How Costly Are Cultural Biases? Evidence from FinTech

Francesco D'Acunto Georgetown University

> Pulak Ghosh IIM Bangalore

Alberto G Rossi Georgetown University

Motivation

Discrimination pervasive in credit markets (Becker, 1957)

- Statistical discrimination (e.g., Phelps, 1965)
 - ▶ If asymmetric info, demographics might provide info about quality
 - → Improves discriminators' performance, efficient use of information
- Biased discrimination (e.g., Becker, 1971; Akerlof and Kranton, 2000)
 - ► <u>Taste</u>: dislike certain groups, take costly actions to discriminate
 - ▶ Inaccurate statistical discrimination: incorrect beliefs based on demos
 - <u>Cultural biases</u>: such preferences/beliefs shaped by cultural norms
 - ightarrow Worsens discriminators' performance, inefficient use of information

Motivation

Discrimination pervasive in credit markets (Becker, 1957)

- Statistical discrimination (e.g., Phelps, 1965)
 - ▶ If asymmetric info, demographics might provide info about quality
 - → Improves discriminators' performance, efficient use of information
- Biased discrimination (e.g., Becker, 1971; Akerlof and Kranton, 2000)
 - ► Taste: dislike certain groups, take costly actions to discriminate
 - ▶ <u>Inaccurate statistical discrimination:</u> incorrect beliefs based on demos
 - <u>Cultural biases</u>: such preferences/beliefs shaped by cultural norms
 - ightarrow Worsens discriminators' performance, inefficient use of information

Empirical Challenges to Disentangle

- Need a measure of discriminators' performance
- Need choices that are costly to discriminating agent
- Need benchmark to assess who, if anybody, is biased

- Setting to test for/measure value of cultural biases
 - ► Peer-to-peer (P2P) lending platform in India
 - ► Al Robo-advising tool that proposes allocations to lenders
 - Robo-advisor picks randomly conditional on borrower's risk
 - Compare lenders' choices before/after robo-advising

- Setting to test for/measure value of cultural biases
 - ► Peer-to-peer (P2P) lending platform in India
 - ► Al Robo-advising tool that proposes allocations to lenders
 - ► Robo-advisor picks randomly conditional on borrower's risk
 - Compare lenders' choices before/after robo-advising
- Do lenders perform better after switching to robo-advising?
 - NO → statistical discrimination
 - $\blacktriangleright \ \ \mathsf{YES} \to \mathsf{biased} \ \mathsf{discrimination} \ (\mathsf{taste} \ \mathsf{or} \ \mathsf{inaccurate} \ \mathsf{statistical})$
- •

- Setting to test for/measure value of cultural biases
 - ► Peer-to-peer (P2P) lending platform in India
 - ► Al Robo-advising tool that proposes allocations to lenders
 - ► Robo-advisor picks randomly conditional on borrower's risk
 - Compare lenders' choices before/after robo-advising
- Do lenders perform better after switching to robo-advising?
 - ► NO → statistical discrimination
 - $lackbox{ YES}
 ightarrow {
 m biased}$ discrimination (taste or inaccurate statistical)
- •

- Setting to test for/measure value of cultural biases
 - ► Peer-to-peer (P2P) lending platform in India
 - ► Al Robo-advising tool that proposes allocations to lenders
 - ► Robo-advisor picks randomly conditional on borrower's risk
 - Compare lenders' choices before/after robo-advising
- Do lenders perform better after switching to robo-advising?
 - ► NO → statistical discrimination
 - $lackbox{YES}
 ightarrow { ext{biased discrimination (taste or inaccurate statistical)}}$
- Do lenders switch to robo-advised suggestions?
 - ► NO → taste-based discrimination
 - ► YES → inaccurate statistical discrimination

- Setting to test for/measure value of cultural biases
 - ► Peer-to-peer (P2P) lending platform in India
 - ► Al Robo-advising tool that proposes allocations to lenders
 - ► Robo-advisor picks randomly conditional on borrower's risk
 - Compare lenders' choices before/after robo-advising
- Do lenders perform better after switching to robo-advising?
 - ► NO → statistical discrimination
 - $lackbox{ YES}
 ightarrow {
 m biased}$ discrimination (taste or inaccurate statistical)
- Do lenders switch to robo-advised suggestions?
 - ► NO → taste-based discrimination
 - ightharpoonup YES ightarrow inaccurate statistical discrimination

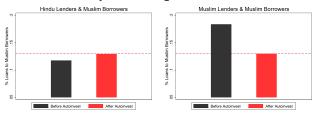
Why India?

Two forms of cultural biases:

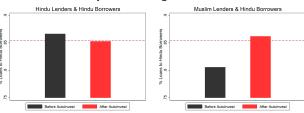
- In-group vs. out-group discrimination: Hindu vs. Muslim
 - ▶ Before and after independence (1947), violent conflict
 - Conflict fomented by political parties, regulation
- Stereotypical discrimination: Lower caste (Shudra)
 - Centuries-long social discrimination
 - Ingrained in society, no strong opposing forces
 - Not like white vs. minorities in the US

Preview of the Results

Probability of Choosing Muslim Borrowers



Probability of Choosing Hindu Borrowers



Performance of favored groups improves after debiasing, cut left tail (high risk)

Related Literature

Discrimination in Economic Choices

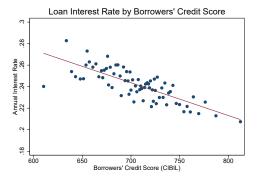
- Statistical Discrimination
 - Phelps (1972); Borjas and Goldberg (1978) ... and many others
- Taste-Based Discrimination
 - Becker (1957); Akerlof and Kranton (2000); Parsons et al. (2011)
- $ightarrow \underline{\textit{Contribution}}$: Providing a setting to disentangle statistical vs. biased discrimination

Robo-Advising: Human Choices vs. Algorithmic Choices

- Overview of the area:
 D'Acunto and Rossi (2020), D'Acunto and Rossi (2021)
- Investments:
 - D'Acunto, Prabhala, Rossi (2019); Rossi and Utkus (2020); Reher and Sun (2020)
- Consumption/Saving:
 D'Acunto, Rossi, Weber (2020); Lee (2020); Gargano and Rossi (2020)
- Debt Management: Golsbee (2004); D'Acunto et al. (2021)
- ightarrow <u>Contribution</u>: Using robo-advising to assess if decision-making biased

Platform's Screening & Loan Characteristics

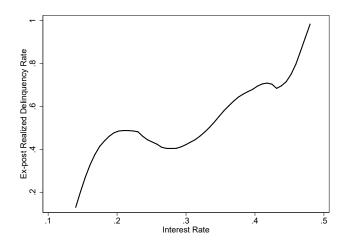
- <u>STEP 1</u>: Prospective borrowers screened (hard info), assigned int. rate, maturity
- <u>STEP 2</u>: (Human) officers verify borrowers' information



Statistical discrimination by platform (probably)

- Decoupling risk assessment from lending decisions
- Platform screens, verifies, monitors borrowers ex post
- Lenders have no role in setting interest rates, maturity, monitoring
- Lenders only choose quantities (if, how much to lend)

Interest Rates and Ex-post Defaults



- Interest rates assigned non-linearly: high defaults pooled just below 50%
- Feature common to other loan pricing (e.g., US mortgages)

Robo-Advising: Auto Invest

My Auto Invest Alloca	ation:	Setup your A	uto Invest Allocati	on here
Total amount to allocate	e: ₹ 560,465.00			
CATEGORIES	ALREADY DEPLOYED	MAX PROPOSAL AMOUNT (₹)	ALLOCATION (%)	ALLOCATION AMOUNT (₹)
High Range (>26%) Very High, Instant Min Proposal Amount: ₹ 500	₹ 8,500.00	500.00 🔻	20 ▼	112093
Mid Range (18% - 26%) Medium, High Min Proposal Amount: ₹ 1000	₹ 21,600.00	1,000.00 ▼	35 ▼	196162.75
Low Range (<18%) Prime, Minimal, Low Min Proposal Amount: ₹ 2000	₹ 38,235.00	2,000.00	45 🔻	252209.25

- Lenders decide how much to allocate across three risk categories
- Auto Invest matches them almost randomly with borrowers (order of arrival)
- Instead, unassisted lenders choose very risky borrowers from favored groups

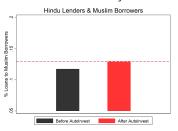
In-group vs. Out-group Discrimination

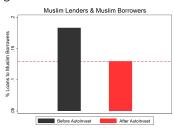
Two forms of secular cultural biases (discrimination):

- In-group vs. out-group discrimination: Hindu vs. Muslim
 - ▶ Before and after independence (1947), violent conflict
 - Conflict fomented by political parties, regulation
- Stereotypical discrimination: Lower caste (Shudra)
 - Centuries-long social discrimination
 - ► Ingrained in society, no strong opposing forces
 - Not like white vs. minorities in the US
 - ► Caste not always easy to detect→exploit variation in recognizability
 - Instead, more obvious with minorities in the US

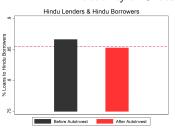
In-group vs. Out-group: Extensive Margin

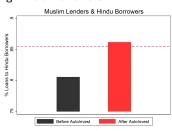
Probability of Choosing Muslim Borrowers



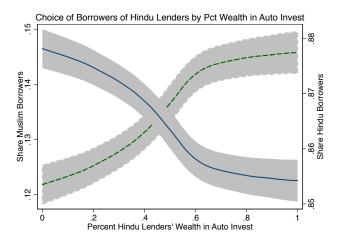


Probability of Choosing Hindu Borrowers





In-group vs. Out-group: Intensive Margin



 \uparrow share funds in Auto Invest (x-axis) $\rightarrow \uparrow$ debiasing (y-axis)

In-group vs. Out-group Discrimination: Multivariate

$$\begin{aligned} \textit{Muslim Borrower}_{i,j} = & \alpha + \beta \ \textit{Auto Invest}_j + \gamma \ \textit{Hindu Lender}_j + \\ & \delta \ \textit{Hindu Lender}_j \times \textit{Auto Invest}_j + \zeta \ \textit{X}_i + \eta_j + \epsilon_{i,j} \end{aligned}$$

- Unit of observation: Lender-borrower-loan triad
- Loan Risk Measures (X_i):
 Annual interest rate, Maturity (months), Log(Amount)
- Lender fixed effects (η_j) : pre-post within lender
- \bullet S.e. clustered at the lender level (j), same if double lender-borrower

In-group vs. Out-group: Multivariate

 $\begin{aligned} \textit{Muslim Borrower}_{i,j} = & \alpha + \beta \ \textbf{Auto Invest}_{\textbf{j}} + \gamma \ \textbf{Hindu Lender}_{\textbf{j}} + \\ & \delta \ \textit{Hindu Lender}_{\textbf{j}} \times \textit{Auto Invest}_{\textbf{j}} + \zeta \ \textit{X}_{i} + \epsilon_{i,j} \end{aligned}$

	Baseline (1)	Borrower Char. (2)	Lender FE (3)	Low Use Auto Invest (4)	High Use Auto Invest (5)
Hindu Lender × Auto Invest	0.04*** (2.51)	0.04*** (2.51)	0.04*** (2.02)	0.009 (0.22)	0.05*** (2.05)
Hindu Lender	-0.06*** (-3.52)	-0.06*** (-3.57)			
Auto Invest	-0.03 (-1.45)	-0.03 (-1.40)	-0.03 (-1.41)	0.01 (0.28)	-0.04 (-1.59)
Loan Risk Measures Lender FE N. obs.	113,284	X 113,283	X X 113,283	X X 39,366	X X 72,105

[•] Baseline discrimination: -0.06/0.12 (avg. Muslim share pre) \approx 50%

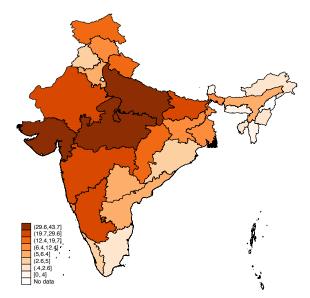
[•] Average drop in discrimination: $0.044/0.06 \approx 73\%$

Heterogeneity: Salience Hindu-Muslim Animus

- Ideally, exogenous variation salience H.-M. animus by lenders see D'Acunto (2020, 2021) on experimental variation salience cultural norms
- Instead, XS variation in exposure to ethnic conflict
 - ► Compare choices of lenders w/ different exposure
 - ► Vast majority of borrowers in different locations
- Three sources of variation H.-M. animus:
 - ► City-level Hindu-Muslim riots (1980s onwards)
 - ► State-level vote shares for nationalistic Hindu party (BJP)
 - Cohort-level exposure to Hindu-Muslim riots (younger lenders exposed in formative years)
- Discrimination stronger if higher H.-M. animus

Example: Extent of Hindu-Muslim Conflict

Average Vote Shares Bharatiya Janata Party (BJP), 1977-2015



Heterogeneity: Extent of Hindu-Muslim Conflict

Dependent variable:	Hindu-Muslim BJP Riots Vote Sha		-	Lender re Cohort		
Muslim Borrower	No (1)	Yes (2)	Low (3)	High (4)	Young (5)	Senior (6)
Hindu Lender × Auto Invest	0.03 (0.75)	0.05*** (2.62)	0.02 (0.88)	0.14*** (4.05)	0.07*** (3.19)	0.01 (0.18)
Hindu Lender	-0.03 (-1.28)	-0.06*** (-3.86)	-0.04* (-1.94)	-0.09*** (-7.76)	-0.07*** (-4.37)	-0.03 (-1.29)
Auto Invest	-0.01 (-0.04)	-0.03* (-1.79)	0.01 (0.28)	-0.11*** (-3.22)	-0.05*** (-2.31)	0.02 (0.72)
χ^2 -test difference		<u>0.20</u>		<u>10.57***</u>		<u>4.46**</u>
N. obs.	46,079	67,204	94,909	15,251	44,689	68,594

- Baseline discrimination is higher for lenders exposed to Hindu-Muslim conflict
- Drop in discrimination is (consequently) higher for those lenders

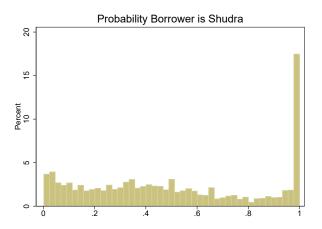
Moving on to Stereotypical Discrimination

- Traditional, centuries-long Hindu varna system (castes)
 - Four hierarchical varnas: *Shudra* bottom group
 - ► Established segregation: education, jobs, marriages
 - ► Shudra themselves perceive higher castes as "better" (implicit bias)

- All lenders, including Shudra, should discriminate vs. Shudras
- Unique feature:

Castes are *not* disclosed. Variation in ease of recognition...

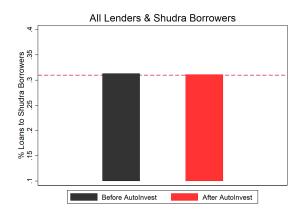
Variation in Lower-Caste Recognizability



- Algorithm that mimics human assessment of caste (Bhagavatula et al, 2018)
- Based on surname, location, occupation
- Substantial variation in extent Shudra borrowers are recognizable

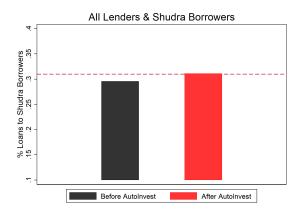
Stereotypical Discrimination

Choosing Shudra (Discriminated) Borrowers: Caste Barely Recognizable (Pr>0)



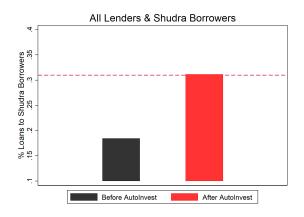
Stereotypical Discrimination

Choosing Shudra (Discriminated) Borrowers: Caste Somewhat Recognizable (Pr>50%)

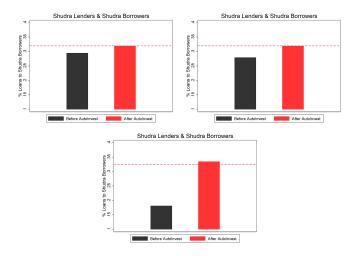


Stereotypical Discrimination

Choosing Shudra (Discriminated) Borrowers: Caste Easily Recognizable (Pr>70%)



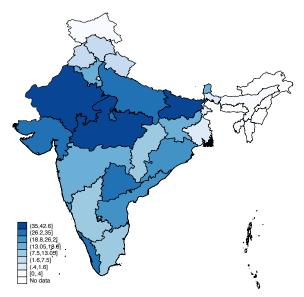
Shudra vs. Shudra: Altruism vs. Discrimination



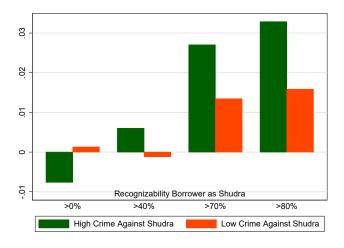
- Shudra lenders discriminate even more against Shudra borrowers
- Result that dismisses a role for kin altruism

Heterogeneity: Local Crime Acts Against Shudras

Criminal Acts Against Shudra Caste (per 100K inhabitants), 2018



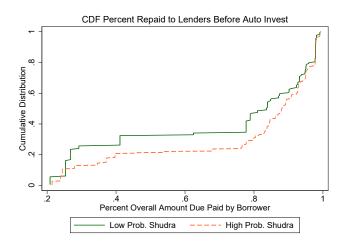
Heterogeneity: Local Crime Against Shudras



From Debiasing to Performance

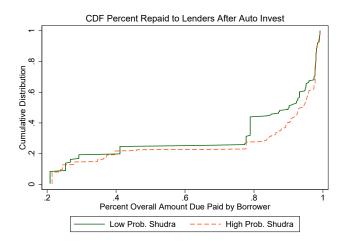
- Positive Effect on Loans' Performance?
 - Culturally Biased Discrimination
 - Lenders dig deeper within the preferred pool
 - ▶ Before debiasing, favorite group should perform worse
 - After debiasing, favorite group should perform better
- Negative Effect on Loans' Performance?
 - Screening Channel (Ashraf et al, 2017)
 - Easier to assess the riskiness of borrowers from same religion/caste
 - ► Monitoring Channel (Fisman et al., 2020)
 - ▶ Relationship banking: easier to monitor borrowers from one's community
 - ► Stigma/Moral Hazard Channel (Burstzyn et al., 2019)
 - Borrowers don't want to default on lenders of same religion/caste

Performance, Intensive Margin: Before Auto Invest



- Size loss: 130K rupees (\approx \$1,770) for average lender
- Out of average investment of 1,200K rupees for average lender

Performance, Intensive Margin: After Auto Invest



- Size loss: drops by 65%
- Driven by improvement of favored group, cut left tail very risky borrowers

Change in Performance: Hindu vs. Muslim

Dependent variable:	Lend	der	Len	der
Delinquent Loan	Hindu	Hindu	Muslim	Muslim
	(1)	(2)	(3)	(4)
Auto Invest	-0.09***		-0.34***	
	(-5.16)		(-3.28)	
Muslim Borrower	-0.05***		0.29	
	(-4.08)		(1.57)	
Hindu Borrower				
\times Auto Invest				
Muslim Borrower				
\times Auto Invest				
Loan Risk Measures	X	X	X	Х
N. obs.	16,985	16,985	100	100

• Likelihood default drops by 40% for Hindu lenders (=-9pp/22.5pp)

Change in Performance: Hindu vs. Muslim

Dependent variable:	Lei	nder	Lei	nder
Delinquent Loan	Hindu	Hindu	Muslim	Muslim
	(1)	(2)	(3)	(4)
Auto Invest	-0.09***		-0.34***	
	(-5.16)		(-3.28)	
Muslim Borrower	-0.05***	-0.07***	0.29	0.44***
	(-4.08)	(-4.02)	(1.57)	(5.63)
Hindu Borrower		-0.09***		-0.33***
\times Auto Invest		(-5.38)		(-2.79)
Muslim Borrower		-0.05*		-0.53***
\times Auto Invest		(-1.79)		(-2.40)
Loan Risk Measures	X	X	X	X
N. obs.	16,985	16,985	100	100

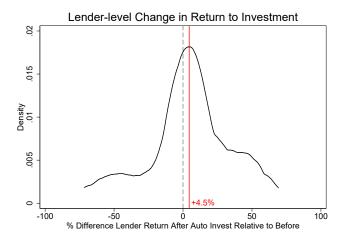
• Drop in defaults driven by homophilic borrowers for each lenders' group

Change in Performance: Shudra vs. Non-Shudra

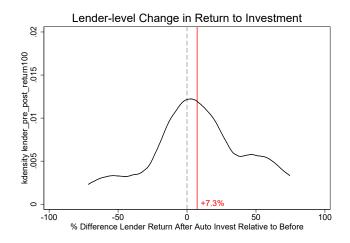
Dependent variable:	All Lenders			
Delinquent Loan	(1)	(2)		
Auto Invest	-0.033* (-1.72)			
Shudra Borrower		-0.044* (-1.80)		
$\begin{array}{c} Shudra \ Borrower \\ \times \ Auto \ Invest \end{array}$		0.019 (0.42)		
$\begin{array}{l} {\sf Non\text{-}Shudra\ Borrower} \\ \times\ {\sf Auto\ Invest} \end{array}$		-0.043** (-2.05)		
Loan Risk Measures N. obs.	X 3,457	X 3,457		

• Drop in defaults driven by favorite borrowers for all lenders

Change in Lender-level Returns: Religion



Change in Lender-level Returns: Caste



Conclusion: How Costly Are Cultural Biases?

- High-stakes setting to measure the existence & cost of cultural biases
 - ► Compare choices pre-post automated robo-advising suggestions
- What form of discrimination?
 - Exclude statistical discrimination: lenders' performance improves
 - Inaccurate statistical discrimination more likely than taste-based
 - Very few lenders override robo-advisor's suggestions
 - Shudra lenders discriminate against their similar
 - ▶ Lower bound: robo picks at random. If skilled, even better performance
- Learning?
 - ▶ We do not know if lenders learn from robo suggestions...
 - ...is debiasing temporary, permanent? Repeated interventions?

Fraction of Defaulted Loans by Interest Rate Levels

