.000q 0.38 ´0.52 p0.003q 0.08

aion ´0.90 p0.010q 0.08 ´0.24 p0.354q 0.00 lto ´0.95 p0.016q 0.06 ´0.16 p0.107q 0.00

algorand ´1.00 p0.000q 0.39 ´1.12 p0.017q 0.05 matic ´1.06 p0.000q 0.26 ´1.12 p0.007q 0.08

ark ´1.00 p0.003q 0.15 ´0.90 p0.037q 0.04 mina ´1.06 p0.001q 0.15 ´0.39 p0.049q 0.01

avalanche ´1.13 p0.002q 0.17 ´1.34 p0.037q 0.06 mirror ´0.99 p0.000q 0.64 ´0.88 p0.001q 0.25

band ´1.01 p0.001q 0.16 ´1.05 p0.016q 0.04 near ´1.10 p0.001q 0.17 ´1.42 p0.025q 0.05

bifi ´1.01 p0.004q 0.12 ´0.80 p0.093q 0.02 nem ´1.07 p0.001q 0.14 ´1.29 p0.105q 0.06

binance-sc ´0.99 p0.000q 0.19 ´1.00 p0.006q 0.04 neo ´0.86 p0.003q 0.11 ´0.47 p0.081q 0.01

bitbay ´0.83 p0.005q 0.02 ´0.40 p0.605q 0.00 nuls ´0.98 p0.006q 0.10 ´1.30 p0.352q 0.02

cardano ´1.01 p0.001q 0.17 ´1.02 p0.017q 0.03 oasis ´1.04 p0.001q 0.14 ´1.12 p0.018q 0.04

cosmos ´1.06 p0.001q 0.22 ´1.17 p0.019q 0.06 olympus ´1.00 p0.000q 0.82 ´1.12 p0.001q 0.43

cronos ´1.03 p0.002q 0.13 ´1.07 p0.029q 0.03 osmosis ´0.91 p0.001q 0.28 ´0.48 p0.011q 0.02

curve ´1.05 p0.001q 0.16 ´1.15 p0.014q 0.04 pancakeswap ´1.13 p0.000q 0.67 ´1.44 p0.005q 0.45

dash ´0.88 p0.009q 0.09 ´0.56 p0.115q 0.01 peakdefi ´1.02 p0.001q 0.38 ´1.03 p0.010q 0.14

decred ´1.03 p0.001q 0.20 ´1.05 p0.015q 0.04 polkadot ´1.05 p0.001q 0.19 ´1.69 p0.075q 0.05

dfinity ´0.98 p0.000q 0.13 ´0.84 p0.014q 0.02 qtum ´0.87 p0.001q 0.14 ´0.56 p0.024q 0.02

dodo ´0.91 p0.001q 0.19 ´0.57 p0.022q 0.02 secret ´1.13 p0.001q 0.18 ´1.68 p0.032q 0.08

dydx ´0.91 p0.002q 0.10 ´0.77 p0.014q 0.01 smartcash ´0.90 p0.005q 0.08 ´0.51 p0.157q 0.01

elrond ´1.06 p0.001q 0.18 ´1.19 p0.016q 0.06 snx ´1.05 p0.000q 0.38 ´1.20 p0.007q 0.15

eos ´1.10 p0.001q 0.39 ´1.36 p0.020q 0.16 solana ´1.09 p0.003q 0.16 ´1.17 p0.032q 0.04

eth2.0 ´1.04 p0.000q 0.28 ´1.25 p0.003q 0.09 stafi ´1.01 p0.001q 0.15 ´1.10 p0.024q 0.04

fantom ´0.89 p0.000q 0.36 ´0.48 p0.004q 0.03 stake-dao ´0.40 p0.007q 0.03 2.15 p0.102q 0.11

flow ´1.04 p0.001q 0.12 ´1.03 p0.010q 0.02 sushi ´1.15 p0.007q 0.31 ´1.16 p0.013q 0.08

harmony ´1.07 p0.001q 0.16 ´1.31 p0.018q 0.05 terra ´2.10 p0.176q 0.03 ´4.52 p2.799q 0.02

icon ´0.91 p0.005q 0.10 ´0.70 p0.235q 0.01 tezos ´1.00 p0.001q 0.19 ´0.93 p0.015q 0.04

idex ´1.11 p0.002q 0.19 ´1.21 p0.015q 0.07 tron ´1.02 p0.001q 0.20 ´1.05 p0.018q 0.04

injective ´1.06 p0.001q 0.12 ´1.14 p0.024q 0.03 wanchain ´0.93 p0.005q 0.09 ´0.61 p0.168q 0.01

iotex ´0.91 p0.001q 0.11 ´0.63 p0.051q 0.01 waves ´1.01 p0.001q 0.16 ´0.80 p0.021q 0.02

irisnet ´1.04 p0.002q 0.10 ´0.97 p0.031q 0.02 wax ´1.02 p0.001q 0.14 ´1.09 p0.013q 0.03

kava ´1.11 p0.000q 0.43 ´1.41 p0.005q 0.19 yearn ´1.06 p0.000q 0.43 ´1.14 p0.006q 0.12

kusama ´1.03 p0.001q 0.16 ´1.10 p0.020q 0.04 zcoin ´0.87 p0.003q 0.17 ´0.77 p0.097q 0.04
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Under UIP, β “ 0, i.e. the excess return λt is not forecastable by the current interest

rate difference. On the contrary, numerous empirical researches have found that β is not

equal to 0, and even found that β ă 0 so that higher interest rates are associated with higher

excess returns. For the local currency, we examine in turn each asset in our sample as well as

the US dollar, Bitcoin, and Ethereum. We also examine different time horizons as Valchev

(2020) does.

Table 5 reports the findings. In each row, we report the result of a specific asset as a

local currency, i.e., the exchange rate of each token is converted to the price denominated in

such asset.30 All the results show a significantly negative estimation of β, which violates the

UIP. Moreover, β ă 0 and is close to 1, which implies that a higher interest rate will predict

a positive appreciation of the exchange rate. This leads to potential arbitrage opportunities.

The regression results with different tokens as the local currency all feature the UIP violation,

which implies this phenomenon exists not only among the stakable tokens in our sample,

but also exists when compared with traditional currencies and mainstream non-stakable

cryptocurrencies.

6 Crypto Carry

UIP violations naturally prompt us to examine the predictability of crypto carry to token

excess return and the performance of the crypto carry trade portfolio.

6.1 Carry in Other Asset Classes

Carry trades, which go long in baskets of currencies with high interest rates and short in

baskets of currencies with low interest rates, have been shown to obtain high Sharpe ratios.

The portfolio performance, the predictability of carry to excess returns and the possible

explanation have been widely studied (e.g., Lustig et al., 2014; Bakshi and Panayotov, 2013;
30While in principle, there are various ways to stake (e.g., delegating and running a node), which corre-

sponds to different reward rate and costs, the staking programs mostly feature delegation/voting (that our
data correspond to) which incurs negligible operational costs. We therefore normalize cti,tu for all tokens to
a constant (we use zero because only their relative magnitude matters).
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Burnside et al., 2011; Menkhoff et al., 2012; Koijen et al., 2018; Daniel et al., 2017). Carry

strategies are profitable in a host of asset classes, including global equities, global bonds,

commodities, US Treasuries, credit, and options. But crypto assets may differ from any

traditional asset classes in terms of characteristics. The cryptocurrency market may also

generate new features and anomalies (e.g., Makarov and Schoar, 2020).

One of the direct corollary to the violation of UIP is the existence of carry. Koijen et al.

(2018) define carry as a general concept of any asset. For any asset, carry is defined as its

futures return, assuming that price stays the same, i.e.,

return ” carry ` Epprice appreciationq ` unexpected price shock. (38)

For example, the classic definition of currency carry is the local interest rate in the

corresponding country. Following the general definition of carry as in Koijen et al. (2018),

we define crypto carry similarly as currency carry:

carryt ”
rt ´ ct ´ rf

1 ` rf
. (39)

Table 6 summarizes annualized carry and excess return of all the tokens in our sample.

Sample means and standard deviations are reported. We also include the US Dollar as one

of the assets for which the carry and excess return are, by definition, equal to zero.

6.2 Crypto Carry Trade Portfolio Returns

Tokens in the asset pool are ordered by their carry in the previous period, and then

divided into three groups, i.e. the top x% of assets, the bottom x% and the middle group.

Then we construct a carry trade portfolio by going long high carry group with equal weight

and going short low with equal weight at the end of each week. For long tokens, we also

stake them to earn staking reward rate, while for the short assets, we also compensate for

the staking reward rate. The choice of x does not affect our observation of the main charac-
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Table 6: Excess return and carry.

Token Excess Return Carry Token Excess Return Carry
(%, Annual) (%, Annual) (%, Annual) (%, Annual)

Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

0x 0.42 0.30 6.75 20.62 kusama 12.97 1.93 16.61 25.75

1inch 2.94 6.49 1.46 17.05 kyber 1.32 3.53 1.88 17.67

aave 3.83 0.98 6.21 21.56 livepeer 62.04 29.54 63.61 49.84

aion 6.25 3.01 8.86 18.61 lto 6.70 1.01 12.19 17.18

algorand 7.20 11.72 7.81 19.22 matic 17.78 14.01 25.23 40.64

ark 8.09 0.52 9.52 17.02 mina 10.32 2.81 9.60 20.97

avalanche 8.43 2.74 13.31 35.40 mirror 39.15 37.41 34.85 42.27

band 10.88 3.10 13.62 27.93 near 10.13 2.85 13.30 23.35

bifi 7.95 3.43 11.76 26.02 nem ´1.35 0.51 ´1.59 14.28

binance-sc 8.02 6.38 9.05 15.10 neo 0.92 0.97 2.71 14.94

bitbay 1.13 0.98 10.62 63.06 nuls 8.31 0.56 10.67 16.96

cardano 4.39 2.77 6.52 17.95 oasis 11.80 4.55 12.95 26.77

celo 6.08 0.13 6.07 4.95 olympus 49.79 41.90 37.95 48.49

cosmos 9.82 2.35 11.97 18.55 osmosis 35.90 17.56 30.03 20.48

cronos 10.15 2.67 6.25 13.11 pancakeswap 74.76 26.66 78.13 51.65

curve 1.12 2.83 1.45 19.34 peakdefi 43.88 16.92 43.26 32.91

dash 5.20 0.73 7.28 26.50 polkadot 11.56 1.68 13.14 17.63

decred 5.58 1.71 6.66 14.32 qtum 4.73 1.31 6.30 14.07

dfinity 7.68 4.78 3.87 15.34 secret 24.47 3.95 27.70 28.47

dodo 56.63 10.73 50.54 22.66 smartcash 1.63 0.36 3.64 15.35

dydx 10.66 2.76 8.53 19.03 snx 21.96 23.54 26.42 37.33

elrond 14.24 7.45 19.18 32.93 solana 5.94 3.82 8.94 24.75

eos 10.69 12.06 11.02 18.81 stafi 18.76 4.02 19.91 27.21

eth2.0 8.61 10.82 11.45 18.44 stake-dao 22.23 8.32 21.49 19.43

fantom 27.83 23.95 37.98 47.03 sushi 10.51 10.12 8.85 20.06

flow 6.95 2.05 3.29 16.56 terra 8.26 3.71 14.26 35.66

harmony 8.58 2.89 12.42 27.40 tezos 4.56 2.11 5.52 16.99

icon 16.42 2.80 19.99 23.99 tron 2.81 1.94 4.36 13.99

idex 8.05 8.85 15.12 78.53 wanchain 7.39 0.26 9.44 16.86

injective 3.87 0.58 2.16 13.91 waves 3.84 1.62 6.21 22.75

iotex 8.86 3.14 11.27 21.23 wax 1.56 2.64 3.34 19.81

irisnet 9.67 0.38 14.77 22.07 yearn 14.51 16.78 16.86 30.14

kava 19.55 16.44 22.29 26.61 zcoin 15.02 3.77 18.35 16.90

US Dollar 0.00 0.00 0.00 0.00

teristics of the carry trade portfolio. The portfolio is rebalanced every week.31 Considering

the abnormal fluctuation of token price and staking ratio when a staking project is first

launched, our weekly asset pool does not include new staking projects that come out within

a week.

The performance of such crypto carry trade mainly measures the cross-sectional effect.

Since we long high carry and short low carry, the portfolio carry is always positive. If the
31We also assume that the staking rules allow a one-week stake period. Most stakable tokens do offer such

flexible staking options, and our data of reward rate are also selected in the corresponding options. For some
rare exceptions, we can assume the existence of some derivatives that would enable such an asset allocation.
Such derivatives are gradually appearing in practice.
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portfolio always achieves positive returns, it means that in the cross-section, assets with

higher carry have greater aggregate returns.

The red curve in Figure 5 plots the cumulative return of such carry trade strategy. It

shows an overall increase and large cumulative returns. Especially, in the cryptocurrency

market where price volatility is huge, such a strategy performs a relatively smooth growth,

implying the carry premia always exists. For further discussion, we also report two related

strategies. The grey line shows the performance of the same carry portfolio but without

staking. That is, for long tokens, we do not stake them, and for the short assets, we also do

not compensate for the staking reward rate. The strategy also exhibits increasing cumula-

tive returns, which implies that the carry strategy earns excess returns not only from carry

(staking reward) but also from price appreciation. Moreover, the blue line reports the per-

formance of the same carry portfolio but is rebalanced every month. It exhibits less returns

than 1W-carry trade. There are two potential explanations. First, the reward rate decreases

with contemporaneous staking ratio mechanically. Therefore, investors are unable to earn

high carry consistently for a long period without timely position adjustments. Second, the

reversal of reward rate further influences the staking ratio, which then weakens the effect on

price appreciation as Table 4 reports.

Table 7: Statistics of carry strategies.
This table reports the statistics of three strategies. The first three rows report the results of the long-short
carry strategy, which are corresponding to Figure 5. The rows below report long strategies, including equal-
weighted benchmark, the strategy that long only top 50% high carry tokens with equal weight, and the
strategy that long only top 50% low carry tokens with equal weight, which are corresponding to Figure
6. For each strategy, the annualized mean, standard deviations, skewness, kurtosis, maximum drawdown
(MDD) and Sharpe ratio are reported.

Strategy Mean St.dev. Skewness Kurtosis MDD Sharpe Ratio
(Annual, %) (Annual, %) (%) (Annual)

Long-short Strategy:
1W-Carry Trade (Staking) 0.658 0.411 1.410 18.772 29.966 1.602
1W-Carry Trade (Non-staking) 0.525 0.411 1.404 18.719 35.920 1.277
1M-Carry Trade (Staking) 0.451 0.569 1.260 20.508 69.497 0.791

Long Strategy:
EW All assets 0.156 0.782 ´1.576 7.672 92.934 0.199
EW High Carry 0.494 0.813 ´1.103 4.687 90.419 0.608
EW Low Carry ´0.164 0.804 ´1.804 9.907 95.645 ´0.204

The first row in Table 7 reports statistics of the 1-Week carry strategy, including the an-

nualized mean, standard deviations, skewness, kurtosis, maximum drawdown and the Sharpe
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ratio. The carry strategy has a significantly greater positive return and yields a Sharpe ratio

of 1.60. Examining the higher moments of the crypto carry trade return, we find that the

strong negative skewness is associated with the currency carry trade shown by Brunnermeier

et al. (2008). Moreover, the carry strategy exhibits excess kurtosis, indicating fat-tailed

positive and negative returns, which is consistent with Koijen et al. (2018)’s findings for

currencies and commodities. As the Sharpe ratio and the cumulative return as Figure 5

plots, the long-short carry trade strategy exhibits relatively stable returns, especially consid-

ering the high volatility of cryptocurrency markets and the circle of bulls and bears during

2020-2022.

As a comparison, we also report the statistics for the equal-weighted strategy in Table 7,

i.e., borrow US dollars and go long all tokens in our sample with equal weight. As Figure 6
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Figure 5: Cumulative returns of long-short carry trade strategies.
This figure shows the cumulative return of long-short carry strategies. The red line is the benchmark strategy.
Tokens in the asset pool are ordered by their carry in the previous period. We go long the top x% high carry
tokens with equal weight and short the bottom x% tokens with equal weight. For the long positions, we
also stake the tokens to earn the staking reward rate, while for the short assets, we also compensate for the
staking reward rate. The portfolio is rebalanced every week. The choice of x does not affect our observation
of the main characteristics. Here we set x “ 50. Based on the benchmark strategy, the grey curve reports
the performance of the strategy without earning or compensating staking rewards, the blue curve shows the
performance of the strategy rebalanced every month.
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shows, the bull and bear market cycles bring huge fluctuations in cumulative returns resulting

in a Sharpe ratio of only 0.20. We also test the strategy that borrows US dollars and buys

top (bottom) 50% high carry tokens with equal weight. The order of the tokens is evaluated

every week. Such a long top 50% strategy outperforms the simple equal-weighted portfolio

with a Sharpe ratio of 0.61, while the bottom 50% only generates a negative Sharpe ratio.

Figure 6 plots the cumulative returns of these two strategies. The comparisons also illustrate

the positive correlation of carry to excess returns.
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Figure 6: Cumulative returns of long strategies.
This figure shows the cumulative returns of the following two strategies. The grey curve corresponds to the
equal-weighted benchmark, i.e., borrow US dollar and long all the tokens with equal weight. The red curve
shows the result of the top 50% EW strategy, i.e., borrow US dollar and go long top 50% high carry tokens
with equal weight. The blue curve shows the result of the lowest 50% EW strategy, i.e., borrow US dollar
and go long the 50% tokens with the lowest carry with equal weight. The order of the tokens is evaluated
every week.

6.3 Excess Return Predicted by Carry

Table 7 suggests that carry is a unique predictor of return. Considering (34), the pre-

dictability can come from both the crypto carry itself and any price appreciation that is

related to or predicted by carry. To better understand the relationship between carry and
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expected returns, we follow Koijen et al. (2018) to run the following panel regression:

Excess Return i,t`1 “ ai ` bt ` cCarryi,t ` ϵi,t, (40)

where ai and bt are crypto and time fixed effect respectively. By (34), c “ 0 means the total

return is unpredictable, while c “ 1 suggests that expected return moves one-for-one with

carry. If c P p0, 1q, it implies that the market takes back part of the carry, i.e., investors

cannot fully earn carry as their return.

Table 8 reports the results with and without fixed effects. Weekly and monthly data

are both used for robustness. Without token specific and time fixed effects, c represents the

total predictability of returns from carry from both its passive and dynamic components.

Token-specific fixed effects will remove the predictable return component of carry coming

from passive exposure to tokens with different unconditional average returns.

The results in Table 8 imply that carry is a strong predictor of expected return. In

Columns (1) and (3), without crypto specific fixed effect, the estimated coefficient is around

1, which means that high staking reward rate tokens neither depreciate nor appreciate on

average. Hence, investors can earn reward rate differential using carry trade strategy. This

is similar to the relevant findings for currency (Fama, 1984; Koijen et al., 2018).

Note that once the token-specific effect is fixed, as Columns (2) and (4) in Panel B show,

the estimated c are significantly positive but less than 1. This implies the market takes

back a fraction of carry. In other words, time series carry predicts less expected return.

According to Koijen et al. (2018), this is also found in commodities. When a commodity

has a high spot price relative to its futures price, implying a high carry, the spot price tends

to depreciate on average, thus lowering the realized return on average below the carry. For

stakable tokens, however, a different mechanism may be responsible for this phenomenon.

In our model, while a high reward rate leads to a high staking ratio and thus a higher price

appreciation, there is a downward adjustment effect of the reward rate in the time series. As

the sum of carry (approximately equal to the reward rate) and the price appreciation, the

excess return is then influenced by the adjustment. Comparing the results of weekly data

with those of 30-day data, the downward adjustment effect is also magnified when the time
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Table 8: Carry and excess returns
This table reports the results from the panel regression of (40), estimated c and robust standard errors
clustered by tokens are reported. Without token-specific and time fixed effects, c represents the total pre-
dictability of returns from carry from both its passive and dynamic components. Including crypto specific
fixed effects will remove the predictable return component of carry coming from passive exposure to tokens
with different unconditional average returns. Robust standard errors are reported in parentheses. ˚˚˚,˚˚,˚
indicate statistical significance at the 1%, 5% and 10% respectively.

Panel A: 7-day ExcessReturni,t

(1) (2) (3) (4)
Carryi,t´1 0.956˚˚˚ 0.901˚˚˚ 0.968˚˚˚ 0.917˚˚˚

p0.028q p0.043q p0.025q p0.039q

Fixed Effects
Token Y Y
Time Y Y

Observations 5,745 5,745 5,745 5,745
R2 0.230 0.100 0.289 0.130

Panel B: 30-day ExcessReturni,t

(1) (2) (3) (4)
Carryi,t´1 0.968˚˚˚ 0.773˚˚˚ 1.009˚˚˚ 0.846˚˚˚

p0.166q p0.253q p0.138q p0.218q

Fixed Effects
Token Y Y
Time Y Y

Observations 1,301 1,301 1,301 1,301
R2 0.038 0.011 0.056 0.018

window becomes larger, and thus the estimated c decrease in Columns (2) and (4) of Panel

B. This also explains why there is such a difference in the results with and without fixed

cross-sectional effects. In the case of commodity, the estimate of c is significantly smaller

than 0 regardless of the fixed effect.

Overall, crypto carry exhibits characteristics partly similar to currencies and partly sim-

ilar to commodities, rationalized by the mechanism of staking itself.

7 Conclusion

In addition to offering a convenience yield for transactions in digital networks, tokens

are frequently staked (and slashed) for base-layer consensus generation or for incentivizing

economic activities in DeFi protocols and platform development, and consequently earn

stakers rewards akin to deposit interests. To analyze the economics of staking, we build the

first dynamic model of a token-based economy where agents endogenously allocate wealth on
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and off a digital platform and use tokens either to earn rewards or to transact. We solve the

mean field game with stochastic controls and systematic shocks, and identify staking ratio

as a fundamental variable linking staking to the endogenous reward rate and token price.

We relate cryptocurrencies to other major asset classes such as currencies and commodi-

ties and verify model implications in the data. In particular, the staking ratio resembles

liquidity and market depth since a high staking ratio leads to a lower amount of available

tokens available for trade. The staking ratio is proportional to the reward rates in the cross-

section but negatively correlated to reward rates in the time series; it positively predicts the

returns of cryptocurrencies. Furthermore, the model rationalizes violations of the uncovered

interest rate parity and significant crypto carry premia that we empirically document. A

strategy of buying high carry tokens and shorting low carry tokens yields a Sharpe ratio of

1.6, which can be attributed to transaction convenience in certain digital networks.

The framework can be explored further for studying utilities of platform tokens. For

example, DeFi projects increasingly lock up both native and non-native tokens. Allowing

multiple tokens to be used within a network may cause the payment utility of native tokens

to decline. But stable tokens entitle the holders to instead collect rewards (fees and subsi-

dies), while providing functionalities such as security or liquidity for the networks. Optimally

designing the various utilities of platform tokens and understanding their implications on

token prices constitute interesting future research. Similarly, it remains an open question

how staking and transaction interact in protocols with multiple types of tokens.
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Online Appendices
“Staking, Token Pricing, and Crypto Carry”

A. Proofs for the Propositions

A.1 Proof of Proposition 1

For each agent, she solves the optimization problem in the situation that tm, ru is given. Con-
sider the master equation,32 the marginal utility of staked and non-staked tokens are

MUl “ pµt ` rt ´ ct `
BΨ

Bnt
qBwU ` pxt ` ltqσ

2
t BwwU,

MUx “

ˆ

µt ` p1 ´ αq

ˆ

Atut
xt

˙α

`
BΨ

Bnt

˙

BwU ` pxt ` ltqσ
2
t BwwU.

(A.1)

Note that MUx and MUl contains some common terms, including price appreciation µ, loss of
numeraire convenience ´ BΨ

Bnt
and volatility risk of token price. Agents will always obtain these part

of utility once they hold tokens. Therefore, agents make choices between staking and non-staking
by comparing the remaining terms, prt ´ ctq and p1 ´ αq

´

Atut
xt

¯α
. The marginal return of staked

token remains the same, while the marginal utility of non-staked token diminishes to zero. In
addition, xt Ñ 0`, the marginal utility of non-staked token must exceed rt ´ ct. That is, there
exists a unique x̃t that satisfies

rt ´ ct “ p1 ´ αq

ˆ

Atut
x̃t

˙α

. (A.2)

The agent will first choose to keep enough tradable tokens for earning transaction convenience.
Once her holding of non-staked tokens xt reaches x̃t, she will turn to stake the remaining tokens
(if enough tokens are held). Combining with the wealth constraint, we obtain

x̃t “ min

#

wt,

ˆ

1 ´ α

rt ´ ct

˙
1
α

Atut

+

. (A.3)

Note that agents will choose not to participate when the realized transaction convenience is
non-positive. As (3) shows, once the agent participates, i.e. xt ą 0, the transaction utility flow
increases with xt. Therefore, x̃t will be realized if and only if x̃1´α

t pAtutq
α ´ φ ą 0. We call this

32It is equivalent to consider the HJB equation when solving the optimization problem of one agent. The
additional terms in the master equation does not directly involve the agent’s controls as arguments. On the
other hand, the agent have negligible impact on the distribution m.

OA-1



intermediate variable as necessary value of xt, and denote it as x̂t. x̂t satisfies

x̂t “ x̃t ¨ I

#

x̃t ą

ˆ

φ

pAtutqα

˙
1

1´α

+

, (A.4)

where I is an indicator function.
x̂t ensures participation and optimality compared to staking. On the other hand, let us consider

the aggregate holding of tokens, qt “ xt ` lt. The marginal utility of holding tokens should be the
upper envelope of the marginal utility of the two holding ways. Based on the above discussion, we
obtain

MUq “

ˆ

µt ` max

"

rt ´ ct, p1 ´ αq

ˆ

Atut
qt

˙α*

`
BΨ

Bnt

˙

BwU ` qtσ
2
t BwwU. (A.5)

MUq decreases strictly with qt (note that BwU ą 0 and BwwU ă 0). In addition, when qt Ñ 0`,
the max term tends to positive infinity. Therefore, there exists and only exists the following two
cases. First, there is a unique q˚

t ď wt that satisfies the first order condition. Second, MUqpwtq ą 0,
then agent will allocate all her wealth into the platform. As a conclusion, the agent has a unique
and positive optimal choice q˚

t .
Then, we obtain x˚ “ mintq˚

t , x̂tu.
Rearrange the expression of optimal individual staking ratio θ˚

t ,

θ˚
t “

l˚t
q˚
t

“ 1 ´
x˚
t

q˚
t

“ 1 ´
mintq˚

t , x̂tu

q˚
t

, (A.6)

where the economic meaning of the minimized term is that when xt ď x̂t, earning transaction
convenience is better than earning staking reward, while when xt ď q˚

t , holding tradable token
is better than holding numeraire. Substituting (A.2) and (A.4) into (A.6), then Proposition 1 is
proved.

Based on the above results, we have the following intuitions.
First, agents’ individual staking ratios increase with reward rate rt. Consider the impact of

reward rate rt. As rt increases, the marginal utility of staked token increases, while both the
convenience of token and numeraire remains the same. Intuitively, agents will increase the pro-
portion of staking. Mathematically, an increase in rt will cause the max term in (A.5) to increase
(non-strictly), so that q˚

t increases. Substituting into (21), we obtain a larger optimal θ˚
t .

Second, agents have heterogeneous optimal staking choices, which are related to their wealth.
Note that in the expression of θ˚

t , both ut and q˚
t are relative to agent’s wealth. Therefore, the

optimal individual staking ratio may be different among agents due to the difference of wealth
level. In numerical analysis, after we make more detailed assumptions on the user type ut, We
will examine the difference between the optimal decisions of agents with different wealth levels.
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Especially, when ut increases monotonically in wt with a diminishing marginal change, the agent
who owns more wealth will decide to invest a greater proportion for staked tokens.

A.2 Proof of Proposition 2

We first analyse the resulting overall staking ratio under a given reward rate rt, Θprtq. (Without
causing misunderstanding, we omit m and A in the cross-sectional derivation.) Following the proof

of Proposition 1, we obtain x˚
t “ mintq˚

t , x̂tu “ min

"

q˚
t , x̃t ¨ I

"

x̃t ą

´

φ
pAtutqα

¯
1

1´α

**

.
First, consider the case that the indicator function equals one for all agents. Treat x̃ as a

function of individual wealth w and global reward rate r at time t, x̃t is differentiable to r and
Bx̃pw,rq

Br ă 0. On the other hand, when x˚
t “ q˚

t , i.e. q˚
t ď x̃t, the max term in (A.5) equals to

p1 ´ αq

´

Atut
qt

¯α
. q˚

t solves the first order condition for any given r, thus q˚
t can be treated as a

function of r that is shown to be differentiable, Bq˚
t pw,rq

Br ď 0.
Note that @i, wi P W , where W ” r0, ws is a closed set. We have obtained that x˚pw, rq is

differentiable with respect to r at rj , @w P W zWj , where Wj is defined as, @w P Wj , x˚pw, rjq “

q˚pw, rjq, and @r1 ą rj , x˚pw, r1q “ x̃pw, r1q. In fact, x˚ may also be differentiable to r at rj for
w P Wj . However, we do not need this stronger condition. Since U is monotonous in w, the measure
of Wj is always zero for any rj .

Consider the definition of overall staking ratio Θ as in (14), Θprq is differentiable and satisfies

Θ1prq “
d

dr

ş

W lpw, rqmpwqdw
ş

W qpw, rqmpwqdw
“

p d
dr

ş

W zWr
lmdwqp

ş

W qmdwq ´ p
ş

W lmdwqp d
dr

ş

W zWr
qmdwq

p
ş

W qmdwq2

“
p
ş

W zWr

Blpw,rq

Br mdwqp
ş

W qmdwq ´ p
ş

W lmdwqp
ş

W zWr

Bqpw,rq

Br mdwq

p
ş

W qmdwq2

“
p
ş

W zWr

Bl
Brmdwqp

ş

W xmdwq ´ p
ş

W lmdwqp
ş

W zWr

Bx
Brmdwq

p
ş

W qmdwq2
ě 0,

(A.7)
where the third equal sign holds by Theorem 9.42 in Rudin et al. (1964). As for the case that
DΩ ‰ H, s.t. @wt P Ω, the indicator function equals zero. We define Ωj as, @w P Ωj , x̃pw, rjq “
´

φ
pAtutqα

¯
1

1´α . By the monotonicity, @r1 ą rj , x̃pw, r1q ă

´

φ
pAtutqα

¯
1

1´α , i.e. the indicator function
equals zero. Note that the measure of WΩj is always zero for any rj . The following proof process
goes similarly to the above.

In equilibrium under given positive aggregate reward, ρ, reward rate and staking ratio should
satisfy the fixed point equation in (15), i.e., rΘprq “ ρ ą 0. Note the following properties: (i) rΘprq

weakly increases in r, and especially, strictly increases in r for any positive Θprq. (ii) rΘprq “ 0

when r equals zero. (iii) limrÑ`8 rΘprq “ r ą ρ. Therefore, @ρ, 0 ă ρ ă 8, there exists a unique
r that satisfies the fixed point problem.
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Now considering the case as Proposition 2 describes, @ρ1 ą ρ ą 0, denote the resulting equilib-
rium reward rate as r1 and r respectively. By the monotonicity of rΘprq, we obtain r1 ą r. Then
by (A.7), the resulting equilibrium staking ratio satisfies Θpr1q ą Θprq, i.e., Θpρ1q ą Θpρq.

A.3 Proof of Proposition 3

Since Pt can be separately represented as P pAt, Qtq “ 1
Qt
V pAtq, we can analytically derive the

partial differentials of Pt. Substituting the differentials into (27) and rearranging the equation, we
obtain the ordinary differential equation for V pAtq as (30) shows.

Consider the lower boundary condition when At Ñ 0. Intuitively, when At “ 0, the platform
has no productivity and no agent participates. Therefore, the resulting token price must be zero.
Specifically, by (A.3), x̃ Ñ 0. Agents cannot realize positive transaction utility flow. That is,
agents’ individual staking ratio tends to 1.33 Then the reward rate rt is close to the reward ratio
ρt, and qt Ñ lt, for any agents. Substituting into the F.O.C. of the HJB equation, we have

0 “

ˆ

µt ` ρt ´ ct `
BΨt

Bnt

˙

BwU

BwwU
` σ2t qt. (A.8)

As mentioned in the maintext, we further assume that when At Ñ 0, @yt ą 0, Ψt is sufficiently
large. This assumption captures the case that when the platform has almost zero productivity, the
platform token is useless and the relative convenience of numeraire is therefore large. Specifically,
we follow Bansal and Coleman (1996) and Valchev (2020) and define Ψ takes the following form:

Ψt “ Ψpyt, nt, Atq “ ψ̄pAtqy
β
t n

1´β
t , (A.9)

where β ą 1. To satisfy the assumption above, we let ψ̄1pAtq ă 0, limAtÑ0 ψ̄pAtq “ 8, and
limAtÑ8 ψ̄pAtq “ 0. Then, BΨt

Bnt
“ ´pβ ´ 1qψ̄pAtqp

yt
nt

qβ. Under such sufficient condition, we obtain
that as At Ñ 0, (A.8) is negative, @qt ě 0. Therefore, limAtÑ0 V pAtq “ 0.

As for the upper boundary, the intuition is that all the wealth will be attracted to the platform
when At is sufficiently high. We first consider the marginal utility of holding numeraire. Following
the previous denotation, qt “ xt ` lt, and nt “ wt ´ qt. We obtain

MUnpntq “ ´µt ` min

"

ct ´ rt,´p1 ´ αq

ˆ

Atut
wt ´ nt

˙α*

´
BΨt

Bnt
´

pwt ´ ntqσ
2
t BwwU

BwU
. (A.10)

We want to show that for any positive ϵ ă w̄, there exists Atpϵq such that MUnpϵq ă 0 for any
At ą Atpϵq. We have the following intuitions. First, BP

BA ě 0. Since both transaction convenience
33Here we focus on the case that the reward rate rt is always larger than staking cost ct no matter what

the overall staking ratio is, i.e., ct ă ρt “ minΘtPr0,1s rpρt,Θtq. Otherwise, staking is obviously a “bad”
choice for agents.
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and the aggregate amount of staking reward increases with At, a higher At will naturally attract
more wealth from holding numeraire. Second, µ ą ´8 based on the assumption that µA ě 0. At

is a process that broadly captures technological advances, regulatory changes, and the variety of
activities feasible on the platform, all of which suggest a fast and volatile growth of At. Suppose
that µt tends to negatively infinity, then by (24), there must be B2P

BA2 Ñ ´8, which contradicts the
fact that the first order derivative is always greater than zero. This assumption follows Cong et
al. (2021d), where the additional reasons for parameter choices also result in a bounded σt. Third,
wBwwJ

BwJ is bounded since it is a smooth function of w P r0, w̄s. Then @ϵ P p0, wtq,

MUnpϵq ă rf ´ µ´ p1 ´ αq

ˆ

Au

w

˙α

` ψpϵq ´
wσ2BwwU

BwU
, (A.11)

where ψpϵq “ ´
BΨpϵq

Bn ă 8. Let

Apϵq “ max

$

&

%

0,
w

u

˜

ψpϵq ` rf ´ µ` Ū

1 ´ α

¸
1
α

,

.

-

, (A.12)

where µ and Ū are the lower bound of µ and upper bound of ´wσ2BwwU
BwU respectively, and the max

term insures a non-negative At. Substituting Apϵq into (A.11), we obtain MUnpϵq ď 0. Note that
for the same ϵ, MUnpϵq decreases with At. Therefore, @At ą Apϵq, MUnpϵq ď 0. The result holds
for any sufficiently small positive ϵ, which implies that when At tends to infinity, the marginal
utility of holding numeraire is always negative. Therefore, all the wealth will be allocated to the
platform, i.e.

lim
AtÑ8

V pAtq “

ż

W
wtmtpwtqdwt. (A.13)

In the following, we summarize the steps of solving the pricing ODE (30). First, the equilibrium
Θt, rt, and the integral equations for the crowd, are all functions of pAt, µt, σtq. Second, when
substituting these functions into the market clearing condition, (26) will only contain Pt, µt and
σt. Third, replacing Pt with Vt by (29) and apply to Itô’s Lemma, we can express µt and σt by
the derivatives of Pt. Then the equation implies a second-order ODE of V pAtq as (30) shows. As
we mentioned, besides V pAtq, V 1pAtq and V 2pAtq, the remaining terms, including Θt, It, Int and Ixt
are all functions of At. Therefore, in the process of numerical solution, we deal with a differential-
algebraic system of equations (DAE) in fact. For the boundary condition, we choose a sufficient
small ϵ and correspondingly choose Apϵq as (A.12) shows, so that V pApϵqq P p

ş

W wtmtpwtqdwt ´

ϵ,
ş

W wtmtpwtqdwtq. Let V pAtq “
ş

W wtmtpwtqdwt´ϵ and calculate the solution. We then decrease ϵ
until the new resulting solution is numerically indistinguishable from the previous solution. Finally,
we substitute the solution of V pAtq and the differentials into (29) and (24) to obtain Pt, µt and σt,
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and then solve the equilibrium Θt, rt, and the integral equations for the crowd.

A.4 Proof of Proposition 4

In Online Appendix A.1, we have proved that for any agents with different wealth, there is a
unique q˚ that satisfies the first order condition as (A.5) describes. Denote the excess return as λt,
λt “ µt ` rt ´ ct. Rearrange (A.5), we obtain

λt “ ´
BΨ

Bnt
´
q˚
t σ

2
t BwwU

BwU
`

min t0,MU˚
x ´MU˚

l u

BwU
, (A.14)

where MU˚
l and MU˚

x are marginal utility of staked and tradable tokens when agent’s controls
are optimized. Note that λt is a system state that is independent of the controls of a single agent,
and the above equation holds for any wt. Especially, for agents with zero staked tokens (l˚t “ 0),
MU˚

x ě MU˚
l , we obtain

λt “ ´
BΨ

Bnt
´
q˚
t σ

2
t BwwU

BwU
, (A.15)

which can be interpreted as the trade-off between the transaction convenience of holding tradable
token and the convenience of holding numeraire. Substituting into (A.14), we obtain they staked
token is also compensated with staking rewards as financial returns for the loss of transaction
convenience.

B. Parameter Choices in Numerical Solutions
In the numerical analysis, we set the initial wealth distribution to follow the Pareto distribution

with parameters wmin “ 10 and k “ 3. Such distribution fits the trend that a large portion of
wealth is held by a small fraction of the population. For numerical test, we set the maximum
wealth to be wmax “ 100, which is sufficient for discussion on heterogeneous optimal choice, and
the corresponding value of cumulative function has already reached 1 ´ 10´3. Since there are unit
measure of agents, the initial total wealth equals Epwq “ 15. We set the initial amount of tokens Q0

to be 15, which makes the token price 1 approximately when all the wealth flows into the platform.
It is just to get a simple number without affecting any analysis process. For example, token price
is halved when the total amount of tokens is doubled, while the equilibrium dynamics is invariant.
We set the inflation rate ι fixed at 5%. The values are taken with reference to the actual issuance of
tokens. On the one hand, the fixed value matches the setting of a large part of the tokens, that are
designed to have a constant inflation rate, such as eos. On the other hand, the constant set makes
the model easier to solve so that we can focus on the main interests. We also test the comparative
statics for different emission rate in Online Appendix C.5. The rewards from transaction fee are
defined as a random variable. Numerically, we exogenously set different values of τ ranges from 0
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to 0.05. The resulting solutions satisfy Proposition 2. At the same inflation rate, larger τ leads to
a larger amount of reward, and thus generates a larger equilibrium staking ratio and reward rate.

We set the annual risk-free rate of numeraire, rf , constantly equals to zero. Then we choose
µApΘtq “ µ0 `µ1Θ

κ
t , where µ0 represents the basic growth of productivity. As Cong et al. (2021d)

discusses, At broadly captures regulatory changes, and the variety of activities feasible on the
platform, which suggest a volatile growth of At. We set µ0 “ 0.5% and σA “ 5%. We set
µ1 “ 2% ą 0 captures the positive contribution of staking as our model describes. The value of
µ1 also limits the maximum drift of µA to be 2.5% since Θt ď 1. We set κ “ 1.5 to feature the
possible scale effect. It is not crucial for our main insights. We also test different values of κ such
as 1 and 0.5, the key properties are not affected.

For parameters of agents, we set the instant utility to be Upyq “
y1´γ´1
1´γ with γ “ 1.9, so that

agents exhibit constant relative risk aversion γ “ 1.9 the elasticity of intertemporal substitution
1{γ. The discount factor ϕ is exogenously fixed to be 0.0099. The user type U “ Upwq reflects
agents’ transaction demand. We set Upwq “ κwδ with κ “ 0.1 and δ “ 0.1. This setting is to
satisfy the natural assumption that BU

Bw ą 0, B2U{Bw2 ă 0. The specific values taken have little
effect on the main conclusions. For example, a larger κ makes the transaction convenience of all
agents increases with constant A, but the direction and nature of the qualitative propositions does
not change. We set α “ 0.3, which adjusts the sensitivity of the agent to the platform productivity.
In Cong et al. (2021d), α is also set to be 0.3 to match the data. We set the participation cost,
φ, to 0.001. With this value, we can completely observe the change of the adoption from 0 to
1. For the convenience of numeraire, we follow Valchev (2020) to model the consumption cost as
Ψpy, n,Aq “ ψpAqyβn1´β, where β ą 1 features that costs are increasing in consumption, and
decreasing in the level of numeraire holdings. We set β “ 1.2 and ψpAq “ A´0.005, so that Ψ

satisfies the assumption as A.3 discusses. In fact, in our study, the main impact of this term lies in
the convenience gain of holding numeraire. With the guarantee that BΨ{Bn ă 0, the specific choice
of the relevant parameter does not affect the main properties.

C. Background and Extended Discussions

C.1 Staking Mechanisms for Tokens in Our Sample

We describe representative staking programs involving tokens in our sample. Most information
is accessed from Stakingrewards.com. There is also information from official websites of correspond-
ing tokens. Many tokens have similar mechanisms, thus we do not repeat the description.

• The individual AION rewards depends on the Block Reward, Block Time, Daily Network
Rewards and Total Staked. Every block one validator is randomly selected to create a block,
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whereas 1 staked or delegated token counts as one “lottery ticket”. The selected validator
has the right to create a new block and broadcast them to the network. The Validator
then receives the 50% of the block reward and the fees of all transactions (network rewards)
successfully included in this block, whereas the PoW Miner receives the other 50%.

• Rewards in the form of algos are granted to Algorand users for a variety of purposes. Ini-
tially, for every block that is minted, every user in Algorand receives an amount of rewards
proportional to their stake in order to establish a large user base and distribute stake among
many parties. As the network evolves, the Algorand Foundation will introduce additional
rewards in order to promote behavior that strengthens the network, such as running nodes
and proposing blocks.

• The individual BitBay rewards depends on the Block Reward, Block Time, Daily Network
Rewards and Total Staked. Every block one staker is randomly selected whereas 1 staked
coin counts as one “lottery ticket”. The selected staker has the right to create a new block and
broadcast it to the network. He then receives the block reward and the fees of all transactions
successfully included in this block.

• Dash blockchain consensus is achieved via Proof of Work + Masternodes. Investors can lever-
age their crypto via operating masternodes. Miners are rewarded for securing the blockchain
and masternodes are rewarded for validating, storing and serving the blockchain to users.

• Eos has a fixed 5% annual inflation. 4% goes to a savings fund, which might distribute the
funds to the community later on. 1% goes to Block producers and Standby Block Producers.
Out of the 1% that are given to block producers, only 0.25% will go to the actual 21 producers
of the blocks. The other 0.75% will be shared amongst all block producers and standby block
producers based on how many votes they receive and with a minimum of 100 EOS/day.

• The individual reward of staking fantom depends on the Total Staked ratio. Transactions
are packaged into event blocks. In order for event blocks to achieve finality, event blocks are
passed between validator nodes that represent at least 2/3rds of the total validating power of
the network. A validator’s total validating power is primarily determined by the number of
tokens staked and delegated to it. A validator earns rewards each epoch for each event block
signed according to it’s validating power. By delegating, investors can increase the share
of their validator proportionally to the balance of their account. They will receive rewards
accordingly and share them with investors after taking the commission.

• The effective yield for staking IDEX depends on the actual Trading Volume on IDEX Market.
The higher the trading volume on IDEX, the higher are the actual rewards. The second
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metric to watch is the total amount of AURA currently staking. Less tokens on stake result
in higher rewards.

• Every livepeer (LPT) token holder has the right to delegate their tokens to an Orchestrator
node for the right to receive both inflationary rewards in LPT and fees denominated in ETH
from work completed by that node.

• The individual LTO rewards depends on the Network Rewards (Transaction Fees spent on
the Network) and the Total Staked. Every block one staking node operator is randomly
selected to create a new block, whereas 1 staked token counts as one “lottery ticket”. The
staker receives the fees of all transactions successfully included in this block. Staking Node
Operators share the rewards with their delegators after deducting a commission.

• NEM blockchain consensus is achieved via Proof of Importance. Investors can leverage
their crypto via harvesting. To harvest NEM coins it is recommended to run the official
NEM Core wallet with an entire copy of the blockchain on the stakers’ computer or a Virtual
Private Server (VPS). The individual NEM harvesting rewards depends on the Daily Network
Rewards and Total Staked. Every block one staker is randomly selected whereas 1 staked
coin counts as one “lottery ticket”. The selected staker has the right to create a new block and
broadcast it to the network. The staker then receives the fees of all transactions successfully
included in this block.

• Everyone who holds NEO will automatically be rewarded by GAS. GAS is produced with
each new block. In the first year, each new block generates 8 GAS, and then decreases every
year until each block generates 1 GAS. This generation mechanism will be maintained until
the total amount of GAS reaches 100 million and no new GAS will be generated.

• Nuls blockchain consensus is achieved via Proof of Stake + Masternodes. Investors can lever-
age their crypto via staking. The amount earned is variable based on the current blockchain
metrics like the amount of stakers (Total Staked ratio). Investors can stake NULS into a
project’s nodes and earn their token as a reward, while the project earns NULS as a reward.
Some projects offer to stake with just 5 NULS as the minimum.

• Delegators in Polkadot are called Nominators. Anyone can nominate up to 16 validators,
who share rewards if they are elected into the active validators set. The process is a single-
click operation inside the wallet. The current reward rate for validators is determined by the
current Total Staked ratio. The less DOT is being staked, the higher are the rewards.

• Qtum blockchain consensus is achieved via Proof of Stake 3.0. The individual reward depends
on the Block Reward, Block Time, Daily Network Rewards and Total Staked. Every block
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one staker is randomly selected whereas 1 staked coin counts as one “lottery ticket”. The
selected staker has the right to create a new block and broadcast it to the network. The
staker then receives the block reward and the fees of all transactions successfully included in
this block.

• Synthetix Network Token blockchain consensus is achieved via the Ethereum Blockchain.
Investors can leverage their crypto via staking. SNX holders can lock their SNX as collateral
to stake the system. Synths are minted into the market against the value of the locked SNX,
where they can be used for a variety of purposes including trading and remittance. All Synth
trades on Synthetix Exchange generate fees that are distributed to SNX holders, rewarding
them for staking the system.

• Tezos blockchain consensus is achieved via Liquid Proof of Stake. Investors can leverage their
crypto via baking or delegating. There are a number of tokens that use a similar mechanism,
including iotex, irisnet, etc.

• Tron reward depends on the Block Rewards, Endorsement Rewards, Block Time, Daily
Network Rewards and Total Staked. Every block one staker is randomly selected to bake
a block and 32 stakers are selected to endorse a block, whereas 1 staked coin counts as
one “lottery ticket”. The selected stakers have the right to create or endorse new block
and broadcast them network. The Baker then receives the block reward and the fees of
all transactions successfully included in this block. The Endorsers receive the endorsement
rewards.

• Wanchain blockchain consensus is achieved via Galaxy Proof-of-Stake. The individual WAN
rewards depends on the Foundation Rewards, Daily Network Rewards and Total Staked.
At the beginning of each protocol cycle (epoch), two groups, the RNP (Random Number
Proposer) group and the EL (Epoch Leader) group, are selected from all validators. 1 staked
or delegated token counts as one “lottery ticket” to be selected. The two groups equally
share the Foundation Rewards and Transaction Fees (Network Rewards). The Foundation
Rewards consists of 10% of the outstanding Wanchain Token Supply and are decreasing by
13.6% each year, whereas the Network Rewards are expected to rise alongside wider network
usage.

C.2 Mean Field Game and the Master Equation

Mean field games (MFGs), introduced in the pioneering works of Lasry and Lions (2007), offer
a powerful framework for analyzing strategic interactions in large populations when each individual
agent has only a small impact on the behavior of other players. MFG supposes that the rational
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agents are indistinguishable and individually have a negligible influence on the game, and that
each individual strategy is influenced by some averages of quantities depending on the states of
the other agents. A very nice introduction to the theory of MFGs is supplied in the notes of
Cardaliaguet (Cardaliaguet, 2010), including theoretical results on the existence and uniqueness of
classical solutions, and also discussions on weak solutions.

MFG has a wide range of potential applications in economics. In macroeconomics, it has
been applied to the studies that connects represent agent’s optimization and the dynamics of
macro interests, such as the income distribution (Achdou et al., 2022). It also allows heterogeneous
settings, such as the heterogeneous-agent model (Krusell and Smith, 1998). Literatures also attempt
to model financial problems using MFG. Brunnermeier and Sannikov (2016) compare the historical
evolutions of macro-economic and finance models, arguing that properly framed, the analysis of
continuous time stochastic models should provide a unifying thread for these sub-fields of economics
which so far, developed in parallel.34 To this end, the authors introduce models of the economy
comparising households maximizing consumption like in classical macro-economic growth models,
as well as investors trading in financial markets. Some applications have been discussed, including
trade crowding (Cardaliaguet and Lehalle, 2018) and crypto mining (Li et al., 2019).

In many interesting situations in financial studies, it is important to allow for systematic risks
(or systematic/common shocks). Such applications calls for a more general framework in theory.
Fortunately, the MFG system can be written in the most general case in terms of a so-called “Master
Equation” (Cardaliaguet et al., 2019). The Master equation is an equation on the space of measures,
i.e. it is an equation that is set in infinite-dimensional space. The logic why the problem with
aggregate uncertainty becomes infinite-dimensional is that the cross-sectional distribution across
agents becomes a state variable in agents’ dynamic programming problems and that distribution is
an infinite-dimensional object.35 The master equation is first introduced by Lions (2011). The most
related research advances include the proof of the existence and uniqueness of a classical solution
to the master equation (Cardaliaguet et al., 2019), monotonous solutions in several specific cases of
common shocks (Bertucci, 2021), the case without idiosyncratic but with Brownian-type common
shock (Cardaliaguet and Souganidis, 2020), and the corresponding weak solutions (Cardaliaguet
and Souganidis, 2021).

C.3 Derivation of the Master Equation

The relationship between MFGs and the master equation. We first briefly explain
the relationship between the classical MFG system (a couple of PDEs) and the master equation
using our model as an example. Cardaliaguet et al. (2019) contains more detailed discussions. We

34This is also reviewed by Carmona (2020).
35This is also reviewed in the online Appendix of Achdou et al. (2022).
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consider the evolution of the mean field of this framework, i.e., the distribution of investors’ wealth
mtpwtq. In our model, there is no idiosyncratic shock to agents. They suffer a systematic shock by
token price with heterogeneous exposure. Recall that each agent’s wealth evolution follows (10), in
which Zt stands for a systematic shock. Such shock impacts all the agents and thus causes mt to
be a flow of measures (Cardaliaguet et al., 2019), and precisely, the flow of conditional marginal
measures of agents’ wealth given the realization of Zt. The dynamics of mt is then characterized
by the stochastic Fokker-Planck equation (C.16), with initial condition m0pwtq “ m0.

dtmt “

„

´
B

Bw

ˆ

mt
BH

Bξ
pw,

BJ

Bw
,

B2J

Bw2
;mt, r, Atq

˙

`
B2

Bw2

ˆ

mt
BH

Bζ
pw,

BJ

Bw
,

B2J

Bw2
;mt, r, Atq

˙ȷ

dt
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B

Bw

˜

mt

d

2
BH

Bζ
pw,

BJ

Bw
,

B2J

Bw2
;mt, r, AtqdZt

¸

“

„

´
B

Bw

ˆ

f˚pw;mt, r, Atqmt

˙

`
1

2

B2

Bw2

ˆ

g˚pw;mt, r, Atq
2mt

˙ȷ

dt

´
B

Bw

ˆ

g˚pw;mt, r, AtqmtdZt

˙

,

(C.16)
where f˚pw;mt, r, Atq and g˚pw;mt, r, Atq are the corresponding values of f and g when ty, x, lu

satisfies the maximum principle, respectively. The corresponding HJB equation (12) is also rendered
to be a stochastic PDE since it is related to m. By now, we obtain a pair of coupled PDEs with
unknowns tJ,mu as we do in the classical MFG framework. The difference is that the PDEs here
are stochastic. As we discussed in the main text in Section 3.3, the value function of the master
equation, U can be considered as a advanced version of J , which involves the potential impact of
m. Precisely, let tJ,mu be a solution of the coupled PDEs, and U be a solution of the master
equation, we have

dtmt “
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˙
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˙ȷ

dt

´
B

Bw

˜

mt

d

2
BH
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pw,
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Bw
,

B2U

Bw2
;mt, r, AtqdZt

¸

,

Jtpwt;mt, r, Atq “ Upwt,mt, Atq, t P r0,8q, a.s..

(C.17)

Relevant definitions and requirements. We first introduce the following definitions and
notations. The set PpRq of measures on R is endowed with the Monge-Kantorovich distance,

dpm,m1q “ sup
Ξ

ż

R
Ξpyqdpm´m1qpyq, (C.18)
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where the supremum is taken over all Lipschitz continuous maps Ξ : R ÞÑ R with a Lipschitz
constant bound by 1.36 As (19) shows, the master equation involves derivatives of the unknown
with respect to the measure m. The formal definitions are provided below, which also follow
Cardaliaguet et al. (2019).

Definition 1. We say that U : PpRq Ñ R is C1, if there is a continuous map δU
δm : PpRq ˆ R Ñ R

such that, for any m,m1 P PpRq,

lim
sÑ0`

Upp1 ´ sqm` sm1q ´ Upmq

s
“

ż

R

δU

δm
pm, yqdpm1 ´mqpyq. (C.19)

Definition 2. We say that U : PpRq Ñ R is C2, if for a fixed y P R, the map m ÞÑ δU
δmpm, yq is C1.

Moreover, denote its derivative as δ2U
δm2 : PpRq ˆ R ˆ R Ñ R. It satisfies

δU

δm
pm1, yq ´

δU

δm
pm, yq “

ż 1

0

ż

R

δ2U

δm2

˜

p1 ´ sqm` sm1, y, y1

¸

dpm1 ´mqy1ds (C.20)

To derive the master equation, we need the additional assumptions on the mathematical prop-
erties of Upw,m,Aq to make the terms in (19) well defined. Precisely, U is continuous in all its
arguments (especially, for the d distance on PpRq for the measure m), is of class C2 in w, A and m.
Especially for m, the first and second order derivatives, δU

δmpw,m,A, yq and δ2U
δm2 pw,m,A, y, y1q, are

continuous in all the arguments. δU
δmpw,m,A, yq is twice differentiable in y. δ2U

δm2 pw,m,A, y, y1q is
twice differentiable in py, y1q. The derivatives are continuous in all the arguments. These require-
ments are not difficult to satisfy under the usual settings of utilities, initial measures, etc..

Deriving the master equation. We start with the time-dependent case first, where the
value function of the master equation, U , can be represented as U “ Upt, w,m,Aq, while the value
function in the HJB equation, Jpt, w,A;m, rq, in which tm, ru is considered as given parameters as
discussed in Section 3.3. Note that in Section 3.2, we are solving a simple case that m is determined
or satisfies a deterministic evolution process (i.e., the Fokker-Planck equation in the classical MFG
system. Online Appendix C.2 provides more detailed descriptions on MFG.). However, in the
MFGs with systematic shock, the FP equation that m satisfies becomes stochastic as is shown in
(C.16), which also renders the value function J to be random. Denote the random value function
as J̃pt, w,Atq. Given the initial distribution mt0 and the initial productivity At0 at t0 “ 0, we have

J̃pt0, w,At0q “ Jpt0, w,At0 ;mt0 , rt0q “ Upt0, w,mt0 , At0q. (C.21)
36As the online Appendix of Achdou et al. (2022) also discusses, in the theoretical literatures, the space is

often specified as the n-dimensional torus Tn rather than Rn. The only reason is to sidestep the discussion
of boundary conditions in the space dimension.
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As time t changes, the system becomes stochastic. By the Lemma 5.1 in Cardaliaguet et al.
(2019), we construct a connection of the value functions of the HJB equation and the master
equation.

J̃pt, w,Atq “ Upt, w `

ż t

0
g˚pw, sqdZs,m0,t, Atq, (C.22)

where m0,t is the image of m̃t by the random mapping, w ÞÑ w `
şt
0 g

˚pw, sqdZs, m̃tpwq “ mtpw `

g˚pw, tqZtq. Then consider the case when we are at t0, t0 P p0,8q, i.e. mt0 is given,

Upt0 ` h,w,mt0 , At0q ´ Upt0, w,mt0 , At0q

h

“
Et0

”

J̃pt0 ` h,w,At0`hq

ı

´ J̃pt0, w,At0q

h
`
Upt0 ` h,w,mt0 , At0q ´ Et0

”

J̃pt0 ` h,w,At0`hq

ı

h
.

(C.23)
When h Ñ 0, the first term in the right-hand side of (C.23) satisfies

lim
hÑ0

Et0

”

J̃pt0 ` h,w,At0`hq

ı

´ J̃pt0, w,At0q “
BJ̃

Bt
pt0, w,At0q

“ ´H

ˆ

w,
BU

Bw
pw,mt0 , At0q,

B2U

Bw2
pw,mt0 , At0q;mt0 , rt0 , At0

˙

´

ˆ

µAAt0

BU

BA
pw,mt0 , At0q `

1

2
pσAAt0q2

B2U

BA2

˙

,

(C.24)

which has a similar deriving process and form to the HJB equation since the “stochastic” com-
ponents has been omitted by the expectation. As for the second term, we need a specific form
of Itô’s formula to deal with dtU , which is, fortunately, provided and proved in Lemma 5.15 of
Cardaliaguet et al. (2019). We obtain

lim
hÑ0

Upt0 ` h,w,mt0 , At0q ´ Et0

”

J̃pt0 ` h,w,At0`hq

ı

h

“ lim
hÑ0`

1

h
Et0

„

Upt0 ` h,w,mt0 , At0q ´ Upt0 ` h,w `

ż t0`h

t0

g˚pw, sqdZs,mt0,t0`h, At0`hq

ȷ

“

ż

R

B

By

δÛ

δm
pt0, w,mt0 , At0 , yqdmt0pyq ` 2

ż

R

B

Bw

δÛ

δm
pt0, w,mt0 , At0 , yqdmt0pyq

`

ż

RˆR

B2

ByBy1

δ2Û

δm2
pt0, w,mt0 , At0 , y, y

1qdmt0pyqdmt0py1q `
B2Û

Bw2
pt0, w,mt0 , At0q

´

ż

R

δU

δm
pt0, w,mt0 , At0 , yq ¨

BH

Bξ

ˆ

w,
BU

Bw
pt0, y,mt0 , Aq,

B2U

Bw2
pt0, y,mt0 , Aq;mt0 , rt0 , At0

˙

dmt0pyq,

(C.25)
where Û : r0,8q ˆ R ˆ P2pRq ˆ R Ñ R, Ûpt, w,m,Aq “ BH

Bζ pw, BU
Bw ,

B2U
Bw2 ;m, r,Aq ¨ Upt, w,m,Aq “

1
2g

˚pw, tq ¨ Upt, w,m,Aq. The second equal sign comes from Lemma 5.15 of Cardaliaguet et al.
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(2019). We have two differences here. First, in the Lemma, the agent’s sensitivity to the systematic
shock is normalized to 1 for simplicity, whereas here we use g˚. Second, the Hamilton here has the
opposite sign. There is no difficulty in applying the results with some modification.

Next, we turn to (C.23). Let h Ñ 0 and substitute (C.24), (C.25). Note that the discount
factor e´ϕh « 1 ´ ϕh when h is close to zero, which allow us to do use Upt0 ` h,w,At0q «

p1 ´ ϕhqUpt0, w,At0q. Based on this common treatment, it is not difficult to transform the time-
dependent equations into the time-independent case. We obtain a time-independent master equa-
tion (19):

ϕUpw,m,Aq “H

ˆ

w,
BU

Bw
pw,m,Aq,

B2U

Bw2
pw,m,Aq;m, r,A

˙

`
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δU

δm
pw,m,A, yq ¨

BH

Bξ

ˆ

w,
BU

Bw
py,m,Aq,

B2U

Bw2
py,m,Aq;m, r,A

˙

dmpyq

´

„
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δÛ
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pw,m,A, yqdmpyq ` 2
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δÛ
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`
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RˆR
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ByBy1
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pw,m,A, y, y1qdmpyqdmpy1q

ȷ
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´

„
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BU

BA
pw,m,Aq `

1

2
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BA2
pw,m,Aq

ȷ

.

(C.26)

The solution to the master equation. The classical solution to the second order master
equation is, naturally, a map U : R ˆ PpRq ˆ R ÞÑ R, which satisfies all the requirements in
the relevant definition part in this section, and satisfies the master equation. In our framework,
there is no idiosyncratic Brownian shock, which generates additional problem that the solution
may not be smooth. Fortunately, we can refer to the definition of the weak solution introduced by
Cardaliaguet and Souganidis (2021) that focus on the master equation with no idiosyncratic shock.
37 The relationship between the weak solution and the classical solution is that if U˚ is a weak
solution, and U , BU

Bw , δU
δm , B2U

Bw2 , δ2U
δm2 and B

Bw
δ
δmU are continuous in w and m, then U˚ is a classical

solution of the master equation, U˚˚, up to adding a continuous function of m, c˚pmq, i.e.,

U˚pw,m,Aq “ U˚˚pw,m,Aq ` c˚pmq. (C.27)

It is because the definition of the weak solution actually characteristics BU
Bw and not U . Under

proper assumptions, the existence and uniqueness of the weak solution have been proved. In the
framework here, especially, the Larsy-Lions monotonicity condition naturally is easy to hold since

37The solution is solved by the Hilbert space approach introduced by Lions (2011), the detailed notion
of the weak solution is provided in Cardaliaguet and Souganidis (2021). Here we no longer repeat existing
work.
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we do not have the so-called coupled payoff terms38 in agents’ optimization problems.

C.4 Comparative Statics: Wealth Distribution

In Section4, we obtain several implications under general wealth distributions. Especially in
Figure 2 and 3, we use numerical solutions to illustrate the corresponding implications. To test
that the results are robust with respect to different wealth distributions, we repeat the numerical
simulation in multiple situations of m. As Online Appendix B. discusses, the baseline case in the
main text is the Pareto distribution case, which captures the “80-20 rule” in practice that most
wealth is held by a small group of people. For the comparative static, we also test two common
cases, i.e. the normal distributions and the uniform distribution. The results are shown in Figure
C1.

Subplot (A) repeats the implication that Figure 2 shows. All the curves have upward slope,
which imply that agents stake more as the reward rate increase, although the specific paths differ
somewhat due to the different wealth distribution. As for Proposition 2, the changes in the staking
reward ratio can be intuitively represented as translations of the equilibrium line, while the cor-
responding equilibrium staking ratio is the intersect point of the upward staking ratio curve and
the downward equilibrium line in Figure 2. It is obvious that the property hold for all the listed
cases. Subplot (B) shows displays joint dynamics of the staking ratio, Θt, and the price drift, µt,
under different distributions. In general, the curves all have upward sloping trends, which imply
the robustness that a greater staking ratio relates to higher expected prcie appreciation.

It is also interesting to think about the differences of the curves among different m. According to
Subplot (A), an economy with more wealthy agents (e.g., Np70, 5q compared to Np30, 5q) will have
a higher equilibrium staking ratio (and a lower equilibrium staking reward rate at the same time).
Subplot (B) implies that an economy with more wealthy agents will have a lower expected price
appreciation under the same staking ratio. It is worth to point out that having more wealthy people
in an economy is not equivalent to having more wealth concentrated in the the rich. The former may
suggest that the economy contains a larger amount of total wealth. These phenomena generates a
potential corroboration to the size effect of the platform growth and the price appreciation.

C.5 Comparative Statics: Emission Rate

In our model, a higher emission rate of token,ιt, increases reward ratio, ρt, and thus is associated
with higher staking ratio. The feedback effect of staking ratio generates a positive force on price
appreciation. On the other hand, high emission rates lead to inflation, which are also expected by

38Such term is often represented as F p¨q in MFG papers.
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Figure C1: Comparative statics: Wealth distribution m.
This figure repeats the main implications that Figure 2 and 3 show, under different wealth distribution, m.
We test four different cases, i.e., the Pareto distribution with parameters wmin “ 10 and k “ 3 (the bench-
mark case, the blue solid line), normal distribution Np30, 5q (the orange dashed line), normal distribution
Np70, 5q (the green dotdashed line), and uniform distribution Up10, 100q (the grey dotted line). Subplot (A)
shows the overall staking ratio, Θpmt, rtq, as the blue curve in Figure 2 shows. The black downward curve
draws the points that satisfies the fixed point problem (15). Since all the other global states are the same, the
four cases share the same equilibrium line. The intersect points are the equilibrium situations pr˚

t ,Θpmt, r
˚
t qq

under corresponding m. Subplot (B) shows the relationship between the system staking ratio, Θt and the
token price drift, µt, as the blue curve in Figure 3 shows.

the agents as (33) shows. Therefore, with excessive emission rates, the feedback by high staking
ratio may not be sufficient to compensate for price depreciation due to inflation.

Figure C2 shows the relationship between the system staking ratio, Θt, and the price drift,
µt, under different values of emission rate of token, ιt. As the emission rate increases, on the one
hand, the corresponding curves still have positive slopes, indicating the robust property that higher
staking ratio relates to higher price drift. On the other hand, the overall downward shift of curves
implies the impact of inflation. As the green dotted line shows, when the emission rate reaches
15%, the price depreciates even when the staking ratio is close to 1.

C.6 Robustness in Subsamples: PoS Tokens and DeFi Tokens

As Section 2 discusses, our model envolves both base layer pan-PoS staking mechanisms and
higher layer DeFi stakable tokens. We model the common features and introduce several implica-
tions. In the empirical analysis, we use a sample containing the tokens from both the two layers. To
empirically illustrate that these implications are common for both the pan-PoS and DeFi tokens,
we divid our sample into two subsets based on the category of tokens, and repeat the main tests of
each Table in Section 5 on the two subsets respectively.

Table C1 reports the results of these robustness tests. In Column (1), (2), we regress the
staking ratio on the staking reward ratio ρi,t in the same period as Table 2 does. The marketcap
and volatility controls and time fixed effect are also considered. The estimated coefficients of ρi,t
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Figure C2: Comparative statics: Emission rate ιt.
This figure shows the relationship between the system staking ratio, Θt, and the price drift, µt, under
different values of emission rate of token, ιt. The values of other parameters are set according to Online
Appendix B.. The blue curve shows the baseline case, ιt “ 5%, which is the same as the blue line in Figure
3.

are both significantly positive, which suggest the robustness within PoS tokens and DeFi tokens
that higher staking reward corresponds to higher staking ratio.

Column (3), (4) test the regression as Column (6) of Table 3 reports. We regress the staking
ratio on the reward rate ri,t in the previous week. The estimations for the two groups are consistent,
and both implies that higher reward rate will attract agents to stake more.

Column (5),(6) test the regression as Column (5) of Table 4 reports. We regress the weekly
log price change rpricei ,t on the staking ratio in the previous week. The estimated coefficients
of the staking ratio are both significantly positive and consist with our main empirical result,
which suggest that the staking ratio predicts price appreciation. The performance of market and
capitalization factors are both consist with related research.39

In sum, our empirical tests on all model implications produce robust and consistent results in
both pan-PoS and DeFi token samples.

39Due to the limit of data, we have less than 100 sample points if the network term is included as control
in Column (6). Therefore, we does not report the results within network term as control variable, although
the corresponding test reports the consist conclusion.
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Table C1: Robustness tests within two layers of tokens.
This table repeats the regression models of Tables 2, 3, and 4 on different subsets. As mentioned in Section
2, the in-sample tokens are divided into two groups, pan-PoS and DeFi tokens, based on their categories.
Column (1), (2) repeat the model as Column (3) of Table 2 reports. Column (3), (4) test the regression as
Column (6) of Table 3 reports. Column (5),(6) test the regression as Column (5) of Table 4 reports. These
regressions are tested on pan-PoS and DeFi subsets respectively. t-Statistics are reported in parentheses.
˚˚˚,˚˚,˚ indicate statistical significance at the 1%, 5% and 10% respectively.

StakingRatioi,t ∆StakingRatioi,t rpricei,t

PoS DeFi PoS DeFi PoS DeFi
(1) (2) (3) (4) (5) (6)

ρi,t 1.146˚˚˚ 0.634˚˚˚

p15.472q p11.783q

1
100 logpCapqi,t 0.750˚˚˚ 2.242˚˚˚

p4.289q p7.522q

Volatilityi,t 0.026 0.128
p0.208q p0.681q

ri,t´1 0.028˚˚˚ 0.014˚

p3.203q p1.900q

1
100 logpCapqi,t´1 ´0.016 0.023

p´0.173q p0.164q

Volatilityi,t´1 ´0.001 0.017
p´0.033q p0.468q

StakingRatioi,t´1 0.182˚ 1.121˚˚˚

p1.662q p3.968q

rMKTt 0.899˚˚˚ 0.460˚˚˚

p16.758q p3.041q

logpCapqi,t´1 ´0.073˚˚˚ ´0.145˚˚˚

p´6.965q p´4.569q

Fixed Effects
Token Y Y Y Y
Time Y Y

Observations 2,517 1,492 2,510 1,486 1,217 156
R2 0.092 0.162 0.004 0.003 0.232 0.181
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