Investor Memory and Biased Beliefs: Evidence from the Field

Zhengyang Jiang
Northwestern Kellogg and NBER
Cameron Peng
LSE

Hongqi Liu
CUHK Shenzhen
Hongjun Yan
DePaul

ABFER 10th Annual Conference

May 2023

Motivation: biased beliefs

- Beliefs are key to economic and financial decisions

Motivation: biased beliefs

- Beliefs are key to economic and financial decisions
- Traditional models assume Full Information Rational Expectations (FIRE)

Motivation: biased beliefs

- Beliefs are key to economic and financial decisions
- Traditional models assume Full Information Rational Expectations (FIRE)
- But,
(1) deviations from FIRE have been documented in various forms
- return extrapolation, diagnostic expectations, overconfidence, ...
(2) biased beliefs affect choice across many decision domains
- individual trading, corporate investment, bank loans, ...
- asset prices and the macroeconomy

Motivation: biased beliefs

- Beliefs are key to economic and financial decisions
- Traditional models assume Full Information Rational Expectations (FIRE)
- But,
(1) deviations from FIRE have been documented in various forms
- return extrapolation, diagnostic expectations, overconfidence, ...
(2) biased beliefs affect choice across many decision domains
- individual trading, corporate investment, bank loans, ...
- asset prices and the macroeconomy
- The underlying sources of biased beliefs are less well understood
- psychological flaws, bounded rationality, informational frictions, ...

Motivation: memory

- A budding theory literature shows that features of human memory can help reconcile puzzles about beliefs and choice (e.g., Wachter and Kahana, 2021; Bordalo et al., 2022b)

Motivation: memory

- A budding theory literature shows that features of human memory can help reconcile puzzles about beliefs and choice (e.g., Wachter and Kahana, 2021; Bordalo et al., 2022b)
- Key mechanism: similarity-based recall
(1) selective: not all experiences enter memory; not all memories are retrieved
(2) cued: external cues trigger recall of past experiences associated with similar cues

Motivation: memory

- A budding theory literature shows that features of human memory can help reconcile puzzles about beliefs and choice (e.g., Wachter and Kahana, 2021; Bordalo et al., 2022b)
- Key mechanism: similarity-based recall
(1) selective: not all experiences enter memory; not all memories are retrieved
(2) cued: external cues trigger recall of past experiences associated with similar cues
- Memory research has examined this mechanism extensively in the lab (Kahana, 2012)
- additional lab evidence from economic settings (Enke et al., 2020; Bordalo et al., 2022b; Graeber et al., 2022)

Motivation: memory

- A budding theory literature shows that features of human memory can help reconcile puzzles about beliefs and choice (e.g., Wachter and Kahana, 2021; Bordalo et al., 2022b)
- Key mechanism: similarity-based recall
(1) selective: not all experiences enter memory; not all memories are retrieved
(2) cued: external cues trigger recall of past experiences associated with similar cues
- Memory research has examined this mechanism extensively in the lab (Kahana, 2012)
- additional lab evidence from economic settings (Enke et al., 2020; Bordalo et al., 2022b; Graeber et al., 2022)
- But, there have been few studies that directly test this mechanism using field data

This paper

- We survey a nationally representative sample of $\sim 17 K$ Chinese individual investors
- two types of recall
(1) a market episode that first comes to mind: free recall
(2) own performance during pre-specific periods in the past: probed recall
- investor expectations and other individual information
- Survey data are merged with administrative data of detailed transactions ($\sim 5 K$) at one of the largest financial institution in China.

This paper

- We survey a nationally representative sample of $\sim 17 K$ Chinese individual investors
- two types of recall
(1) a market episode that first comes to mind: free recall
(2) own performance during pre-specific periods in the past: probed recall
- investor expectations and other individual information
- Survey data are merged with administrative data of detailed transactions ($\sim 5 K$) at one of the largest financial institution in China.
- We use elicited recalls to document stylized facts about investor memory and the relationship between memory and beliefs.

This paper

- We survey a nationally representative sample of $\sim 17 K$ Chinese individual investors
- two types of recall
(1) a market episode that first comes to mind: free recall
(2) own performance during pre-specific periods in the past: probed recall
- investor expectations and other individual information
- Survey data are merged with administrative data of detailed transactions ($\sim 5 K$) at one of the largest financial institution in China.
- We use elicited recalls to document stylized facts about investor memory and the relationship between memory and beliefs.
- Our setting is different from those in existing studies
(1) sample pool: retail investors (some of which are rather affluent)
(2) decision domain: high-stake (trading of stocks)
(3) cue: market-based cues such as return
(4) rational benchmark: direct observations of actual trading records

Main results

We present and test a model of belief formation based on cued recall (Bordalo et al., 2022a)
(1) Recall: present cues trigger recall of past experiences
(2) Simulation: use retrieved experiences to make forecasts

Main results

We present and test a model of belief formation based on cued recall (Bordalo et al., 2022a)
(1) Market fluctuations affect investors' recall process

- when recent returns have been high, investors tend to
- think of episodes of a rising market
- recall ther own past performances more positively
- cued recall is stronger for more recent experiences

Main results

We present and test a model of belief formation based on cued recall (Bordalo et al., 2022a)
(1) Market fluctuations affect investors' recall process
(2) Investors use retrieved memories to form expectations

- a positive and robust relationship between memory and expected future returns.
- recalled own return \approx individual characteristics (including demographics) in their explanatory power for return expectations

Main results

We present and test a model of belief formation based on cued recall (Bordalo et al., 2022a)
(1) Market fluctuations affect investors' recall process
(2) Investors use retrieved memories to form expectations
(3) Cued recall can microfound return extrapolation

- return extrapolation: good returns \rightarrow optimistic expectations
- cued recall: good returns \rightarrow positive recalls \rightarrow optimistic expectations
- controlling for recalls drives out the positive correlation between recent returns and expectations
- rule in a memory-based microfoundation for return extrapolation

A Conceptual Framework

Model setup

- In period T, an investor makes forecasts about the next period's market return, r_{T+1}, in two steps:
(1) recall: retrieve past experiences
(2) simulation: use retrieved experiences to forecast the future

Model setup

- In period T, an investor makes forecasts about the next period's market return, r_{T+1}, in two steps:
(1) recall: retrieve past experiences
(2) simulation: use retrieved experiences to forecast the future

Step 1: Recall

- In period $t(\leq T-1)$, she accumulated a "database" of experiences in the stock market, summarized by e_{t}
- each experience could have multiple attributes (time, location, context, return, ...)

Model setup

- In period T, an investor makes forecasts about the next period's market return, r_{T+1}, in two steps:
(1) recall: retrieve past experiences
(2) simulation: use retrieved experiences to forecast the future

Step 1: Recall

- In period $t(\leq T-1)$, she accumulated a "database" of experiences in the stock market, summarized by e_{t}
- each experience could have multiple attributes (time, location, context, return, ...)
- For simplicity, we assume each experience only concerns return: $e_{t}=r_{t}$
- r_{t} consists of a continuum of numbers

Model setup

- In period T, an investor makes forecasts about the next period's market return, r_{T+1}, in two steps:
(1) recall: retrieve past experiences
(2) simulation: use retrieved experiences to forecast the future

Step 1: Recall

- In period $t(\leq T-1)$, she accumulated a "database" of experiences in the stock market, summarized by e_{t}
- each experience could have multiple attributes (time, location, context, return, ...)
- For simplicity, we assume each experience only concerns return: $e_{t}=r_{t}$
- r_{t} consists of a continuum of numbers
- Assume that r_{t} is normally distributed: $r_{t} \sim N\left(\mu_{t}, \sigma_{t}^{2}\right)$
- objective description of past experiences: in period t, she experienced a market return of x with probability $f_{t}(x)$

Cued recall

No cue

- Recall means taking random draws according to the original PDF f_{t}

With cue

- An external stimulus, q_{T}, affects recall according to the rule of similarity: experiences with attributes similar to q_{T} are more likely to be recalled

Cued recall

No cue

- Recall means taking random draws according to the original PDF f_{t}

With cue

- An external stimulus, q_{T}, affects recall according to the rule of similarity: experiences with attributes similar to q_{T} are more likely to be recalled
- Specifically:

$$
f^{*}\left(r_{t} ; q_{T}\right)=f_{t}\left(r_{t}\right) \times \frac{s\left(r_{t}, q_{T}\right)}{\int_{-\infty}^{+\infty} f(z) \times s\left(z, q_{T}\right) d z}
$$

where $s\left(r_{t}, q_{T}\right)$ denotes the similarity between cue q_{T} and experience r_{t}

When $q_{T}=r_{T}$

- Assume that

$$
s\left(r_{t}, r_{T}\right)=\exp \left(-\frac{\left(r_{t}-r_{T}\right)^{2}}{2 \tau \sigma_{\epsilon}^{2}}\right)
$$

- $\tau=T-t$ is the time elapsed since the experienced return
- σ_{ϵ} is the perceived relevance of the cue

When $q_{T}=r_{T}$

- Assume that

$$
s\left(r_{t}, r_{T}\right)=\exp \left(-\frac{\left(r_{t}-r_{T}\right)^{2}}{2 \tau \sigma_{\epsilon}^{2}}\right)
$$

- $\tau=T-t$ is the time elapsed since the experienced return
- σ_{ϵ} is the perceived relevance of the cue
- Recalled returns follows a "cued" normal distribution

$$
r_{t} \mid r_{T} \sim N\left((1-\alpha) \mu_{t}+\alpha r_{T}, \sigma_{q}^{2}\right)
$$

where

$$
\alpha=\frac{\sigma_{t}^{2}}{\sigma_{t}^{2}+\tau \sigma_{\epsilon}^{2}}
$$

When $q_{T}=r_{T}$

- Assume that

$$
s\left(r_{t}, r_{T}\right)=\exp \left(-\frac{\left(r_{t}-r_{T}\right)^{2}}{2 \tau \sigma_{\epsilon}^{2}}\right)
$$

- $\tau=T-t$ is the time elapsed since the experienced return
- σ_{ϵ} is the perceived relevance of the cue
- Recalled returns follows a "cued" normal distribution

$$
r_{t} \mid r_{T} \sim N\left((1-\alpha) \mu_{t}+\alpha r_{T}, \sigma_{q}^{2}\right)
$$

where

$$
\alpha=\frac{\sigma_{t}^{2}}{\sigma_{t}^{2}+\tau \sigma_{\epsilon}^{2}}
$$

- This is equivalent to the investor using the current return r_{T} as a signal to infer r_{t} in a Bayesian fashion, by assuming that $r_{T}=r_{t}+\epsilon_{\tau}$

Model results: recall

Hypothesis 1. (Cued recall) The mean of recalled returns, $\mathbb{E}\left[r_{t} \mid r_{T}\right]=(1-\alpha) \mu_{t}+\alpha r_{T}$, increases in today's market return r_{T}.

Model results: recall

Hypothesis 1. (Cued recall) The mean of recalled returns, $\mathbb{E}\left[r_{t} \mid r_{T}\right]=(1-\alpha) \mu_{t}+\alpha r_{T}$, increases in today's market return r_{T}.

Hypothesis 2. (Recency effect) The strength of cued recall, measured by α, is decreasing in τ.

Model results: simulation

Step 2: Simulation

- Assume that her predicted distribution of r_{T+1} is a weighted average of recalled distributions of past experiences:

$$
f_{T+1}=\sum_{t=1}^{T-1} w_{t} f_{t}^{q}
$$

- $w_{t}>0$ and $\sum_{t=1}^{T-1} w_{t}=1$

Model results: simulation

Step 2: Simulation

- Assume that her predicted distribution of r_{T+1} is a weighted average of recalled distributions of past experiences:

$$
f_{T+1}=\sum_{t=1}^{T-1} w_{t} f_{t}^{q}
$$

- $w_{t}>0$ and $\sum_{t=1}^{T-1} w_{t}=1$

Hypothesis 3. (Return extrapolation) Expected stock return for period $T+1, \mathbb{E}\left(r_{T+1}\right)$, is increasing in the return cue r_{T}.

Cued recall and belief formation

Survey Design

The FreeRecall block

FreeRecall

- Capture an episode of market movement that first comes to mind
- motivated by the well-established experimental paradigm of free recall
- By "free," we mean minimal guidance and conditions on what periods to be recalled
- an investor always starts the survey with this block

The FreeRecall block

FreeRecall

- Capture an episode of market movement that first comes to mind
- motivated by the well-established experimental paradigm of free recall
- By "free," we mean minimal guidance and conditions on what periods to be recalled
- an investor always starts the survey with this block
- Once an investor starts the block, we ask them to
- "first think about the overall stock market movement since you opened an account"
- then answer the following questions:
(1) "What period of market movement first came to your mind?"
(2) "How much did the market (Shanghai Composite Index) move during this period?"

The ProbedRecall block

ProbedRecall

- Ask investors to recall performance in the stock market over a certain period of time
- By "probed," we mean these questions are designed with more elaborate conditions

The ProbedRecall block

ProbedRecall

- Ask investors to recall performance in the stock market over a certain period of time
- By "probed," we mean these questions are designed with more elaborate conditions
- When an investor starts the block, we ask "to the best of your recollection, what was the cumulative return rate of your equity investment over
(1) last trading day?"
(2) last month?"
(3) last year (in 2021)?"
(4) last five years?"

The Expectation block

Expectation

- We follow the literature on survey expectations and use a standard methodology to measure investor expectations (Greenwood and Shleifer, 2014; Giglio et al., 2021)
- horizon: 1-month and 1-year
- about market return or about their own return

Other issues

- At the beginning of the survey, investors are explicitly instructed to use their memory and not to check on their phone
- however, we do not observe if an investor does
- most investors finish the survey within ten minutes
- checking their account would lead to an attenuation bias

Other issues

- At the beginning of the survey, investors are explicitly instructed to use their memory and not to check on their phone
- however, we do not observe if an investor does
- most investors finish the survey within ten minutes
- checking their account would lead to an attenuation bias
- Investors also need to go through a comprehension check to proceed

Other issues

- At the beginning of the survey, investors are explicitly instructed to use their memory and not to check on their phone
- however, we do not observe if an investor does
- most investors finish the survey within ten minutes
- checking their account would lead to an attenuation bias
- Investors also need to go through a comprehension check to proceed
- We collect demographics and other information in a standard questionnaire
- today we will mostly use them as control variables

Survey implementation

- We collaborated with one of the largest financial institution in China
- randomized across 30 provinces and regions

Survey implementation

- We collaborated with one of the largest financial institution in China
- randomized across 30 provinces and regions
- After basic filters, sample size $\approx 17 \mathrm{~K}$ » deno
- geographic distribution proportional to financial development
- well-educated, wealthy investor sample
- After merging with transaction data $\approx 5 \mathrm{~K}$ investors

Stylized Facts

Fact I: Free recall exhibits both recency and salience effects

Figure: Distribution of start and end month

Blue line: Shanghai Composite index Black bar: recall frequency

Fact II: recalled returns are highly correlated with actual returns

- In FreeRecall, recalled episode return highly correlated with actual episode return ($\rho=0.53$)
- In ProbedRecall, recalled own return highly correlated with actual own return at all horizons ($0.07<\rho<0.40$)

Bottom-line

- Respondents are indeed making a conscious effort in recall tasks

Testing the Model

> Recall

Variation in returns

- The survey spans 6 weeks, during which the market exhibits mild yet still significant movement

Variation in returns

- The survey spans 6 weeks, during which the market exhibits mild yet still significant movement

- Within a day, we record the precise time when an investor begins to take the survey
- intraday movements \rightarrow different cues
- We also consider portfolio-level return for the merged sample (see paper)

Cued recall in FreeRecall: full-sample results

$$
\overline{\mathrm{MktRe}}_{i}^{\text {Free }}=\beta_{0}+\beta_{1} M k t \text { Ret }_{t \rightarrow t+t_{i}}+X_{i}+\epsilon_{i}
$$

	Recalled episode return		
	Full		
Market return, today	0.32		-0.21 (1.35)
Market return, past month		-0.61 (0.53)	-0.57 (0.58)
Observations	3,443 Adjusted R^{2}	3,612 0.01	3,443 0.01

Discussion: results in the full sample

Possible reasons

(1) Recalled episodes in FreeRecall often capture dramatic events featuring large swings in asset prices

- retrieving such events may require more dramatic cues
- in a follow-up project, we ran a similar survey during more turbulent market periods and find stronger evidence of cued recall $»$ detants

Discussion: results in the full sample

Possible reasons

(1) Recalled episodes in FreeRecall often capture dramatic events featuring large swings in asset prices

- retrieving such events may require more dramatic cues
- in a follow-up project, we ran a similar survey during more turbulent market periods and find stronger evidence of cued recall $»$ details
(2) High-frequency cues such as daily returns can only cue more recent experiences
- consistent with Hypothesis 2
- temporal contiguity: experiences that occur close together in time are associated to each other

Discussion: results in the full sample

Possible reasons

(1) Recalled episodes in FreeRecall often capture dramatic events featuring large swings in asset prices

- retrieving such events may require more dramatic cues
- in a follow-up project, we ran a similar survey during more turbulent market periods and find stronger evidence of cued recall $»$ details
(2) High-frequency cues such as daily returns can only cue more recent experiences
- consistent with Hypothesis 2
- temporal contiguity: experiences that occur close together in time are associated to each other
- We consider the subsample of investors recalling more recent episodes in FreeRecall

Cued recall in FreeRecall: subsample of recent recalls

$$
\widehat{M k t R e}_{i}^{\text {Free }}=\beta_{0}+\beta_{1} M k t \text { Ret }_{t \rightarrow t+t_{i}}+X_{i}+\epsilon_{i},
$$

	Recalled episode return		
	Recalled episode: within last 5 years		
Market return, today	2.08^{*}		$3.27^{* * *}$
	(1.21)		(1.16)
Market return, past month		$0.86^{* * *}$	$1.36^{* * *}$
		(0.41)	(0.44)
Observations	880	916	880
Adjusted R^{2}	0.02	0.02	0.03

- $1 \mathrm{pp} \uparrow$ in today's market return $\rightarrow 2.1$ to $3.3 \mathrm{pp} \uparrow$ in recalled episode return

Cued recall in ProbedRecall

- We conduct a similar exercise for recalled own returns in ProbedRecall

$$
\widetilde{\text { OwnRe }}_{i, t-h \rightarrow t}^{\text {Probed }}=\beta_{0}+\beta_{1} M k t \operatorname{Ret}_{t \rightarrow t+t_{i}}+X_{i}+\epsilon_{i}
$$

Recalled own return
Yesterday
Past month

	(1)	(2)	(3)	(4)
Market return, today	$0.68^{* *}$	$0.94^{* *}$	$0.99^{* * *}$	$1.02^{* *}$
Actual own return, yesterday	(0.28)	(0.31) $0.27^{* * *}$ (0.09)	(0.37)	(0.47)
Actual own return, past month				
				$0.21^{* * *}$
				(0.02)
Observations	7,746	1,619	7,436	1,668
Adjusted R^{2}	0.03	0.03	0.04	0.10

- Today's market return affects recall of past own return up to a month ago

Expectation

Simulation

Recall and expectations in FreeRecall

- We examine how investors use retrieved experiences in their forecasts

$$
\mathbb{E}_{i}\left[\text { Ret }_{t \rightarrow t+h}\right]=\beta_{0}+\beta_{1} \overline{M k t R e}_{i}^{\text {Free }}+X_{i}+\epsilon_{i}
$$

Expected return
Market return, 1M Market return, 1Y Own return, 1M Own return, 1Y

	(1)	(2)	(3)	(4)
Recalled episode return	$0.004^{* *}$	$0.02^{* * *}$	$0.01^{* *}$	$0.05^{* * *}$
	(0.002)	(0.004)	(0.004)	(0.01)
Observations	3,968	3,864	2,805	2,952
Adjusted R^{2}	0.01	0.05	0.04	0.07

- a one-standard-deviation increase in the recalled episode return
- 0.8% increase in expected market return next year
- 1.6% increase in expected own return next year

Recall and expectations in ProbedRecall

$$
\mathbb{E}_{i}\left[\text { Ret }_{t \rightarrow t+h}\right]=\beta_{0}+\beta_{1} \widehat{\text { OwnRe}} t_{i, t-h \rightarrow t}^{\text {Probed }}+X_{i}+\epsilon_{i}
$$

Dependent variable:
Market return, 1M Market return, 1Y

	(1)	(2)	(3)	(4)	(5)	(6)
Recalled own return, 1M	$\begin{aligned} & 0.08^{* * *} \\ & (0.01) \end{aligned}$		$\begin{aligned} & 0.07^{* * *} \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.11^{* * *} \\ & (0.02) \end{aligned}$		$\begin{aligned} & 0.07^{* * *} \\ & (0.02) \end{aligned}$
Recalled own return, 1Y		$\begin{aligned} & 0.03^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.01^{* * *} \\ & (0.004) \end{aligned}$		$\begin{aligned} & 0.07^{* * *} \\ & (0.01) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05^{* * *} \\ & (0.01) \\ & \hline \end{aligned}$
Observations	8,000	8,312	6,567	7,759	8,123	6,415
Adjusted R ${ }^{2}$	0.04	0.03	0.04	0.05	0.06	0.06

- a one-standard-deviation increase in the recalled own return
- 0.9% increase in expected market return next year
- 5.5% increase in expected own return next year

Additional properties

- Simulation exhibits horizon-dependence.
- Subjective recalled experience dominate objective actual experience in explaining expected future returns.
- A single variable based on recalled own return has similar explanatory power, measured by R-squared, than that of an

Discussion: alternative explanations

- We obtain very similar relationships between memories and forecast errors
- memory does not only drive return expectations themselves, but also contribute to forecast errors at the individual level

Discussion: alternative explanations

- We obtain very similar relationships between memories and forecast errors
- memory does not only drive return expectations themselves, but also contribute to forecast errors at the individual level
- We do not claim causality
- but the strong and robust correlation between memories and beliefs is highly suggestive of a memory-based channel of belief-formation

Discussion: alternative explanations

- We obtain very similar relationships between memories and forecast errors
- memory does not only drive return expectations themselves, but also contribute to forecast errors at the individual level
- We do not claim causality
- but the strong and robust correlation between memories and beliefs is highly suggestive of a memory-based channel of belief-formation
- We discuss several alternative explanations
(1) anchor effects
* details
(2) click-through behavior * details
(3) motivated beliefs $»$ details
(4) external validity $»$ details

Cued recall and return extrapolation

Cued recall and return extrapolation

- Key implication: Controlling for memories should weaken or eliminate the positive correlation between past returns and expectations

Cued recall and return extrapolation, regressions

Dependent variable:
Expected market return, 1M

	(1)	(2)	(3)
Past market return, 1M	$0.14^{* *}$	0.10^{*}	0.09
Recalled own return, 1M	(0.06)	(0.06) (0.06) Recalled own return, 1Y	$0.08^{* * *}$ (0.01)
Observations		$0.07^{* * *}$ $0.01)$ Adjusted R^{2}	

Cued recall and return extrapolation, regressions

	Dependent variable:		
	Expected own return, 1M		
	(4)	(5)	(6)
Past market return, 1M	$\begin{aligned} & 0.21^{* * *} \\ & (0.07) \end{aligned}$	$\begin{gathered} 0.09 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.08) \end{gathered}$
Recalled own return, 1M		$\begin{aligned} & 0.30^{* * *} \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.21^{* * *} \\ & (0.02) \end{aligned}$
Recalled own return, 1Y			$\begin{aligned} & 0.11^{* * *} \\ & (0.01) \end{aligned}$
Observations	6,554	6,554	5,516
Adjusted R ${ }^{2}$	0.05	0.11	0.14

Conclusion

Conclusion

- There are growing interests in understanding the role of memory in driving beliefs and choices

Conclusion

- There are growing interests in understanding the role of memory in driving beliefs and choices
- We contribute to this literature by bringing new evidence from the field
- survey a large representative sample of retail investors to elicit their memories
- merging the survey data with administrative data of transactions

Conclusion

- There are growing interests in understanding the role of memory in driving beliefs and choices
- We contribute to this literature by bringing new evidence from the field
- survey a large representative sample of retail investors to elicit their memories
- merging the survey data with administrative data of transactions
- Main takeaways:
(1) what's on the mind of an investor is heavily influenced by what is going on in the market
(2) past experiences emerge at a given moment do affect belief formation
(3) return extrapolation can be microfounded by cued recall

Thank you!

Demographics of the investor sample

Figure: Distribution of demographic variables

Distribution of recalled episodes in FreeRecall for experienced investors

Figure: Distribution of start and end dates

Distribution of recalled episodes in FreeRecall for younger and older investors

Figure: Distribution of end dates for younger and older investors

Distribution of recalled episodes in FreeRecall under alternative phrasing

Figure: Distribution of start and end dates

Distribution of recalled episodes in FreeRecall against counterfactual

Distribution of start and end dates

Counterfactual

Distribution of actual episode returns and recall bias

Figure: Distribution of actual episode return and recall bias

Model details

- One particular formulation of the return-cued PDF is by assuming that the current return, r_{t}, is a noisy signal of recalled return in the simulation process:

$$
r_{t}=r_{t}+\epsilon \sqrt{t-t}=r_{t}+\epsilon_{t, t}
$$

where ϵ is normally distributed $\epsilon \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

- The cued PDF of simulated returns is the conditional distribution of $r_{t} \mid r_{t}$, given by

$$
r_{t} \left\lvert\, r_{t} \sim N\left(\frac{\sigma_{\epsilon}^{2}(t-t)}{\sigma_{t}^{2}+\sigma_{\epsilon}^{2}(t-t)} \mu_{t}+\frac{\sigma_{t}^{2}}{\sigma_{t}^{2}+\sigma_{\epsilon}^{2}(t-t)} r_{t}, \frac{(t-t) \sigma_{t}^{2} \sigma_{\epsilon}^{2}}{\sigma_{t}^{2}+\sigma_{\epsilon}^{2}(t-t)}\right)\right.
$$

- This is when s^{*} takes the following form:

$$
s^{*}\left(r_{t}, r_{t}\right)=\frac{\sigma_{t}}{\sigma_{q}} \exp \left(-\frac{1}{2} \frac{\left(r_{t}-r_{t}\right)^{2}}{(t-t) \sigma_{\epsilon}^{2}}+\frac{\left(\mu-r_{t}\right)^{2}}{2\left(\sigma^{2}+(t-t) \sigma_{\epsilon}^{2}\right)}\right)
$$

where $\sigma_{q}^{2}=\frac{(t-t) \sigma_{t}^{2} \sigma_{\epsilon}^{2}}{\sigma_{t}^{2}+(t-t) \sigma_{\varepsilon}^{2}}$

Follow up: market conditions

Follow up: cued recall

$$
\widehat{\text { MktRet }}_{i}^{\text {Free }}=\beta_{0}+\beta_{1} M k t \text { Ret }_{t \rightarrow t+t_{i}}+X_{i}+\epsilon_{i},
$$

recalled episode return

	Full		Less experienced	
	(1)	(2)	(3)	(4)
Market return, past week	$\begin{aligned} & 0.780^{* * *} \\ & (0.265) \end{aligned}$		$\begin{aligned} & 1.361^{* * *} \\ & (0.390) \end{aligned}$	
Market return, past month		$\begin{aligned} & 0.957^{* * *} \\ & (0.220) \end{aligned}$		$\begin{aligned} & 1.402^{* * *} \\ & (0.295) \end{aligned}$
Observations	9,758	9,758	4,619	4,619
Adjusted R ${ }^{2}$	0.04	0.04	0.03	0.03

Anchor effects

Table: Relationship between recall and expectation as a function of time spent on the survey

	Dependent variable: Expected return			
	Market 30 day (1)	Market 1 year (2)	Own 30 day (3)	Own 1 year (4)
Recalled own return, 1M	$\begin{aligned} & 0.08^{* * *} \\ & (0.01) \end{aligned}$		$\begin{aligned} & 0.32^{* * *} \\ & (0.01) \end{aligned}$	
Recalled own return, 1 M * Time spent	$\begin{gathered} -0.0002 \\ (0.001) \end{gathered}$		$\begin{gathered} -0.0001 \\ (0.001) \end{gathered}$	
Recalled own return, 1Y		$\begin{aligned} & 0.07^{* * *} \\ & (0.01) \end{aligned}$		$\begin{aligned} & 0.44^{* * *} \\ & (0.03) \end{aligned}$
Recalled own return, 1Y * Time spent		$\begin{gathered} -0.0003 \\ (0.001) \end{gathered}$		$\begin{gathered} -0.002 \\ (0.001) \end{gathered}$
Time spent	$\begin{gathered} 0.001 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.01 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.01^{*} \\ (0.01) \end{gathered}$	$\begin{gathered} 0.02^{* *} \\ (0.01) \end{gathered}$
Observations	6,077	6,199	5,090	5,508
R^{2}	0.12	0.14	0.21	0.21

Anchor effects, cont'd

Table: Recalled return and expectations across treatments

		Recalled own return			
	Recalled episode return	Yesterday	Last month	Last year	Last five years
	(1)	(2)	(3)	(4)	(5)
FreeRecall	0.05	0.00	0.00	0.02	0.05
HappyRecall	0.23	0.00	0.00	0.02	0.05
PainfulRecall	-0.20	-0.01	0.00	0.02	0.03

Click-through behavior

Table: Recall and perceived crash probability

	Dependent variable: Expected crash probability			
	One month		One year	
	(1)	(2)	(3)	(4)
Recalled own return, 1M	$-0.10^{* * *}$		$\left(0.07^{* * *}\right.$	
Recalled own return, 1Y	(0.02)			
		$-0.06^{* * *}$		$-0.04^{* * *}$
		(0.01)	(0.01)	
Observations	7,317	7,712	7,297	7,698
R^{2}	0.09	0.09	0.10	0.10

Motivated beliefs

Table: Past actions and future recall

	Dependent variable: Recalled own return							
	Yesterday				Past month			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Holding change, yesterday	$\begin{gathered} \hline-0.02 \\ (0.02) \end{gathered}$	$\begin{gathered} \hline-0.01 \\ (0.02) \end{gathered}$			$\begin{gathered} -0.001 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.02) \end{gathered}$		
Holding change, previous week			$\begin{gathered} -0.005 \\ (0.01) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.01) \end{gathered}$			$\begin{gathered} -0.004 \\ (0.01) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.01) \end{gathered}$
Actual own return, yesterday		$\begin{aligned} & 0.35^{* * *} \\ & (0.07) \end{aligned}$		$\begin{aligned} & 0.36^{* * *} \\ & (0.08) \end{aligned}$				
Actual own return, past month						$\begin{aligned} & 0.22^{* * *} \\ & (0.02) \end{aligned}$		$\begin{aligned} & 0.23^{* * *} \\ & (0.02) \\ & \hline \end{aligned}$
Observations	1,869	1,869	1,874	1,836	1,808	1,808	1,813	1,813
Adjusted R2	0.03	0.05	0.03	0.04	0.03	0.10	0.03	0.10

$>$ back

External validity

Table: Expectations and future actions

			Dependent variable: Holding change			
	Previous week	Today	Following week	Previous week	Today	Following week
	(1)	(2)	(3)	(4)	(5)	(6)
Expected own return, 1M	-0.22	$0.10^{* *}$	$0.28^{* *}$	$-0.40^{* * *}$	$0.14^{* *}$	$0.48^{* * *}$
	(0.14)	(0.05)	(0.13)	(0.13)	(0.05)	(0.15)
Expected own return, 1Y	0.02	$-0.03^{* *}$	-0.07	0.03	-0.03	-0.10^{*}
	(0.05)	(0.01)	(0.05)	(0.05)	(0.02)	(0.05)
Expected market return, 1M			-0.12	-0.09	-0.3	
			(0.11)	(0.07)	(0.32)	
Expected market return, 1Y			0.24	0.02	-0.08	
				(0.22)	(0.06)	(0.17)
Observations	1,379	1,378	1,378	1,135	1,135	
Adjusted R2	0.01	0.01	0.003	0.01	0.02	0.001

References

Bordalo, P., Burro, G., Coffman, K., Gennaioli, N., and Shleifer, A. (2022a). Imagining the future: memory, simulation and beliefs about covid. Working paper.
Bordalo, P., Conlon, J. J., Gennaioli, N., Kwon, S. Y., and Shleifer, A. (2022b). Memory and probability. Technical report.
Enke, B., Schwerter, F., and Zimmermann, F. (2020). Associative memory and belief formation. Technical report.
Giglio, S., Maggiori, M., Stroebel, J., and Utkus, S. (2021). Five facts about beliefs and portfolios. American Economic Review, 111(5):1481-1522.
Graeber, T., Zimmermann, F., and Roth, C. (2022). Stories, statistics, and memory. Working paper.
Greenwood, R. and Shleifer, A. (2014). Expectations of returns and expected returns. The Review of Financial Studies, 27(3):714-746.

Kahana, M. J. (2012). Foundations of human memory. OUP USA.
Wachter, J. A. and Kahana, M. J. (2021). A retrieved-context theory of financial decisions. Technical report.

