| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

# Countercyclical Income Risk and Portfolio Choices: Evidence from Sweden

Sylvain Catherine, Paolo Sodini & Yapei Zhang

Wharton, Stockholm School of Economics & ShanghaiTech U

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| ●00          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

#### Motivation: Cyclical skewness

• Skewness of labor income risk is cyclical ...

Guvenen et al. (2014)

• ... and can be hedged by short-selling the stock market



| Introduction | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |
|              |        |                      |         |            |            |

## Motivation

- Models with cyclical income risk can explain:
  - The cross-section of households' equity holdings
    Storesletten et al. (2007), Lynch and Tan (2011), Catherine (2022)
  - The level, volatility and cross-section of asset prices Schmidt (2016), Constantinides and Ghosh (2017)

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

## Motivation

- Models with cyclical income risk can explain:
  - The cross-section of households' equity holdings
    Storesletten et al. (2007), Lynch and Tan (2011), Catherine (2022)
  - The level, volatility and cross-section of asset prices Schmidt (2016), Constantinides and Ghosh (2017)

- No reduced-form evidence that cyclical income risk affects portfolio choices:
  - Most papers focus on income risk variance Betermier et al. (2012), Fagereng et al. (2018)
  - Findings regarding covariance are mixed
    Vissing-Jorgensen (2002), Massa and Simonov (2006), Calvet and Sodini (2014), Bonaparte et al.
    (2014)

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |
|              |        |                      |         |            |            |

## Motivation

- Models with cyclical income risk can explain:
  - The cross-section of households' equity holdings
    Storesletten et al. (2007), Lynch and Tan (2011), Catherine (2022)
  - The level, volatility and cross-section of asset prices Schmidt (2016), Constantinides and Ghosh (2017)
- Our paper bridges the gap between these two strands of the literature
- No reduced-form evidence that cyclical income risk affects portfolio choices:
  - Most papers focus on income risk variance Betermier et al. (2012), Fagereng et al. (2018)
  - Findings regarding covariance are mixed
    Vissing-Jorgensen (2002), Massa and Simonov (2006), Calvet and Sodini (2014), Bonaparte et al.
    (2014)

| INTRODUCTION | Theory | Data & Risk Measures | Results | Discussion | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

This Paper

 $\bullet$  Estimate cyclicality of variance and skewness at the industry  $\times education$  group

| INTRODUCTION | Theory | Data & Risk Measures | Results | Discussion | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | O          |
|              |        |                      |         |            |            |

## This Paper

- $\bullet$  Estimate cyclicality of variance and skewness at the industry  $\times education$  group
- Households facing higher cyclical skewness are less likely to participate in the stock market and have lower conditional equity shares
  - Variance, covariance and countercyclical variance do not matter as much
  - Effect decreases with human capital-to-wealth ratio
  - Effect is the strongest when consumption risk is considered

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | OO         | O          |
|              |        |                      |         |            |            |

## This Paper

- $\bullet$  Estimate cyclicality of variance and skewness at the industry  $\times education$  group
- Households facing higher cyclical skewness are less likely to participate in the stock market and have lower conditional equity shares
  - Variance, covariance and countercyclical variance do not matter as much
  - Effect decreases with human capital-to-wealth ratio
  - Effect is the strongest when consumption risk is considered
- Cyclical skewness risk does not affect the portfolio of top wealthy households, hence unlikely to explain asset pricing puzzles

| INTRODUCTION INEORI | DATA & RISK MEASURES | RESULTS | DISCUSSION | Conclusion |
|---------------------|----------------------|---------|------------|------------|
| 000 000             | 000                  | 0000000 | 00         | 0          |

#### Theory for CRRA agent

• Optimal equity share in the presence of labor income risk:

$$\pi = \frac{\mu - r}{\gamma \sigma_s^2} + \left(\frac{\mu - r}{\gamma \sigma_s^2} - \beta_H\right) \frac{H}{W}$$
$$\beta_H = \frac{\operatorname{Cov}(r_{\rm H}, r_s)}{\sigma_s^2}$$

• Denote  $H_{t-1,it}$  the certainty equivalent of  $H_{it}$  in period t-1

$$\frac{(W_{it} + H_{t-1,it})^{1-\gamma}}{1-\gamma} = \mathbb{E}_{t-1}\left[\frac{(W_{it} + H_{it})^{1-\gamma}}{1-\gamma}\right]$$

• Workers dislike variance and like (positive) skewness

$$H_{t-1,it} \approx \overline{H}_{it} - \frac{\gamma}{2} \frac{\operatorname{Var}_{t-1}(H_{it})}{\overline{W}_{it} + \overline{H}_{it}} + \frac{\gamma(\gamma+1)}{6} \frac{\operatorname{Skew}_{t-1}(H_{it})}{\left(\overline{W}_{it} + \overline{H}_{it}\right)^2}$$

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

## What is the market beta of human capital $\beta_H$ ?

- Effect of news regarding the distribution of human capital shocks:
  - change in H:

$$\Delta H_{t-1,t} \approx \Delta \overline{H}_t - \frac{\gamma}{2\left(\overline{W}_t + \overline{H}_t\right)} \cdot \Delta \operatorname{Var}_{t-1}(H_t) + \frac{\gamma(\gamma+1)}{6\left(\overline{W}_t + \overline{H}_t\right)^2} \cdot \Delta \operatorname{Skew}_{t-1}(H_t),$$

- immediate return:

$$\frac{\Delta H_{t-1,t}}{H_{t-1,t}} \approx \frac{\Delta \overline{H}_t}{H_{t-1,t}} - \frac{\gamma}{2}\omega_H \cdot \Delta \operatorname{Var}_{t-1}(\epsilon_t) + \frac{\gamma(\gamma+1)}{6}\omega_H^2 \cdot \Delta \operatorname{Skew}_{t-1}(\epsilon_t).$$

where  $\omega_H = \frac{\overline{H}_{it}}{\overline{W}_{it} + \overline{H}_{it}}$  and  $\epsilon_t = \frac{H_t}{\overline{H}_t}$  the scaled distribution of  $H_t$ .

• Market beta of human capital:

$$\beta_{H} = \frac{\operatorname{Cov}\left(\frac{\Delta \overline{H}_{t}}{H_{t}}, r_{s}\right)}{\sigma_{s}^{2}} - \frac{\gamma}{2}\omega_{H}\frac{\operatorname{Cov}\left(\Delta \operatorname{Var}(\epsilon), r_{s}\right)}{\sigma_{s}^{2}} + \frac{\gamma(\gamma+1)}{6}\omega_{H}^{2}\frac{\operatorname{Cov}\left(\Delta \operatorname{Skew}(\epsilon), r_{s}\right)}{\sigma_{s}^{2}}$$

| Introduction | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

## Predictions

- Optimal equity share decrease with the three components of the human capital beta:
  - Covariance of income shocks with returns
  - Countercyclical variance
  - Cyclical skewness
- Hedging motive is large for workers with high human-capital-to-wealth ratios

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | ●○○                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

## Swedish Data

- $\bullet$  Non financial disposable income from 1982 to 2015
  - Includes wages, government transfers and entrepreneurial earnings
  - Industry of employment and level of education
- Household's balance sheet from 1999-2007
  - Holdings at the security level at the end of the year
  - Real-Estate
  - Debts...

| Introduction | Theory | Data & Risk Measures $\circ \bullet \circ$ | Results | DISCUSSION | Conclusion |
|--------------|--------|--------------------------------------------|---------|------------|------------|
| 000          | 000    |                                            | 0000000 | OO         | 0          |
|              |        |                                            |         |            |            |

#### Income risk measures

- 1. Create 321 groups by industry of employment and level of education
- 2. Compute unexpected change in log disposable income

$$y_{it} - y_{it-1} = \dot{f}(a_{it-1}, g_{it-1}) + \hat{\varepsilon}_{it}$$
(1)

-  $\dot{f}(a,g)$  is a third-order polynomial estimated for each group

- $\hat{\varepsilon}_{it}$  as our empirical measure of the unexpected change in log disposable income
- 3. For each year and goup, we compute cross-sectional moments of income shock distribution
  - Mean
  - Variance
  - Skewness (not standardized)

#### Income risk and stock market returns

- For each group, we get three time-series: mean income shock, variance and skewness
- We evaluate each group's ability to hedge against income risk moments by short-selling the stock market

$$Moment_{gt} = \beta_{1,g} \times Market Return_t + \beta_{2,g} \times Market Return_{t-1} + u_g$$

• Depending on the moment,  $\beta_{1,g} + \beta_{2,g}$  gives us measures of covariance, countercyclical variance and cyclical skewness

| Introduction | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

#### **Overview** – Cyclical skewness and stock holdings



| INTRODUCTION | Theory | Data & Risk Measures | Results  | DISCUSSION | Conclusion |
|--------------|--------|----------------------|----------|------------|------------|
| 000          | 000    | 000                  | 0●000000 | OO         | 0          |
|              |        |                      |          |            |            |

### Micro-level analysis

$$\begin{split} \mathbf{Y}_{it} = & \beta_1 \cdot \mathbf{Covariance}_{it} + \beta_2 \cdot \mathbf{Countercyclical variance}_{it} \\ & + \beta_3 \cdot \mathbf{Cyclical \ skewness}_{it} + \mathbf{controls}_{it} + v_t + \varepsilon_{it} \end{split}$$

•  $Y_{it}$ :

- equity share

• Controls:

- group average of unconditional variance and skewness of income shock
- demographics: age, gender, household size and dummy variables identifying entrepreneurs and immigrants
- human capital, real-estate, financial assets and debt (scaled by total wealth), log of total wealth

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

## Equity Share (Tobit)

 $\begin{aligned} \text{Risky Share}_{it} &= & \beta_1 \cdot \text{Covariance}_{it} + \beta_2 \cdot \text{Countercyclical variance}_{it} \\ &+ \beta_3 \cdot \text{Cyclical skewness}_{it} + \text{controls}_{it} + v_t + \varepsilon_{it} \end{aligned}$ 

|                          | (1)              | (2)              | (3)              | (4)              | (5)              |
|--------------------------|------------------|------------------|------------------|------------------|------------------|
| Cyclical skewness        | -1.113***        |                  |                  | -0.878***        | -0.298***        |
|                          | (-2.92)          |                  |                  | (-5.17)          | (-3.22)          |
| Countercyclical variance |                  | -0.647           |                  | -0.216           | $0.532^{***}$    |
|                          |                  | (-0.84)          |                  | (-0.69)          | (2.64)           |
| Covariance               |                  |                  | -0.517           | -0.445           | 0.168            |
|                          |                  |                  | (-0.70)          | (-1.45)          | (0.94)           |
| Demographics             |                  |                  |                  | Yes              | Yes              |
| Wealth composition       |                  |                  |                  | Yes              | Yes              |
| Education group FE       |                  |                  |                  |                  | Yes              |
| Year FE                  | Yes              | Yes              | Yes              | Yes              | Yes              |
| Observations             | $32,\!934,\!044$ | $32,\!934,\!044$ | $32,\!934,\!044$ | $32,\!933,\!774$ | $32,\!933,\!774$ |
| Pseudo R2                | 0.006            | 0.004            | 0.004            | 0.190            | 0.198            |

| INTRODUCTION | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | OO         | 0          |
|              |        |                      |         |            |            |

#### Portfolio Differences between Identical Twins

 $\begin{aligned} \Delta \pi_{jt}^* &= b_1 \cdot \Delta \text{Covariance}_{jt} + b_2 \cdot \Delta \text{Countercyclical variance}_{jt} \\ &+ b_3 \cdot \Delta \text{Cyclical skewness}_{jt} + b_c \cdot \Delta \text{Controls}_{jt} + u + \varepsilon_{jt} \end{aligned}$ 

|                                   | (1)     | (2)        | (3)        | (4)       | (5)        |
|-----------------------------------|---------|------------|------------|-----------|------------|
| $\Delta$ Cyclical skewness        | -0.311* |            |            | -0.501*** | -0.422**   |
|                                   | (-1.80) |            |            | (-2.66)   | (-2.23)    |
| $\Delta$ Countercyclical variance |         | 0.129      |            | 0.378     | 0.504      |
|                                   |         | (0.46)     |            | (1.18)    | (1.57)     |
| $\Delta$ Covariance               |         |            | 0.108      | -0.063    | 0.081      |
|                                   |         |            | (0.50)     | (-0.24)   | (0.30)     |
| $\Delta$ Demographics             |         |            |            | Yes       | Yes        |
| $\Delta$ Wealth composition       |         |            |            | Yes       | Yes        |
| $\Delta E$ ducation FE            |         |            |            |           | Yes        |
| Year FE                           | Yes     | Yes        | Yes        | Yes       | Yes        |
| Observations                      | 34,460  | $34,\!460$ | $34,\!460$ | 34,460    | $34,\!460$ |
| Pseudo R2                         | 0.000   | 0.000      | 0.000      | 0.035     | 0.035      |

| INTRODUCTION | Theory | Data & Risk Measures | Results  | DISCUSSION | Conclusion |
|--------------|--------|----------------------|----------|------------|------------|
| 000          | 000    | 000                  | 00000000 | OO         | 0          |
|              |        |                      |          |            |            |

## Role of Human Capital-to-Wealth Ratio



| Introduction | Theory | Data & Risk Measures | Results  | DISCUSSION | Conclusion |
|--------------|--------|----------------------|----------|------------|------------|
| 000          | 000    | 000                  | 00000000 | 00         | 0          |
|              |        |                      |          |            |            |

## Household-level Portfolios

|                                      |                  |            | Two Earners  |                 |
|--------------------------------------|------------------|------------|--------------|-----------------|
|                                      | Single           | One-Earner | Spouse Cycli | cal Skewness:   |
|                                      | Person           | Couple     | Lower        | Higher          |
|                                      | (1)              | (2)        | (3)          | (4)             |
| Cyclical skewness                    | -0.280***        | -0.316***  | -0.209**     | -0.371***       |
|                                      | (-2.97)          | (-2.64)    | (-2.20)      | (-4.32)         |
| Countercyclical variance             | 0.415**          | 0.490*     | 0.116        | 0.320*          |
|                                      | (2.09)           | (1.71)     | (1.02)       | (1.75)          |
| Covariance                           | 0.282            | 0.267      | -0.094       | 0.021           |
|                                      | (1.61)           | (1.24)     | (-0.80)      | (0.10)          |
| Demographics (head)                  | Yes              | Yes        | Yes          | Yes             |
| Wealth composition (household-level) | Yes              | Yes        | Yes          | Yes             |
| Education FE (head)                  | Yes              | Yes        | Yes          | Yes             |
| Year FE                              | Yes              | Yes        | Yes          | Yes             |
| Observations                         | $11,\!949,\!315$ | 166,817    | 4,006,106    | $3,\!271,\!029$ |
| Pseudo R2                            | 0.226            | 0.255      | 0.252        | 0.267           |

| Introduction | Theory | Data & Risk Measures | Results  | DISCUSSION | Conclusion |
|--------------|--------|----------------------|----------|------------|------------|
| 000          | 000    | 000                  | 000000●0 | OO         | 0          |
|              |        |                      |          |            |            |

## Labor-market-implied Consumption Risk

• Market beta of consumption implied by income shocks

$$\pi W = \left(\frac{\mu - r}{\gamma \sigma_s^2} - \beta_C\right) (W + H)$$
$$\beta_C = \frac{\beta_H H}{W + H}$$

• Countercyclical consumption risk

Cyclical Skewness
$$(\dot{c})_{it} = \left(\frac{H_{it}}{W_{it} + H_{it}}\right)^3$$
Cyclical Skewness $(\eta)_{g(i)}$ 

- $\dot{c}_{it}$  is the unexpected change in log lifetime consumption
- $\eta$  permanent income shock

| Introduction | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 00         | 0          |
|              |        |                      |         |            |            |

# Equity Share (Tobit)

|                          | (1)              | (2)              | (3)              | (4)              | (5)              | (6)              |
|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Cyclical skewness        | $-2.519^{***}$   |                  |                  | -1.236***        | -0.412***        | -0.553***        |
|                          | (-8.38)          |                  |                  | (-4.15)          | (-2.67)          | (-4.55)          |
| Countercyclical variance |                  | -3.387***        |                  | 0.370            | 0.520            | 0.000            |
|                          |                  | (-3.51)          |                  | (0.53)           | (1.25)           | (0.00)           |
| Covariance               |                  |                  | 0.698            | 0.486            | $1.173^{***}$    | $1.756^{***}$    |
|                          |                  |                  | (1.08)           | (0.99)           | (4.22)           | (5.82)           |
| Demographics             |                  |                  |                  | Yes              | Yes              | Yes              |
| Wealth composition       |                  |                  |                  | Yes              | Yes              | Yes              |
| Education FE             |                  |                  |                  |                  | Yes              | Yes              |
| Industry FE              |                  |                  |                  |                  |                  | Yes              |
| Year FE                  | Yes              | Yes              | Yes              | Yes              | Yes              | Yes              |
| Observations             | $32,\!936,\!703$ | $32,\!936,\!703$ | $32,\!936,\!703$ | $32,\!933,\!774$ | $32,\!933,\!774$ | $32,\!933,\!774$ |
| Pseudo R2                | 0.017            | 0.008            | 0.004            | 0.126            | 0.148            | 0.156            |

| Introduction | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | •O         | 0          |
|              |        |                      |         |            |            |

## Life-cycle Profile of Equity Share



| Introduction | Theory | Data & Risk Measures | Results | DISCUSSION | Conclusion |
|--------------|--------|----------------------|---------|------------|------------|
| 000          | 000    | 000                  | 0000000 | 0•         | 0          |
|              |        |                      |         |            |            |

## No Effect on Wealthy Population



| INTRODUCTION | Theory | Data & Risk Measures | Results  | DISCUSSION | Conclusion • |
|--------------|--------|----------------------|----------|------------|--------------|
| 000          | 000    | 000                  | 00000000 | OO         |              |
|              |        |                      |          |            |              |

#### Conclusion

- Workers with higher cyclical skewness risk invest less in stocks
- Portfolio effect is stronger for high human capital-to-wealth ratio
- ... and thus affects the life-cycle profile of equity holdings
- Cyclical skewness does not matter at the top of the wealth distribution and thus is unlikely to explain the equity premium