Asian Bureau of Finance and Economic Research 10TH Annual Conference: Corporate Finance (May 22-25, 2023)

Learning Production Process Heterogeneity Across Industries: Implications of Deep Learning for Corporate M\&A Decisions

Seoul National University
Hayong Yun
Michigan State University

Recent Advances in Intelligent Algorithms

- AlphaGo

IECH

AlphaGo Software Storms Back to Beat Human in Final Game
 Science \& technology | Artificial intelligence

South Korean Go champion Lee Se-dol grabbed a victory from the
The latest AI can work things out without being taught intelligence in fourth game, but couldn't repeat the feat

Learning to play Go is only the start

- Deepfake \& Generative AI

The Economist explains
What is a deepfake?
Computers can generate convincing representations of events that never happened

AI Gets Creative Thanks To GANs Innovations

- Transfer Learning

```
\mathrm{ foress >muoumon}
```

The Promise Of Transfer Learning For Crowd Analytics Machines Are Learning From Each Other, But It's A Good Thing

- ChatGPT

Business | Intelligence services
Investors are going nuts for ChatGPT-ish artificial intelligence
Even Elon Musk wants his own AI chatbot
Culture | Johnson
ChatGPT is a marvel of multilingualism
forbes > innovation > AI
GPT-4 Heralds An Enormous Productivity Boost, And A Wrenching Transformation Of Work

Concerns...
HDSR
© I ssu \quad.. Published on Nov 22, 2019 DoI 10.1162/99608f92.5a8a3a3d
Why Are We Using Black
Box Models in AI When
We Don't Need To? A
Lesson From an
Explainable AI
show detalls
WORLDLINE NK…
-Ever heard of the AI black box problem?
E \equiv now
Science \& technology | Generative Al
How generative models could go wrongA big problem is that they are black boxes
Q

Why machine learning struggles with causality

VentureBeat

Despite these concerns, can we make use of recent advances in intelligent algorithms in economics \& finance studies?

Analogy: When are blackbox predictors useful?

innovation
How Artificial Intelligence Completed Beethoven's Unfinished Tenth Symphony
https://youtu.be/RESbOQVkLcM

- YouTube

Three AI Mozart Pieces -- composed using MuseNet artificial intelligence by OpenAI
https://youtu.be/bRroa-Xip7o

Visualizing music similarity: clustering and mapping 500 classical music composers

Research Article
Music Similarity Detection Guided by Deep Learning Model
Research Article
A Music Genre Classification Method Based on Deep Learning

Today's Main Idea: Quantifying Complex I/O Mapping Using A Blackbox

Quantify production process/organization, and measure distances (compare functions).
Retail Firm

Manufacturing Firm

What if a manufacturing firm acquires a retail firm?
Using deterioration of prediction performance as a distance of industry's production function

Why Quantify Production Process/Organization?

BARRON'S

COMPANIES FEATURE

Synergy Is a Myth: Cost-Cutting Breaks Mergers and Acquisitions

Bristol-Myers Squibb (ticker: BMY) claims it can achieve $\$ 2.5$ billion in cost savings by 2022 from its takeover of biotech firm Celgene (CELG), for which it is paying a whopping $\$ 90$ billion including debt. Those equate to around a sixth of the combined operating expenses of the two companies.

The consultancy examined 1,000 of the largest deals among public companies struck during the past 10 years globally and found that the synergy estimates in deals have increased to a new high every year since 2013. In 2017, the synergies announced publicly by acquirers reached 2.1% of combined sales almost twice 2011's level of 1.1\%.

Bosses like to boast about synergies because, in theory, they should boost earnings or cash flows of the combined companies by making a target worth more to the acquirer than it is worth on a stand-alone basis. But those who are too optimistic in their ability to cut costs run the risk of accounting write-offs if the economic outlook deteriorates or the merged company fails to deliver on its revenue and cost projections.

According to financial consultancy Duff \& Phelps goodwill impairments increased by 23% to $\$ 35.1$ billion in 2017 from the previous year, even though the number of impairments remained roughly stable. That suggests some bidders overstated the expected gains from their acquisitions.

Synergy estimates of cost cutting mergers (layoff of duplicate departments) frequently grossly overstated!

Why Half of All M\&A Deals Fail, and Most research indicates that M\&A activity has an overall success rate of about What You Can Do About It 50%-basically a coin toss. Chief executives of mid-market companies (generally

Forbes Leadership Forum Contributor ©
News, Commentary, and Advice About Leadership

The Three Reasons Why Tech M\&A Deals Fail To Deliver Value

Chris Barbin Forbes Councils
Forbes Technology Council
Forbes Technology council CommunityVoice ©

MERGERS \& ACQUISITIONS
The Big Idea: The New M\&A Playbook

by Clayton M. Christensen, Richard Alton, Curtis Rising, and Andrew Waldeck Why is M\&A success such a crap shoot? The sad fact is that most deals look great on paper, but few organizations pay proper attention to the integration process-

The failure rate for mergers and acquisitions is a depressing figure, hovering somewhere between 70-90\% depending on which study you use. Yet the ones that

Avoid A Culture Clash

Bringing two companies together is not unlike a marriage. Sometimes opposites Integration teams can play a pivotal role in the first months or year of an acquisition. They make it clear what needs to get done, who's in charge and can

Avoiding Integration Mistakes

Your approach to integration should be determined almost entirely by the type of acquisition you've made. If you buy another company for the purpose of improving your current business model's

Risks for Synergies

Synergies are not effective immediately after the merger takes place. Typically, these synergies are realized two or three years after the transaction. This period is known as the "phase in" period, where

Related Literature

- Merger theory and cross-industry merger dynamics
- Jovanovic and Rousseau, 2001, 2002; Rhodes-Kropf and Robinson, 2008.
- Harford, 2005; Hoberg and Phillips, 2010, 2016; Hoberg, Phillips, and Prabhala, 2014; Ahern, 2012; Ahern and Harford, 2014.
- We offer a dynamic view of how firm boundary is reconfigured and influences corporate value and operating performance.
- We also supplement the important product-based industry classifications pioneered by Hoberg, Phillips, and Prabhala (2014) by providing a novel approach to quantify production process (comparing functions; focus on inner workings of firms) (dis)similarity between a pair of industries under the conventional industry classifications (e.g., SIC, FF).
- Firm boundary and organizational capital
- Grossman \& Hart, 1986; Hart, 1988; Hart \& Moor, 1990; Bolton \& Dewatripont, 1994; Hart \& Holmstrom, 2010; Baker, Gibbons \& Murphy, 2002
- Sah and Stiglitz, 1986; Dessein, 2002; Dessein and Santos, 2006
- We relate organizational capital as latent factors of the underlying decision-making process of a firm in making corporate M\&A decisions.
- Merger synergy and post-merger integration efficiency
- Devos, Kadapakkam, and Krishnamurthy, 2008; Hoberg and Phillips, 2010; Deng, Kang, and Low, 2013
- We examine dynamic integration process and its performance implications.

Step 2. Test Network for Target Industry (B)

Industry Distance

Step 1. Train Network for Acquiror Industry (A)

$W^{(0)}$

[Measure 1] Unadjusted Distance
$W^{*}(0)$
Input Layer 1

$d_{U}\left(y_{A}, y_{B}\right)=\frac{\operatorname{MSE}\left(\hat{y}_{U, B}, y_{B} ; w_{A}^{(0)}, \cdots, w_{A}^{(L)}\right)}{\operatorname{MSE}\left(\hat{y}_{B}, y_{B} ; w_{B}^{(0)}, \cdots, w_{B}^{(L)}\right)}$
$\operatorname{MSE}\left(x_{B} ; w_{A}^{(0)}, \cdots, w_{A}^{(L)}\right)=\sqrt{\frac{1}{N} \sum_{j=1}^{N}\left(y_{B, j}-\hat{y}_{U, B, j}\right)^{2}}$

- Output

$$
f_{A}\left(x_{B} ; w_{A}^{(0)}, \cdots, w_{A}^{(L)}\right)=\hat{y}_{U, B}
$$

- In: $\log (A), C P X / A, S T D / A$, LTD/A, EMP/A, PPE/A, ADV/A, RD/A
- Out: $\log (\mathrm{Q})$
[Measure 2] Transfer Learning-Based Distance

Fitting Production Function, $\log (\mathrm{MSE})$: Neural Network vs. XGBoost (Figure 1)

For each FF12 industry in each year (1970-2021), we train by NN or XGBoost (10 -fold cross validation) and report MSE or \log (MSE) by each method.

Table 1. Summary Statistics

Panel A. Industry Pair-Year Data (1990-2021)						
Variables	N	Mean	Std. Dev.	p 5	Median	p 95
Unadjsuted Distance	4608	1.320	0.278	1.000	1.266	1.785
TF Distance	4608	1.285	0.214	1.074	1.219	1.715
\log (Unadjusted Distance)	4608	0.261	0.173	0.000	0.236	0.580
\log (TF Distance)	4608	0.239	0.149	0.071	0.198	0.540
Number of M\&A Deals	4608	65	208	0	9	295
\log (Number of M\&A Deals)	4608	2.433	1.731	0.000	2.303	5.690

- Input layer: the logarithm of total assets, capital expenditures divided by assets, short-term debt divided by assets, long-term debt divided by assets, employees divided by assets, tangible assets divided by assets, advertisement expense divided by assets, and R\&D expense divided by assets.
- Output layer: the logarithm of Tobin's Q and utilizes a linear activation function.
- All variables are deviation from industry average in each year.
- Each industry distance measures are average of ten estimates.
- e.g., Telcm-BusEq=0.101, Telcm-Money=0.218

	TNIC3 Score	\log (Unadjusted Distance)	\log (TF Distance)
\log (Unadjusted Distance)	-0.1046^{*}		
\log (TF Distance)	-0.0744^{*}	0.5370^{*}	
\log (XGB Distance)	-0.2094^{*}	0.6275^{*}	0.2355^{*}

[^0]Table 2. M\&A Activities (Year-By-Year: 1990-2021)

Year	Log(Unadjusted Distance)		\log (TF Distance)		Year	Log(Unadjusted Distance)		\log (TF Distance)	
	Estimate (I)	t-stat (II)	Estimate (III)	t-stat (IV)		Estimate (I)	t-stat (II)	Estimate (III)	t-stat (IV)
1990	-4.819***	[-6.82]	-3.844***	[-5.07]	2006	-3.545***	[-3.71]	-4.015***	[-4.21]
1991	$-3.007 * * *$	[-4.59]	-4.264***	[-4.57]	2007	-3.374***	[-3.86]	-4.235***	[-4.10]
1992	-2.917***	[-3.80]	-4.531***	[-4.63]	2008	-2.278***	[-4.50]	-2.172***	[-3.73]
1993	$-2.258 * * *$	[-2.99]	$-6.706^{* * *}$	[-6.27]	2009	-4.346***	[-5.05]	-3.722***	[-4.72]
1994	-2.595***	[-3.16]	-6.334***	[-5.66]	2010	-3.577***	[-4.11]	-3.741***	[-4.41]
1995	-1.438**	[-2.14]	-5.948***	[-4.99]	2011	-3.957***	[-5.32]	$-2.990^{* * *}$	[-4.26]
1996	-4.134***	[-4.73]	-6.277***	[-6.07]	2012	-3.770***	[-4.41]	-3.693***	[-4.34]
1997	-4.864***	[-5.00]	-7.631***	[-5.23]	2013	$-2.402^{* * *}$	[-3.28]	-5.264***	[-5.91]
1998	-5.420***	[-5.99]	-7.839***	[-6.53]	2014	$-2.937 * * *$	[-3.81]	-4.018***	[-4.95]
1999	$-2.195^{* * *}$	[-3.26]	$-7.360 * * *$	[-6.62]	2015	$-1.862^{* *}$	[-2.27]	-3.244***	[-3.37]
2000	-5.134***	[-5.53]	-5.492***	[-5.01]	2016	$-2.716 * * *$	[-3.51]	$-2.722^{* * *}$	[-3.79]
2001	$-2.930 * * *$	[-5.08]	-4.064***	[-5.50]	2017	-0.984	[-1.02]	-3.095***	[-2.84]
2002	-7.227***	[-7.37]	-4.425***	[-4.70]	2018	$-2.709 * * *$	[-2.76]	-4.032***	[-4.02]
2003	-5.641***	[-5.40]	-3.879***	[-3.44]	2019	-1.848**	[-2.27]	-4.189***	[-4.54]
2004	-5.051***	[-5.27]	-4.682***	[-4.75]	2020	-1.513*	[-1.91]	-3.537***	[-4.02]
2005	-3.378***	[-3.20]	-4.535***	[-4.09]	2021	-1.122	[-1.24]	-5.251***	[-4.53]

***, **, and * denote significance at the $1 \%, 5 \%$, and 10% level, respectively.

Number of M\&A Deals (FF12 Pair-Level; Table 3, Table 6, Table 5)

Dependent Variable	\log (Number of M\&A Deals)				
	Table 3 (V)	Table 3 (VI)	Table 6 (III)	Table 5 (III)	Table 5 (VI)
TNIC3 Score				$8.596^{* *}$ $[2.67]$	$10.910^{* * *}$ $[2.97]$
\log (Unadjusted Distance)	$-4.620^{* * *}$ $[-18.97]$		$-4.519^{* * *}$ $[-18.01]$	$-4.564^{* * *}$ $[-17.09]$	
\log (TF Distance)		$\begin{array}{\|c\|} \hline-4.132 * * * \\ {[-17.35]} \\ \hline \end{array}$	$\begin{aligned} & -0.571 \\ & {[-1.20]} \end{aligned}$		$-4.019 * * *$ $[-16.15]$
\log (Unadjusted Distance) $\mathrm{x} \log ($ TF Distance) Residual			$-4.140^{* *}$ $[-2.10]$		
Intercept	$\begin{gathered} 3.279 * * * \\ {[47.00]} \end{gathered}$	$\begin{gathered} 3.120^{* * *} \\ {[42.27]} \end{gathered}$	$\begin{gathered} 3.260 * * * \\ {[43.60]} \end{gathered}$	$\begin{gathered} 3.027 * * * \\ {[21.73]} \end{gathered}$	$\begin{gathered} 2.789 * * * \\ {[19.13]} \end{gathered}$
Year FE	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes
Observations	4,608	4,608	4,608	4,300	4,300
R-squared	0.511	0.444	0.533	0.521	0.454

Sample Period: 1990-2021 (Tables 3,6), 1990-2019 (Table 5).
Standard errors are clustered at the year level.
$* * *, * *$, and ${ }^{*}$ denote significance at the $1 \%, 5 \%$, and 10% level, respectively.

Likelihood of Deal Completion (Table 4, Deal-Level)

Dependent Variable	Indicator for Deal Completion							
	All Deals				Public Acquiror		Acquiror \& Target Public	
	(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)

Model	Probit	Probit	Probit	Probit	Probit Yes	Probit	Yes	Probit Yes
Public Acquiror					Yes	Probit Yes		
Public Target							Yes	Yes
Year FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	No	No	No	No	Yes	Yes	Yes	Yes
Pseudo R2	0.046	0.045	0.060	0.060	0.081	0.080	0.157	0.157
Observations	35,613	35,613	35,613	35,613	12,365	12,365	3,304	3,304

Other Controls: Diversify, Hostile, High Tech, Tender Offer, Stock Deal, Relative Deal Size (Columns I,II,III,IV); Plus Acquiror Firm Size, Tobin's Q Book Leverage, Cash Flow-To-Asset (Columns V, VI); Plus Target Firm Size, Tobin’s Q Book Leverage, Cash Flow-To-Asset (Columns VII, VIII).
Standard errors are clustered at the year level. ***, **, and * denote significance at the 1\%, 5\%, and 10\% level, respectively

Announcement Effects (Table 9) \& Ex-Post Survival (Table 10)

Dependent Variable	Anouncement Effect		Anouncement Effect		Survival Analysis	
	CAR($\mathrm{t}-1$ to $\mathrm{t}+1)$		$\operatorname{CAR}(\mathrm{t}-1$ to $\mathrm{t}+1)$		Survival Indicator ($\mathrm{t}+2$)	
	Table 9 (III)	Table 9 (IV)	Table 9 (V)	Table 9 (VI)	Table 10 (III)	Table 10 (IV)
\log (Unadjusted Distance)	$\begin{gathered} -0.184^{*} \\ {[-2.55]} \\ \hline \end{gathered}$		$\begin{gathered} -0.055^{*} * \\ {[-2.09]} \\ \hline \end{gathered}$		$-0.556 * * *$ $[-4.32]$	
\log (TF Distance)		$-0.359 * * *$ $[-3.08]$		$-0.044 *$ $[-1.83]$		$-0.622^{* * *}$ $[-2.75]$
Model	Linear	Linear	Probit	Probit	Probit	Probit
Acquiror-Target Weighting	Equal	Equal	Value	Value		
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1,003	1,003	1,003	1,003	14,666	14,666
(Pseudo) R-squared	0.196	0.199	0.141	0.138	0.034	0.033

Other Controls: Merger Completed, Diversify, Hostile, High Tech, Tender Offer, Stock Deal, Relative Deal Size; Acquiror Firm Size, Tobin’s Q Book Leverage, Cash Flow-To-Asset; Target Firm Size, Tobin's Q Book Leverage, Cash Flow-To-Asset.
Standard errors are clustered at the year level. ***, **, and * denote significance at the $1 \%, 5 \%$, and 10% level, respectively

Robustness

- Alternative specifications: ROA-Based Distances (Table 7, Table 8)
- Alternative fitting model: XGBoost (Table 11, Table 12, Table 13)
- Exclude Self-Industry Pairs (Table 12)

Conclusions

- New measure of industry distance by incorporating recent Al-based algorithms in econometrics
- Our measure captures the differences in the underlying production processes across industries
- Using both canonical and transfer-learning-based deep learning techniques, our measure helps compare the layer-level differences between two industries' production decision-making processes.
- This novel approach is both economically and computationally meaningful.
- We show that the cost of integration of merged organizations is important in explaining likelihood of mergers and the post-merger survival of the new organization.
- Our economically motivated industry distances tend to better capture the economic outcomes of cross-industry M\&A activities.
- Future Applications: task similarity (labor skills), bundling products, legal environment

Additional Slides

Transfer Learning

Definition

Transfer learning and domain adaptation refer to the situation where what has been learned in one setting ... is exploited to improve generalization in another setting (Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016, Deep Learning, Page 526). i.e., Transfer learning is the improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned (e.g., save training time).

How does it work?

First train a base network on a base dataset and task, and then we repurpose the learned features, or transfer them, to a second target network to be trained on a target dataset and task.

Jacot et.al (2018) on Neural Tangent Kernel; Roberts and Yaida (2022).

Applications

LLMs like Google's word2vec, BERT, OpenAl's GPTs.

Simple Example: Unadjusted vs. TF Distance

(Two-Factor Linear Output Production)

e.g., Production Function for Baseline
$w_{1}^{*}=\left\{w_{K 1}, w_{K 2}, w_{L 1}, w_{L 2}, w_{H 1}, w_{H 2}\right\}=\{1,0,0,0,1,0\}$
$M S E_{U}=E\left[\int_{0}^{1} \int_{0}^{1}\left(y\left(K, L ; w_{1}^{*}\right)-y_{1}(K, L)\right)^{2} d K d L\right]=E\left[\int_{0}^{1} \int_{0}^{1}(K-(K+\varepsilon))^{2} d K d L\right]=E\left[\int_{0}^{1} \int_{0}^{1} \varepsilon^{2} d K d L\right]=E\left[\varepsilon^{2}\right]=\sigma^{2}$
$M S E_{N T F, 12}=E\left[\int_{0}^{1} \int_{0}^{1}\left(4 K^{2}-4 K \varepsilon+\varepsilon^{2}\right) d K d L\right]=E\left[\frac{4}{3}-2 \varepsilon+\varepsilon^{2}\right]=\frac{4}{3}+\sigma^{2}$.
$M S E_{N T F, 13}=E\left[\int_{0}^{1} \int_{0}^{1}(K-(L+\varepsilon))^{2} d K d L\right]=E\left[\int_{0}^{1}\left(\frac{4}{3}+L^{2}+\varepsilon^{2}-L+\varepsilon-2 L \varepsilon\right) d L\right]=\frac{13}{6}+\sigma^{2}$

Industry	Production Function	MSE Unadjusted	MSE Transfer Learning
1. Baseline	$y_{1}(K, L)=K+\varepsilon$	σ^{2}	σ^{2}
2. Same Factor	$y_{2}(K, L)=-K+\varepsilon$	$\frac{4}{3}+\sigma^{2}$	σ^{2}
3. Different Factor	$y_{3}(K, L)=L+\varepsilon$	$\frac{13}{6}+\sigma^{2}$	$\frac{4}{3}+\sigma^{2}$

Table 3. M\&A Activities (Industry Pair-Year Panel: 1990-2021)

Dependent Variable	\log (Number of M\&A Deals)					
	(I)	(II)	(III)	(IV)	(V)	(VI)
\log (Unadjusted Distance)	$\begin{gathered} -2.962^{* * *} \\ {[-13.85]} \end{gathered}$		$\begin{gathered} -3.000^{* * *} \\ {[-13.76]} \end{gathered}$		$\begin{gathered} -4.620^{* * *} \\ {[-18.97]} \end{gathered}$	
\log (TF Distance)		$\begin{gathered} -4.137 * * * \\ {[-15.83]} \end{gathered}$		$\begin{gathered} -4.157 * * * \\ {[-16.38]} \end{gathered}$		$\begin{gathered} -4.132 * * * \\ {[-17.35]} \end{gathered}$
Intercept	$\begin{gathered} 3.206 * * * \\ {[54.76]} \end{gathered}$	$\begin{gathered} 3.420 * * * \\ {[51.70]} \end{gathered}$	$\begin{gathered} 3.216^{* * *} \\ {[56.48]} \end{gathered}$	$\begin{gathered} 3.425 * * * \\ {[56.55]} \end{gathered}$	$\begin{gathered} 3.279 * * * \\ {[47.00]} \end{gathered}$	$\begin{gathered} 3.120 * * * \\ {[42.27]} \end{gathered}$
Year FE	No	No	Yes	Yes	Yes	Yes
Industry FE	No	No	No	No	Yes	Yes
Observations	4,608	4,608	4,608	4,608	4,608	4,608
R-squared	0.087	0.126	0.097	0.132	0.511	0.444

Table 5. Hoberg-Phillips TNIC3 Score (1990-2019)

Panel A. Correlations

	TNIC3 Score	\log (Unadjusted Distance)
\log (Unadjusted Distance)	-0.1046^{*}	
\log (TF Distance)	-0.0744^{*}	0.5370^{*}

Panel C. Panel Regression For \log (NumDeal)

Dependent Variable	\log (Number of M\&A Deals)					
	(I)	(II)	(III)	(IV)	(V)	(VI)
TNIC3 Score	$12.132^{* * *}$	$12.467^{* *}$	$8.596^{* *}$	$12.547^{* * *}$	$12.811^{* * *}$	$10.910^{* * *}$
	$[2.81]$	$[2.73]$	$[2.67]$	$[2.89]$	$[2.80]$	$[2.97]$
\log (Unadjusted Distance)	$-2.938^{* * *}$	$-2.963^{* * * *}$	$-4.564^{* * *}$			
	$[-13.79]$	$[-13.79]$	$[-17.09]$			
\log (TF Distance)				$-4.000^{* * *}$	$-3.997^{* * *}$	$-4.019^{* * *}$
				$[-14.37]$	$[-14.87]$	$[-16.15]$
Intercept	$2.835^{* * *}$	$2.831^{* * *}$	$3.027^{* * *}$	$3.008^{* * *}$	$2.999^{* * *}$	$2.789 * * *$
	$[18.09]$	$[17.20]$	$[21.73]$	$[18.84]$	$[18.01]$	$[19.13]$
Year FE	No	Yes	Yes	No	Yes	Yes
Industry FE	No	No	Yes	No	No	Yes
Observations	4,300	4,300	4,300	4,300	4,300	4,300
R-squared	0.117	0.128	0.521	0.150	0.156	0.454

Table 6. M\&A Activities (Industry Pair-Year Panel: 1990-2021): Interaction Between Distance Measures

Dependent Variable	\log (Number of M\&A Deals)		
	(I)	(II)	(III)
\log (Unadjusted Distance)	$-2.832^{* * *}$	$-2.872^{* * *}$	$-4.519^{* * *}$
	$[-14.11]$	$[-14.07]$	$[-18.01]$
\log (TF Distance) Residual	0.365	0.312	-0.571
	$[0.65]$	$[0.57]$	$[-1.20]$
\log (Unadjusted Distance)	$-7.097^{* * *}$	$-6.929^{* * *}$	$-4.140^{* *}$
$\quad x \log$ (TF Distance) Residual	$[-3.03]$	$[-3.00]$	$[-2.10]$
Intercept	$3.172^{* * *}$	$3.183^{* * *}$	$3.260^{* * *}$
	$[53.79]$	$[59.73]$	$[43.60]$
Year FE	No	Yes	Yes
Industry FE	No	No	Yes
Observations	4,608	4,608	4,608
R-squared	0.118	0.126	0.533

Table 7. An Alternative Specification for Industry Distance:
M\&A Activities (Industry Pair-Year Panel: 1990-2021)
Panel A. FF12 Industry Pair-Year Panel

Dependent Variable	\log (Number of M\&A Deals)					
	(I)	(II)	(III)	(IV)	(V)	(VI)
ROA-Based \log (Unadjusted Distance)	$-1.860 * * *$		-1.927***		-2.618***	
	[-17.84]		[-18.84]		[-20.95]	
ROA-Based \log (TF Distance)	-2.894***		-3.036***		$-2.992^{* * *}$	
	[-8.42]		[-8.92]		[-9.70]	
Intercept	3.161***	3.221***	3.187***	3.260***	2.996***	$2.942^{* * *}$
	[60.82]	[36.48]	[79.56]	[35.17]	[42.56]	[30.03]
Year FE	No	No	Yes	Yes	Yes	Yes
Industry FE	No	No	No	No	Yes	Yes
Observations	4,608	4,608	4,608	4,608	4,608	4,608
R-squared	0.097	0.091	0.109	0.102	0.487	0.414

Panel B. SDC Platinum M\&A Data (Dependent Variable: Deal Completed Indicator)

Dependent Variable	Indicator for Deal Completion							
	All Deals				Public Acquiror		quiror \& Target Pul	
	(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)
ROA-Based \log (Unadjusted Distance)	$\begin{gathered} -0.257 * * * \\ {[-4.35]} \end{gathered}$		$\begin{gathered} -0.219 * * * \\ {[-3.32]} \end{gathered}$		$\begin{gathered} -0.268^{*} * \\ {[-2.48]} \end{gathered}$		$\begin{gathered} -0.306 \\ {[-1.39]} \end{gathered}$	
ROA-Based \log (TF-Distance)		$\begin{gathered} -0.323 * * * \\ {[-4.23]} \end{gathered}$		$\begin{gathered} -0.278 * * * \\ {[-3.57]} \end{gathered}$		$\begin{aligned} & -0.297 \\ & {[-1.52]} \end{aligned}$		$\begin{gathered} -0.918 * * * \\ {[-2.79]} \end{gathered}$
Model	Probit							
Public Acquiror					Yes	Yes	Yes	Yes
Public Target							Yes	Yes
Year FE	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	No	No	No	No	Yes	Yes	Yes	Yes
Observations	35,615	35,615	35,615	35,615	12,378	12,378	3,318	3,318

Table 8. An Alternative Specification for Industry Distance: Hoberg-Phillips TNIC3 Score (1990-2019)
Panel A. Correlations

	TNIC3 Score	ROA-Based \log (Unadjusted Distance)
ROA-Based \log (Unadjusted Distance)	-0.0717^{*}	
ROA-Based \log (TF Distance)	-0.0489^{*}	0.5902^{*}

Panel C. $\log ($ NumDeal) Regression

| Dependent Variable | \log (Number of M\&A Deals) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (I) | (II) | (III) | (IV) | (V) | (VI) |
| TNIC3 Score | $12.868^{* * *}$ | $13.104^{* * *}$ | $9.203^{* * *}$ | $13.502^{* * *}$ | $13.733^{* * *}$ | $11.929^{* * *}$ |
| | $[3.02]$ | $[2.92]$ | $[2.94]$ | $[2.93]$ | $[2.85]$ | $[3.02]$ |
| ROA-Based \log (Unadjusted Distance) | $-1.829^{* * *}$ | $-1.894^{* * *}$ | $-2.588^{* * *}$ | | | |
| | $[-18.73]$ | $[-19.92]$ | $[-20.30]$ | | | |
| ROA-Based \log (TF Distance) | | | | $-2.758^{* * *}$ | $-2.882^{* * *}$ | $-2.867^{* * *}$ |
| | | | | $[-7.81]$ | $[-8.22]$ | $[-8.96]$ |
| Intercept | $2.762^{* * *}$ | $2.780^{* * *}$ | $2.735^{* * *}$ | $2.777^{* * *}$ | $2.804^{* * *}$ | $2.579^{* * *}$ |
| | $[19.42]$ | $[19.10]$ | $[20.57$ | $[16.87]$ | $[15.82]$ | $[16.00]$ |

Year FE
Industry FE

Observations	4,300	4,300	4,300	4,300	4,300	4,300

| R-squared | 0.124 | 0.137 | 0.495 | 0.115 | 0.127 | 0.423 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 9. M\&A Announcement Effect (SDC Platinum Deal Level: 1990-2021)

Dependent Variable	CAR(t-1 to t)		CAR(t-1 to t+1)		$\operatorname{CAR}(\mathrm{t}-1$ to $\mathrm{t}+1)$	
	(I)	(II)	(III)	(IV)	(V)	(VI)
\log (Unadjusted Distance)	$\begin{gathered} -0.155 * * \\ {[-2.34]} \end{gathered}$		$\begin{gathered} -0.184^{*} * \\ {[-2.55]} \end{gathered}$		$\begin{gathered} -0.055 * * \\ {[-2.09]} \end{gathered}$	
\log (TF Distance)		$\begin{aligned} & -0.142 \\ & {[-1.57]} \end{aligned}$		$\begin{gathered} -0.359 * * * \\ {[-3.08]} \end{gathered}$		$\begin{gathered} -0.044^{*} \\ {[-1.83]} \end{gathered}$
Acquiror-Target Weighting	Equal	Equal	Equal	Equal	Value	Value
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1,235	1,235	1,003	1,003	1,003	1,003
R-squared	0.126	0.124	0.196	0.199	0.141	0.138

Table 10. Post-Merger Real Effects (SDC Platinum Deal Level: 1990-2021): Post-Merger Acquiror Survival

Sample	All Deals				Deals with Public Acquirors				:als with Public Acquirors-Public Tar:			
Forecast Horizon	$\begin{gathered} \mathrm{t}+1 \\ (\mathrm{I}) \end{gathered}$	$\begin{aligned} & \mathrm{t}+1 \\ & (\mathrm{II}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{t}+2 \\ & (\mathrm{III}) \end{aligned}$	$\begin{aligned} & \mathrm{t}+2 \\ & \mathrm{IV}) \end{aligned}$	$\begin{aligned} & \mathrm{t}+1 \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{t}+1 \\ & (\mathrm{VI}) \end{aligned}$	$\begin{gathered} \hline \mathrm{t}+2 \\ (\mathrm{VII}) \end{gathered}$	$\begin{gathered} \mathrm{t}+2 \\ (\mathrm{VIII}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{t}+1 \\ & \mathrm{IX}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{t}+1 \\ & (\mathrm{X}) \end{aligned}$	$\begin{aligned} & \mathrm{t}+2 \\ & (\mathrm{XI}) \end{aligned}$	$\begin{gathered} \hline \mathrm{t}+2 \\ (\mathrm{XII}) \end{gathered}$
\log (Unadjusted Distance)	$\begin{gathered} -0.646 * * * \\ {[-3.34]} \end{gathered}$		$\begin{gathered} -0.556^{* * *} \\ {[-4.32]} \end{gathered}$		$\begin{gathered} \hline-0.410^{*} \\ {[-1.92]} \end{gathered}$		$\begin{gathered} \hline-0.394 * * * \\ {[-2.66]} \end{gathered}$		$\begin{aligned} & 0.633 \\ & {[1.35]} \end{aligned}$		$\begin{aligned} & -0.059 \\ & {[-0.17]} \end{aligned}$	
\log (TF Distance)		$\begin{gathered} -0.709^{* * *} \\ {[-2.85]} \end{gathered}$		$\begin{gathered} -0.622^{* * *} \\ {[-2.75]} \end{gathered}$		$\begin{gathered} -0.673 * * \\ {[-2.35]} \end{gathered}$		$\begin{gathered} -0.624 * * \\ {[-2.47]} \end{gathered}$		$\begin{gathered} 0.242 \\ {[0.34]} \end{gathered}$		$\begin{aligned} & -0.258 \\ & {[-0.47]} \end{aligned}$
Model	Probit											
Public Acquiror	No	No	No	No	Yes							
Public Target	No	Yes	Yes	Yes	Yes							
Year FE	Yes											
Industry FE	Yes											
Pseudo R2	0.037	0.036	0.034	0.033	0.063	0.064	0.058	0.058	0.137	0.136	0.113	0.113
Observations	14,939	14,939	14,666	14,666	11,493	11,493	11,266	11,266	2,935	2,935	3,130	3,130

Table 11. Alternative Specification (XGBoost)

Year	Log(Unadjusted Distance)		\log (TF Distance)		\log (XGB Distance)		Year	Log(Unadjusted Distance)		\log (TF Distance)		\log (XGB Distance)	
	Estimate (I)	t-stat (II)	Estimate (III)	t-stat (IV)	Estimate (V)	t-stat (VI)		Estimate (I)	t-stat (II)	Estimate (III)	t-stat (IV)	Estimate (V)	t-stat (VI)
1990	-4.819***	[-6.82]	-3.844***	[-5.07]	-2.939***	[-9.03]	2006	-3.545***	[-3.71]	-4.015***	[-4.21]	-2.526***	[-6.46]
1991	-3.007***	[-4.59]	-4.264***	[-4.57]	-2.739***	[-8.81]	2007	-3.374***	[-3.86]	-4.235***	[-4.10]	-2.676***	[-6.20]
1992	$-2.917^{* * *}$	[-3.80]	-4.531***	[-4.63]	-3.033***	[-9.33]	2008	$-2.278 * * *$	[-4.50]	-2.172***	[-3.73]	-3.198***	[-8.32]
1993	$-2.258^{* * *}$	[-2.99]	-6.706***	[-6.27]	-2.703***	[-7.72]	2009	-4.346***	[-5.05]	-3.722***	[-4.72]	-2.065***	[-5.32]
1994	-2.595***	[-3.16]	-6.334***	[-5.66]	-3.015***	[-8.03]	2010	-3.577***	[-4.11]	-3.741***	[-4.41]	-1.872***	[-5.03]
1995	-1.438**	[-2.14]	-5.948***	[-4.99]	-3.092***	[-8.05]	2011	$-3.957^{* * *}$	[-5.32]	-2.990 ***	[-4.26]	$-2.375^{* * *}$	[-6.89]
1996	-4.134***	[-4.73]	-6.277***	[-6.07]	-3.282***	[-8.47]	2012	-3.770***	[-4.41]	-3.693***	[-4.34]	-2.738***	[-7.90]
1997	-4.864***	[-5.00]	-7.631***	[-5.23]	-3.363***	[-8.23]	2013	$-2.402^{* * *}$	[-3.28]	-5.264***	[-5.91]	-2.627***	[-7.35]
1998	-5.420***	[-5.99]	-7.839***	[-6.53]	-3.124***	[-8.71]	2014	-2.937***	[-3.81]	-4.018***	[-4.95]	-2.470***	[-6.97]
1999	-2.195***	[-3.26]	-7.360***	[-6.62]	-2.552***	[-6.75]	2015	-1.862**	[-2.27]	-3.244***	[-3.37]	-2.642***	[-7.02]
2000	-5.134***	[-5.53]	-5.492***	[-5.01]	-2.785***	[-7.39]	2016	-2.716***	[-3.51]	-2.722***	[-3.79]	-2.870***	[-7.72]
2001	-2.930***	[-5.08]	-4.064***	[-5.50]	-2.676***	[-7.83]	2017	-0.984	[-1.02]	-3.095***	[-2.84]	-1.989***	[-5.85]
2002	$-7.227 * * *$	[-7.37]	-4.425***	[-4.70]	-2.821***	[-7.06]	2018	-2.709***	[-2.76]	-4.032***	[-4.02]	-2.054***	[-5.25]
2003	-5.641***	[-5.40]	-3.879***	[-3.44]	-3.229***	[-8.50]	2019	-1.848**	[-2.27]	-4.189***	[-4.54]	-2.185***	[-6.00]
2004	-5.051***	[-5.27]	-4.682***	[-4.75]	$-3.097 * * *$	[-7.84]	2020	-1.513*	[-1.91]	-3.537***	[-4.02]	$-2.548^{* * *}$	[-6.15]
2005	$-3.378 * * *$	[-3.20]	-4.535***	[-4.09]	-3.031***	[-8.07]	2021	-1.122	[-1.24]	-5.251***	[-4.53]	-2.405***	[-6.09]

Table 12. Alternative Specification (XGBoost) \& Robustness (FF12 Pair level)

Dependent Variable Sample	\log (Number of M\&A Deals)					
	Full Sample			Exclude Self FF12 Pair		
	(VII)	(VIII)	(IX)	(VII)	(VIII)	(IX)
\log (Unadjusted Distance)	$\begin{gathered} -4.620^{* * *} \\ {[-18.97]} \end{gathered}$			$\begin{gathered} -2.306 * * * \\ {[-14.68]} \end{gathered}$		
\log (TF Distance)		$\begin{gathered} -4.132 * * * \\ {[-17.35]} \end{gathered}$			$\begin{gathered} -3.635 * * * \\ {[-17.56]} \end{gathered}$	
\log (XGB Distance)			$\begin{gathered} -2.951^{* *} * \\ {[-51.54]} \\ \hline \end{gathered}$			$\begin{gathered} \hline-1.512 * * * \\ {[-12.63]} \end{gathered}$
Intercept	$\begin{gathered} 3.279 * * * \\ {[47.00]} \end{gathered}$	$\begin{gathered} 3.120 * * * \\ {[42.27]} \end{gathered}$	$\begin{gathered} 2.442 * * * \\ {[59.83]} \end{gathered}$	$\begin{gathered} 2.445 * * * \\ {[41.44]} \end{gathered}$	$\begin{gathered} 2.707 * * * \\ {[40.91]} \end{gathered}$	$\begin{gathered} 2.111 * * * \\ {[49.72]} \end{gathered}$
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	4,608	4,608	4,608	4,224	4,224	4,224
R-squared	0.511	0.444	0.628	0.509	0.585	0.483

Table 13. Alternative Specification (XGBoost): Announcement Effect \& Survival

Dependent Variable	$\operatorname{CAR}(\mathrm{t}-1$ to $\mathrm{t}+1)$			$\operatorname{CAR}(\mathrm{t}-1$ to $\mathrm{t}+1)$			Survival Indicator (t+2)		
	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)	(IV)	(V)	(VI)
\log (Unadjusted Distance)	$\begin{gathered} -0.170 * * \\ {[-2.27]} \end{gathered}$			$\begin{gathered} -0.055 * * \\ {[-2.05]} \end{gathered}$			$\begin{gathered} -0.561 * * * \\ {[-4.34]} \end{gathered}$		
\log (TF Distance)		$\begin{gathered} -0.330 * * * \\ {[-2.86]} \end{gathered}$			$\begin{gathered} -0.044 * \\ {[-1.82]} \end{gathered}$			$\begin{gathered} -0.618 * * * \\ {[-2.74]} \end{gathered}$	
\log (XGB Distance)			$\begin{aligned} & -0.047 \\ & {[-1.69]} \end{aligned}$			$\begin{gathered} -0.016 \\ {[-1.64]} \end{gathered}$			$\begin{gathered} \hline-0.186 * * * \\ {[-3.47]} \\ \hline \end{gathered}$
Intercept	$\begin{gathered} 0.243 * * * \\ {[3.16]} \end{gathered}$	$\begin{gathered} 0.292 * * * \\ {[3.67]} \end{gathered}$	$\begin{gathered} 0.207 * * * \\ {[2.76]} \end{gathered}$	$\begin{gathered} \hline 0.073 * * * \\ {[2.82]} \end{gathered}$	$\begin{gathered} 0.079 * * * \\ {[2.98]} \end{gathered}$	$\begin{gathered} 0.061 * * \\ {[2.46]} \end{gathered}$	$\begin{gathered} 1.326^{* * *} \\ {[13.78]} \end{gathered}$	$\begin{gathered} 1.458 * * * \\ {[14.50]} \end{gathered}$	$\begin{gathered} 1.182 * * * \\ {[11.53]} \end{gathered}$
Model	Linear	Linear	Linear	Linear	Linear	Linear	Probit	Probit	Probit
Acquiror-Target Weighting	Equal	Equal	Equal	Value	Value	Value			
Year FE	Yes								
Industry FE	Yes								
Observations	999	999	999	999	999	999	14,668	14,668	14,668
R-squared	0.191	0.193	0.190	0.141	0.139	0.141			

VGG16 Image Classification

Arden Dertat, 2017, Applied Deep Learning - Part 4: Convolutional Neural Networks, Medium.com

Other Application: Deepfake-based Counterfactuals

Generative-AI, Deepfake, GAN

Music

Cthe Eictu 引ork ẽimes \mid https://www.nytimes.com/2023/04/19/arts/music/ai-drake-the-weeknd-fake.htm
An A.I. Hit of Fake 'Drake' and 'The Weeknd' Rattles the Music World
A track like "Heart on My Sleeve," which went viral before being taken down by streaming services this week, may be a novelty for now. 1 the legal and creative questions it raises are here to stay.

student opinion
Will A.I. Replace Pop Stars?
An A.I.-generated track with fake Drake and the Weeknd vocals went viral. Would you listen to a song sang by a computer?
Hollywood
How generative AI got cast in its first Hollywood movie
The forthcoming Tom Hanks and Robin Wright on-screen reunion, 'Here,' will feature a starring role for Metaphysic's AI.

Medicine

the future of everything

How AI That Powers Chatbots and Search Queries Could Discover New Drugs

Natural language processing algorithms like the ones used in Google searches and 'OpenAI's ChatGPT promise to slash the time reauired to brina medications to
market Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development

A.I. Turns Its Artistry to Creating New Human Proteins

Inspired by digital art generators like DALL-E, biologists are building artificial intelligences that can fight cancer, flu and Covid.

defense

AI Drug Discovery Systems Might Be Repurposed to Make Chemical Weapons, Researchers Warn
A demonstration with drug design software shows the ease with which toxic molecules can be generated

News \& Politics

The Deepfake Dangers Ahead
Al-generated disinformation, especially from hostile foreign powers, is a growing threat to democracies based on the free flow of ideas

'Deepfakes' of Celebrities Have Begun

Appearing in Ads, With or Without Their
Permission

Detecting Discriminatory Lending with Deepfake-Counterfactuals

FinTech: Al to Screen Borrowers
RegTech: Al to Screen Lenders

[Component 1] Anomaly Detection

[Component 2] Deepfake Counterfactuals

Fake Data

Decomposition of Loan Decisions: ML vs. Human

Favoritism

Model Explained Decisions

Discrimination

- Advantages of Anomaly Detection
> Avoid Averaging (e.g., Strategic Discrimination)
> Imbalanced Sample
$>$ Direction of Discrimination

- Advantages of GAN (\& Neural Networks)

> Generate very realistic synthetic data (GAN)
> No a priori parametric assumption on nonlinearity
> Scales well for large number of inputs (big data)
> Mitigate overfitting (GAN)
Extraneous factors in judicial decisions

Supervised learning may overfit and incorporate aberrations in learning rules: We test the common caricature of realism that justice is "what the judge ate for breakfast" in sequential parole decisions made by experienced judges.

Supervised Learning: $y=f(x)$

Variation comes from realized data points

cGAN generator: $y=g(z, x)$

Back

[^0]: * denote significance at the 1% level.

