Leveraging the Disagreement on Climate Change

Theory and Evidence

Laura Bakkensen (Arizona) ABFER, May 2023 Toan Phan (FRB-R)

Russell Wong (FRB-R)

Views expressed here of the authors and should not be interpreted as those of the Federal Reserve Bank of Richmond or Federal Reserve System.

- How do climate risks affect financial system?
 - Topic of a rapidly growing climate finance literature.
 - Relevant for financial regulators.
- Particularly relevant: How do climate risks affect housing & mortgage market?
 - What do we know so far? Mostly on housing prices.
 - Much less is known about how climate risks affect mortgage market.

- Purchases of homes more exposed to sea level rise (SLR) are

 - More likely to use mortgage contracts with longer maturity (more exposure to long-run climate risk)

 — intensive margin
 - Despite exposed properties having lower prices.
- Results are driven by transactions with buyers coming from counties with more pessimistic beliefs about climate change.
 - And driven by transactions with conforming loans (that can be securitized and sold to GSEs).

- To understand these facts, need a new model of credit market with belief disagreement.
 - Standard models predict optimists (not pessimists) leverage more; silent on maturity.
- We propose one. Key additions: endogenous maturity choice & competitive search.
 - Intuition: Pessimists (buyers with strong climate beliefs) could transfer climate risk to lenders via leveraged investment using defaultable debt contract at long maturity.
- Monetary & securitization policies can affect debt market's climate exposure.
 - Test this implication using our data.

Related literature

- Empirical climate finance
 - Pricing of climate risk: Bernstein Gustafson Lewis JFE 2019, Baldauf Garlappi Yannelis RFS 2020, Murfin Spiegel RFS 2020, Bakkensen Barrage RFS 2021, Hino Burke PNAS 2021, Giglio Maggiori Rao Stroebel Weber RFS 2021...
 - Climate risk in mortgage market: Keys Mulder 2020, Issler et al 2020, Ouazad Kahn RFS 2021, Liao Mulder 2021, Panjwani 2022, Sastry 2022
 - Surveys: Hong Karolyi Scheinkman RFS 2020, Giglio Kelly Stroebel 2021, Furukawa Ichiue Shiraki 2021, 5th National Climate Assessment
 - $\bullet\,$ First to study how climate risk \times belief disagreement affects debt market
- Theory
 - Credit markets with heterogeneous beliefs: Geanakoplos NBERma 2010, Fostel Geanakoplos AER 2008, ECT 2015, Simsek ECTA 2013, Bailey Dávila Kuchler Stroebel Restud 2019...
 - First to apply and evaluate theory in climate context, adding search and maturity
 - Risk shifting: Allen Gale 2000, Barlevy 2014, Allen Allen Gale 2022, Bengui and Phan 2018.
 - House search: Moen JPE 1997, Ngai Tenreyro AER 2014; Head Lloyd-EllisSun AER 2014; Landvoigt Piazzesi Schneider AER 2015; Garriga Hedlund AER 2020...
 - Mortgage search: Allen Clark Houde AER 2014; JPE 2019

Stylized model

A model of long-term debt with long-run risk disagreement

- Continuous time. Risk neutral & deep-pocketed agents. Common discount rate r.
- A one-time disaster arriving at a random time T_d .
- Binomial: indivisible asset yields a payoff stream $H_t = 1$ before T_d and $H_t = 1 d$ after.
- Belief disagreement:
 - Asset buyers believe T_d arrive at the Poisson rate $r\lambda$, where λ follows $F(\lambda)$
 - Lenders: $r\bar{\lambda}$.
 - Asset price *P* exogenous (for now).
- A long-term debt contract specifies (L, M, μ) :
 - Lender loans L to borrower
 - Borrower promises to pay M until maturity T_m
 - Stochastic maturity: T_m arrives at the rate $r\mu$, $\mu \in [0, \mu_0]$.

for conception/ intuition pump/ testable implications. In particular,

- Price is exogenous (for this talk, endogenous in paper)
- Asset is indivisible (not crucial, following the asset-search literature)
- No reselling of assets (but no trade theorem applies before the disaster arrives)
- No refinancing (ditto)
- No insurance of disaster (can be relaxed)
- Belief disagreement is common knowledge (consider private info in paper)
- Disaster is not recurring (crucial to simplify results: no need to worrying about learning/ belief updating)

Credit search

```
Asset buyer chooses optimal debt contract to search,

Competitive search determines approval rate \alpha(L, M, \mu).

Borrower can default at any t_{def} \leq T_m:

Pay the default cost f;

Repay the lesser of loan balance and asset liquidation value.
```

 T_d

Borrower

• Expected payoff from a debt contract (L, M, μ) :

$$\underbrace{\alpha \left[-\underbrace{(P-L)}_{\text{down payment}} + V(M, \mu)\right]}_{\text{mortgage approved}} + \underbrace{(1-\alpha)\left[-P + V(0, \infty)\right]}_{\text{not approved}}$$

• where continuation value $V(M, \mu)$ is defined as:

$$V := \mathbb{E}_{\lambda} \left\{ \underbrace{\int_{0}^{t_{def}} re^{-rt} (H_t - M_t)}_{\text{repaying debt}} + e^{-rt_{def}} (-\underbrace{f}_{\text{default cost}} + \max\{\underbrace{p_{t_{def}}}_{\text{liquidation value}} - \underbrace{B_{t_{def}}}_{\text{remaining balance}}, 0\}) \right\}$$
$$B_{t_{def}} = \int_{t_{def}}^{T_m} re^{-r(t - t_{def})} M dt$$

Proposition: Default strategy

Given a debt contract (L, M, μ) , the optimal stopping time of default is

$$t_{def} = egin{cases} 0, & ext{if } L > b^{ ext{risky}}; \ T_d, & ext{if } L \in (b^{ ext{safe}}, b_\lambda^{ ext{risky}}] ext{ and } T_d < T_m; \ \infty, & ext{otherwise}, \end{cases}$$

where the safe and risky debt limits, $b^{
m safe} < b^{
m risky}_{\lambda}$ are given by:

$$b^{\text{safe}} \equiv 1 - d + f, \quad b_{\lambda}^{\text{risky}} \equiv 1 - \frac{\lambda}{1 + \lambda} \frac{d}{1 + \mu} + f.$$
 (1)

Intuition:

- Risk-free debt contract: No default if debt is below b^{safe} (i.e., max min contract in F-G).
- Risky debt contract: Default after disaster if debt is between b^{safe} and $b_{\lambda}^{\text{risky}}$.
- Default immediately if the debt is greater than $b_{\lambda}^{\text{risky}}$.

• Expected payoff from a contract:

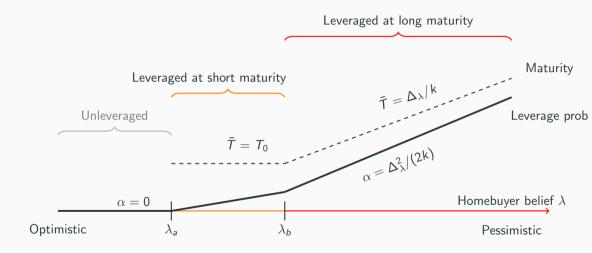
$$\Pi(L, M, \mu) := -L + PV(M, \mu) - \underbrace{\mathcal{K}(\mu)}_{\text{operation cost (to pin down optimal } \mu)}$$

$$PV(M,\mu) := \mathbb{E}_{\bar{\lambda}} \{ \int_0^{\min(\mathcal{T}, t_{def})} r e^{-rt} M dt + \mathbb{1}_{t_{def} < \mathcal{T}} e^{-rt_{def}} \min(p_{t_{def}}, B_{t_{def}}) \}.$$

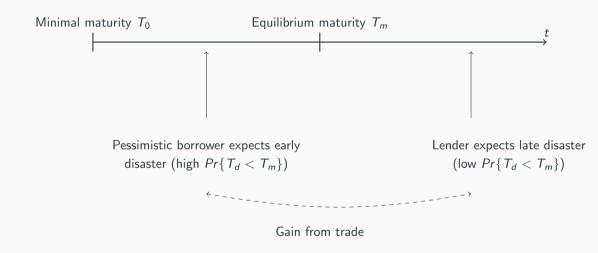
• Free-entry condition pins down loan approval rate α :

$$0 = \underbrace{\eta(\alpha)}_{\text{prob. of finding a matching buyer}} \Pi(L, M, \mu) - \underbrace{\kappa}_{\text{cost of issuing debt contract}}$$

Competitive search


For each borrower type λ and each contract (L, M, μ) :

Borrowers: endogenous mass nb


Number of matches produced: $\mathcal{M}(n_b, n_l)$, e.g. $M_0 n_b^{\gamma} n_l^{1-\gamma}$ \Rightarrow Prob a borrower finds a match: $\alpha := \frac{\mathcal{M}}{n_b}$ \Rightarrow Prob a lender finds a match: $\eta := \frac{\mathcal{M}}{n_l}$

Lenders: endogenous mass n₁

Proposition: Equilibrium long-term debt contract (assuming $d > \overline{\lambda} f$)

Intuition

	Pessimistic buyer ($\lambda > \lambda_b$)	Otherwise
	& exposed to disaster $(d>ar{\lambda}f)$	
Leverage probability α	high	low
Maturity $ar{\mathcal{T}}$	long	short

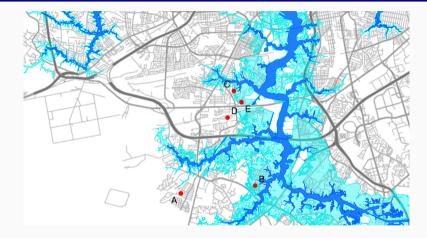
Extensions

- 1. Monetary policy: Banks' and borrowers' funding costs are *i* and ρ , where $i \leq \rho$. A reduction in policy interest rate *i* will
 - Increase leverage probability (dlpha/di < 0) \leftarrow intensive margin
 - Expand set of borrowers $[\lambda_a,\infty)$ choosing risky mortgage contracts \leftarrow extensive margin
 - No effect on maturity (dT/di = 0).

Details

- 2. Endogenize housing price via Nash bargaining
 - deceasing in pessimism $(dP/d\lambda < 0)$
 - decreasing in policy interest rate (dP/di < 0).

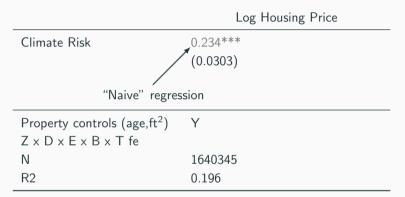
3. Insurance Octails


- Importance of endogenous maturity: Assume maturity is exogenously fixed $(\mu \rightarrow \mu_0)$.
 - Then pessimists are less likely to leverage $(\alpha \downarrow \lambda)$ and borrow less $(B \downarrow \text{ in } \lambda)$.
 - In other words, similar to predictions in "standard" belief-disagreement models of Geanakoplos 2010, Simsek 2013.

Data

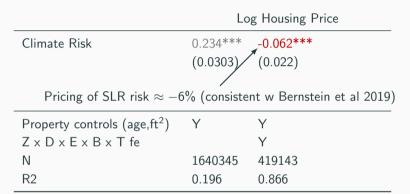
- Extensive housing & mortgage transaction data from Corelogic (2001-2016).
 - Single-family homes within 1km from East Coast (>1m transactions).
- Property-level geophysical measures.
 - Whether inundated under various sea level rise scenarios (from NOAA SL
 - Distance to coast (ArcGIS) & minimum bare-earth elevation (First Street).
- County-level climate belief proxy: % of adults saying whether global warming is happening (Yale climate opinion survey 2014).
 - Assumption: a buyer from a county with more pessimistic belief is more likely to be have a pessimistic belief herself.
 - Potential
 selection bias

Exploiting high resolution variation in SLR risk exposure

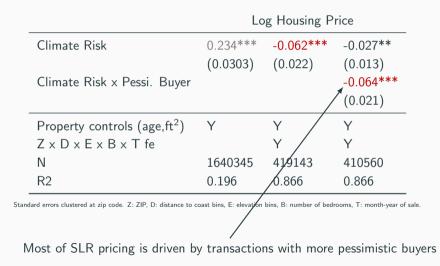


Chesapeake, VA under 6ft of SLR. Properties A-E lie in same ZIP, distance to coast bin ((0, .01], (.01-.02], (.02-.08], (.08-.16], (.16, ∞) miles), elevation bin (2m), and

same bedroom number, transaction time.


Results

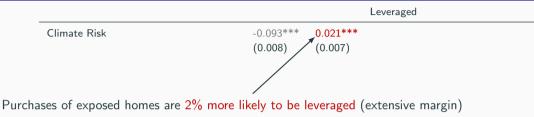
Result 0: Pricing of climate risk, revisited


Standard errors clustered at zip code. Z: ZIP, D: distance to coast bins, E: elevation bins, B: number of bedrooms, T: month-year of sale.

Result 0: Pricing of climate risk, revisited

Standard errors clustered at zip code. Z: ZIP, D: distance to coast bins, E: elevation bins, B: number of bedrooms, T: month-year of sale.

Result 0: Pricing of climate risk, revisited



	Leveraged
Climate Risk	-0.093***
	(0.008)

Controls (property, sale price, buyer cty)	Y
$Z \times D \times E \times B \times T$ fe	
Buyer county controls $ imes$ Climate Risk	
Ν	1580756
R2	0.019

		I	Leveraged
Climate Risk	-0.093*** (0.008)	0.021	

Controls (property, sale price, buyer cty)	Y	Υ
$Z \times D \times E \times B \times T$ fe		Υ
Buyer county controls $ imes$ Climate Risk		
Ν	1580756	405893
R2	0.019	0.473

Comparison: Share of leveraged transactions increase by ${\sim}4\%$ bt 2001-2007 in our sample

Controls (property, sale price, buyer cty)	Υ	Υ
$Z \times D \times E \times B \times T$ fe		Y
Buyer county controls $ imes$ Climate Risk		
Ν	1580756	405893
R2	0.019	0.473

			Leveraged	
Climate Risk	-0.093***	0.021***	-0.004	
	(0.008)	(0.007)	(0.007)	
Climate Risk $ imes$ Pessi. Buyer			0.047***	
			(0.009)	
Relationship is driv	en by transactio	ns with bu	yers	
from counties with	more nessimisti	c climate b	eliefs	

Controls (property, sale price, buyer cty)	Y	Υ	Υ
$Z\timesD\timesE\timesB\timesT$ fe		Υ	Υ
Buyer county controls $ imes$ Climate Risk			
Ν	1580756	405893	405893
R2	0.019	0.473	0.473

			Leveraged	
Climate Risk	-0.093***	0.021***	-0.004	-0.003
	(0.008)	(0.007)	(0.007)	(0.014)
Climate Risk $ imes$ Pessi. Buyer			0.047***	0.034***
			(0.009)	(0.011)
Relationship is driven	by transactio	ns with bu	yers	
from counties with m	ore pessimisti	c climate b	eliefs	

Controls (property, sale price, buyer cty)	Υ	Y	Υ	Υ
$Z \times D \times E \times B \times T$ fe		Y	Y	Y
Buyer county controls $ imes$ Climate Risk				Y
Ν	1580756	405893	405893	405893
R2	0.019	0.473	0.473	0.473

			Leveraged		
Climate Risk	-0.093*** (0.008)	0.021*** (0.007)	-0.004 (0.007)	-0.003 (0.014)	
Climate Risk $ imes$ Pessi. Buyer			0.047*** (0.009)	0.034*** (0.011)	
Moderate Climate Risk					0.003 (0.014)
High Climate Risk					-0.035 (0.031)
<pre>Moderate Climate Risk × Pessi. Buyer (inundated at (3,6]ft SLR) High Climate Risk × Pessi. Buyer (inundated at ≤ 3ft SLR)</pre>		Note m	onotonicity		0.026** (0.011) 0.083*** (0.023)
Controls (property, sale price, buyer cty)	Υ	Υ	Υ	Υ	Y
$Z\timesD\timesE\timesB\timesT$ fe		Υ	Y	Y	Υ
Buyer county controls $ imes$ Climate Risk				Y	Υ
Ν	1580756	405893	405893	405893	405893
R2	0.019	0.473	0.473	0.473	0.473

Result 2: Climate-Maturity relationship

Climate Risk		Long Maturity			
	-0.019***	0.005	-0.004	0.002	
	(0.002)	(0.005)	(0.007)	(0.014)	
Climate Risk $ imes$ Pessi. Buyer			0.018***	0.024***	
			(0.007)	(0.007)	

Controls (property, sale price, buyer cty)	Y	Υ	Υ	Y	Y
$Z \times D \times E \times B \times T$ fe		Υ	Y	Y	Υ
Lender fe		Υ	Y	Y	Υ
Buyer county controls $ imes$ Climate Risk				Y	Υ
Ν	822890	150746	150746	150746	150746
R2	0.002	0.441	0.441	0.441	0.441

Result 2: Climate-Maturity relationship

	Long Maturity				
Climate Risk	-0.019***	0.005	-0.004	0.002	
	(0.002)	(0.005)	(0.007)	(0.014)	
Climate Risk $ imes$ Pessi. Buyer			0.018***	0.024***	
			(0.007)	(0.007)	
Purchases of exposed home by more pessimistic buyers					
tend to have longer matu	urity (intensive	e margin)			

Y	Υ	Υ	Υ	Υ
	Υ	Υ	Υ	Y
	Υ	Υ	Υ	Y
			Υ	Y
822890	150746	150746	150746	150746
0.002	0.441	0.441	0.441	0.441
	822890	Y Y 822890 150746	Y Y Y Y 822890 150746 150746	Y Y Y Y Y Y Y Y Y 822890 150746 150746

Result 2: Climate-Maturity relationship

	Long Maturity				
Climate Risk	-0.019*** (0.002)	<mark>0.005</mark> (0.005)	-0.004 (0.007)	0.002 (0.014)	
Climate Risk \times Pessi. Buyer	、		0.018*** (0.007)	0.024*** (0.007)	
Moderate Climate Risk			`		0.006 (0.014)
High Climate Risk					-0.028 (0.024)
Moderate Climate Risk \times Pessi. Buyer					0.023*** (0.008)
High Climate Risk \times Pessi. Buyer					0.031* (0.019)
Controls (property, sale price, buyer cty)	Y	Y	Y	Y	Y
$Z \times D \times E \times B \times T$ fe		Υ	Y	Y	Υ
Lender fe		Υ	Y	Y	Υ
Buyer county controls $ imes$ Climate Risk				Υ	Υ
Ν	822890	150746	150746	150746	150746
R2	0.002	0.441	0.441	0.441	0.441

Robustness checks

- Other belief specifications:
 - Finer bins of climate beliefs + Other survey questions (stated worry; belief about timing of damage).
 - Alternative data source: impute county-level & time-varying climate beliefs from individual-level environmental survey by Gallup.
- Other fixed effect specifications.
 - Including investment-property (i.e., non-owner-occupied) fixed effect.
- Finer bins of SLR exposure.
- Potential confounders: More buyer county controls (income, pop, edu, age, race, unemp rate, housing starts, crime).
- FEMA flood map, past flood events

Diving Deeper

Selection bias

- Concern: our sample of coastal homebuyers is biased. Reason: optimists more likely to select/sort towards coastal properties. Thus, county-level belief is a biased proxy for individual-level buyer belief.
- Other approaches:
 - 1. Very significant and negative effect of SLR \times buyer county belief on house price (bias not strong enough to cancel out this negative correlation).
 - Bakkensen Barrage (RFS 2021): county-level Yale belief strongly correlated with individual-level belief in door-to-door survey in coastal RI (caution: small sample, n=187).
 - If sorting is dominant, we should see strong *negative* correlation between frequency of coastal buyers in a county and the county's belief (i.e., fewer buyers of coastal homes coming from pessimistic counties). This does not seem to be the case in our data.

- Securitization could reduce banks' incentive to screen climate risk: banks could shift climate risks to Government Sponsored Enterprises, by securitizing and selling off exposed mortgages that are below conforming loan limits (Ouazad Kahn 2021).
- Suppose this is true, then we should expect effects of SLR exposure on leverage and maturity to strengthen for conforming loan segment & weaken for nonconforming segment.
- This turns out to be the case in our data.

Results driven by conforming loan segment

	Levera	aged &	Long Maturity &	
	Conforming	Nonconform	Conforming	Nonconform
Climate Risk	-0.016	0.013*	-0.009	0.007
	(0.015)	(0.007)	(0.021)	(0.013)
Climate Risk $ imes$ Pessi. Buyer	0.033***	-0.001	0.033***	-0.015**
	(0.012)	(0.004)	(0.012)	(0.007)
Property & buyer county controls	Y	Y	Y	Y
Buyer county controls \times Climate Risk	Υ	Υ	Υ	Υ
$Z \times D \times E \times B \times M$ fe	Υ	Υ	Υ	Υ
Lender fe			Υ	Υ
Ν	406601	406601	182771	182771
R2	0.478	0.566	0.569	0.669

- Model predicts that policy rate *i* affects leveraged probability, but not maturity.

- Mortgage rates: do not seem to reflect climate risk or climate beliefs.
- Loan amount: Model predicts ambiguous effects on loan amount (B; intensive margin). Prediction supported. • Details

- What makes climate risks special?
 - Possibility of large damage in the future.
 - Pronounced belief disagreement (esp. in U.S.).
- We found: risk of *future* damage × belief disagreement is an important determinant of how climate risks affect debt market.
- How financial markets adapt to climate change under belief disagreement: nontrivial patterns and policy implications. Exciting research agenda!

Appendix: Model

Competitive search equilibrium

- Competitive search equilibrium consists of a menu Ω of available contracts, with quantities (n_b, n_l) associated with each borrower type λ and contract $a \in \Omega$, s.t.:
 - 1. Matching probabilities for a borrower is $\alpha = M/n_b$ and for a lender is $\eta = M/n_l$;
 - 2. n_b is the measure of borrowers for which a solves their optimization problem;
 - 3. *n*₁, the measure of lenders who enter the associated submarket, is so that free-entry condition is satisfied;
 - 4. the market clears: for each borrower type λ , the sum total of all the measures of borrowers in each submarket must satisfy

$$\int_{a\in\Omega}n_b(a)da=f(\lambda)$$

where f is the density function of the borrower type distribution.

Back

Closed-form solutions

• Leverage probability:

$$\alpha^{(1+\xi)/\xi} = \frac{1+\xi}{(1-\theta)\kappa} \left[P - \frac{1+\theta\rho}{1+\rho} v\left(\lambda\right) + \theta\xi \right].$$
(2)

• Maturity:

$$\bar{\mathcal{T}} = \begin{cases} \underbrace{\overbrace{(1+\bar{\lambda})[\nu(\bar{\lambda})-\nu(\lambda)]-\bar{\lambda}}^{\text{"disagreement value"}}}_{k} & \text{if } \lambda > \lambda_b, \\ \overline{\mathcal{T}_0} & \text{otw.} \end{cases}$$
(3)

• Mortgage payment:

$$m = \underbrace{\Delta\left(\lambda,\bar{\lambda}\right)}_{\text{disagreement}} - \underbrace{\bar{\lambda}\left(1-D\right)}_{\text{foreclosing the damaged house}} + \underbrace{\frac{1}{\bar{T}}\left[\nu\left(\lambda\right)+F\right]}_{\text{amortizing the subjective value}}$$
(4)

Image: A Back

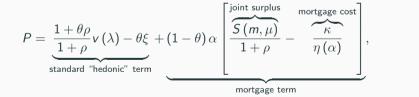
Extension: Monetary policy

• Assume borrowers face funding cost *ρ*:

$$\underbrace{\alpha \left[-(1 + \underbrace{\rho}_{\text{funding cost down payment}}) \underbrace{(P - B)}_{\text{funding cost down payment}} + V(m, \mu) \right]}_{\text{mortgage approved}} + \underbrace{(1 - \alpha) \left[-(1 + \rho)P + V(0, \infty) \right]}_{\text{not approved}}$$

• And banks face funding cost $i \leq \rho$, where i depends on monetary policy. Free-entry condition:

$$0 = \underbrace{\eta(\alpha)}_{\text{prob. of finding a matching buyer funding cost}} \underbrace{\left[-(1+i)B\right]}_{\text{expected payoff from mortgage}} - \underbrace{K(\mu)}_{\text{operation cost}} - \underbrace{K(\mu)}_{\text{fixed cost}}$$


Image A Back

Extension: Nash bargaining

- Assume for simplicity, seller has same belief as buyer (e.g., both buyer and seller are from the same county and inherit the same county-level belief).
- Borrower's bargaining power θ .
- To motivate trade, assume seller faces a higher house maintenance cost ξ relative to buyer.
- House price *P* determines by

$$\max_{P} U^{\theta} [P - v(\lambda) + \xi]^{1-\theta}.$$

• Solution:

■ Back

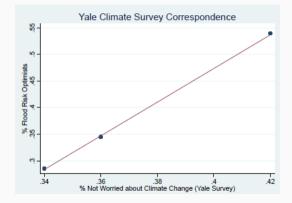
(5)

Extension: Insurance (and why few buy it)

Assume an insurance that charges rq continuously and pays δ when climate shock hits.

- Homebuyers can choose any coverage $\delta \in [0, \overline{\delta}]$, where $D \overline{\delta} > \overline{\lambda}F$.
- If insurance is mandatory, then isomorphic to lowering D by $\delta \rightarrow$ same qualitative results.
- If insurance is not mandatory:
 - Assume premium is priced at the bank's belief: $q = \bar{\lambda} \delta$.
 - If $\bar{\lambda} \geq \lambda_a$, then no homebuyer will buy any insurance.
 - Intuition: Optimists find the premium too high as priced at a higher belief. Pessimists will surrender the house when the climate shock hits so insurance is no use.
 - If $\bar{\lambda} < \lambda_a$, then
 - Homebuyers with λ ∈ [λ̄, λ_a] will buy max insurance (δ = δ̄). Continue to choose risk-free mortgage.
 - Homebuyers with $\lambda \notin [\bar{\lambda}, \lambda_a]$ will not buy insurance and behave as before.
 - Hence, similar qualitative results again.
 - Intuition: default is implicit insurance against climate shock, hence crowds out insurance uptake (related empirical evidence for this mechanism: Liao Mulder 2021)

Image: A Back


Appendix: Data

- Maps sea level rise inundation.
 - Bathtub-style model.
 - Relative to Mean Higher High Water levels.
 - 0 to 10ft SLR scenarios mapped.
 - Variation in local SLR driven by small differences in elevation, topography, bathymetry, etc.
 - Publicly free at https://coast.noaa.gov/slr/
- Does not include potentially endogenous local factors, e.g.:
 - Erosion, subsidence/accretion, human mitigation.

Summary statistics

	Mean	Std
Sale price (\$)	370,819.40	523,768.00
Leveraged (mortgage dummy)	0.63	0.48
Mortgage amount (\$)	178,732.50	262,627.20
Mortgage maturity (y)	17.20	14.44
Distance to coast (m)	402.74	296.83
Elevation (m)	6.84	11.69
Climate belief (county level,%)	64.97	4.06
Inundated with 1ft SLR	0.00	0.06
Inundated with 2ft SLR	0.01	0.10
Inundated with 3ft SLR	0.03	0.17
Inundated with 4ft SLR	0.07	0.26
Inundated with 5ft SLR	0.14	0.34
Inundated with 6ft SLR	0.21	0.41
Ν	876,729	

Yale data vs. Bakkensen-Barrage 2021 data

✓ Back to data)

Back to selection

Appendix: Robustness checks

Other belief specifications

		Leveraged		L	ong Maturity	/
	Happening	Worried	Timing	Happening	Worried	Timing
SLR Risk $ imes$ Pess. Buyer (above median)	0.034***	0.049***	0.031**	0.024***	0.026***	0.023***
	(0.011)	(0.012)	(0.013)	(0.007)	(0.007)	(0.007)
SLR $ imes$ 2nd Quartile Belief	0.023**	0.006	0.001	0.030***	0.008	0.025**
	(0.011)	(0.012)	(0.011)	(0.008)	(0.010)	(0.010)
SLR $ imes$ 3rd Quartile Belief	0.011	0.058***	0.022	0.034***	0.033***	0.017
	(0.017)	(0.013)	(0.015)	(0.011)	(0.009)	(0.010)
SLR $ imes$ 4th Quartile (highest) Belief	0.045**	0.047*	0.051***	0.034***	0.023	0.038***
	(0.018)	(0.027)	(0.015)	(0.010)	(0.017)	(0.010)
SLR Risk $ imes$ Belief (continuous)	0.002	0.003***	0.002*	0.002*	0.002**	0.000
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.000)
$Z \times D \times E \times B \times M$ fe	Y	Y	Y	Y	Y	Y
Property & buyer county controls	Υ	Υ	Υ	Υ	Υ	Υ
Buyer county controls $ imes$ Climate Risk	Υ	Υ	Υ	Υ	Υ	Υ
Lender fe				Υ	Υ	Υ

Imputed county-level belief from individual-level Gallup survey

	Leveraged	Long Maturity
SLR Risk	-0.031	0.006
	(0.021)	(0.021)
SLR Risk × Pess. Buyer	0.032**	0.028*
	(0.015)	(0.015)
Property & buyer county controls	Y	Y
$Z \times D \times E \times B \times T$ fe	Y	Υ
Buyer county controls × SLR	Y	Υ
Lender f.e.		Υ
N	210774	62928
R2	0.439	0.442

Image A Back

Other fixed-effect specifications: Leveraged result

			Leveraged	
SLR Risk	0.007	-0.005	0.010	0.012
	(0.016)	(0.012)	(0.010)	(0.013)
SLR Risk $ imes$ Pess. Buyer	0.032***	0.031***	0.019**	0.021**
	(0.010)	(0.011)	(0.008)	(0.010)
F.e.	Z×D×E×B	$Z \times D \times E \times B \times Q$	$Z \times D \times E \times B \times Q \times O$	Z×D×E×B×M×O
Property & buyer county controls	Υ	Υ	Y	Υ
Buyer county controls $ imes$ Climate Risk	Υ	Υ	Y	Υ
Ν	852817	568636	490546	322484
R2	0.188	0.404	0.461	0.526

 $\label{eq:Z-zip} Z-zip \mbox{ code, } D-\mbox{ distance to coast bin, } E-\mbox{ elevation bin, } B-\mbox{ number of bedrooms, } Q-\mbox{ quarter and year of transaction, } N-\mbox{ month and year of transaction, } O-\mbox{ owner-occupied status.}$

Other fixed-effect specifications: Long maturity result

		Lo	ong Maturity	
SLR Risk	-0.011*	-0.003	-0.005	-0.010
	(0.006)	(0.011)	(0.012)	(0.019)
SLR Risk $ imes$ Pess. Buyer	0.007	0.017***	0.012*	0.022**
	(0.005)	(0.006)	(0.007)	(0.009)
F.e.	Z×D×E×B	$Z \times D \times E \times B \times Q$	$Z \times D \times E \times B \times Q \times O$	Z×D×E×B×M×O
Property & buyer county controls	Υ	Υ	Y	Υ
Buyer county controls $ imes$ Climate Risk	Υ	Υ	Y	Y
Lender fe	Υ	Υ	Y	Y
Ν	852817	568636	490546	322484
R2	0.188	0.404	0.461	0.526

 $\label{eq:Z-zip} Z-zip \mbox{ code, } D-\mbox{ distance to coast bin, } E-\mbox{ elevation bin, } B-\mbox{ number of bedrooms, } Q-\mbox{ quarter and year of transaction, } O-\mbox{ owner-occupied status}$

A Back

Finer SLR exposure bins

	Leveraged	Long Maturity	
1.SLR (6ft)	0.0180	0.0169	
	(0.014)	(0.017)	
2.SLR (5ft)	0.0140	-0.0042	
	(0.020)	(0.026)	
3.SLR (4ft)	-0.0343	-0.0038	
	(0.027)	(0.020)	
4.SLR (\leq 3ft)	-0.0362	-0.0305	
	(0.031)	(0.024)	
1.SLR × Pess. Buyer	0.0154	0.0140	
	(0.012)	(0.009)	
2.SLR × Pess. Buyer	0.0246*	0.0321**	✓ Back
	(0.015)	(0.014)	
3.SLR × Pess. Buyer	0.0455**	0.0323**	
	(0.018)	(0.014)	
4.SLR × Pess. Buyer	0.0856***	0.0322*	
	(0.023)	(0.018)	
Property & buyer county controls	Y	Y	
Buyer county controls × SLR	Υ	Y	
$Z \times D \times E \times B \times M$ fe	Υ	Υ	
Lender fe		Υ	
Ν	405893	150746	
R2	0.473	0.441	

41

Including more buyer county controls (2010-2016 sample)

	Leveraged	Long Maturity
SLR Risk	-0.019	0.070*
	(0.031)	(0.040)
SLR Risk × Pess. Buyer	0.038**	0.039***
	(0.014)	(0.015)
Property & buyer county controls	Y	Y
$Z \times D \times E \times B \times T$ fe	Υ	Υ
Buyer county controls × SLR	Υ	Y
Lender f.e.		Υ
Ν	210774	62928
R2	0.440	0.443

Buyer county controls: income, population, education (share of bachelors), age (18-29 share), race (black share).

Controlling for FEMA flood map

	Leveraged	Long Maturity
SLR	0.007	0.001
	(0.014)	(0.014)
$SLR \times Pess.$ Buyer	0.027**	0.023***
	(0.011)	(0.008)
FEMA Zone	-0.024***	-0.002
	(0.008)	(0.004)
FEMA Zone × Pess. Buyer	0.015	0.001
	(0.011)	(0.007)
Z × D × E × B × T FE	Y	Y
Buyer County x SLR Controls	Y	Υ
Lender FE		Υ
N	405908	150746
R2	0.473	0.441

Appendix: Further results

Effects of monetary policy

	Leveraged	Long Maturity
SLR Risk	-0.022	0.001
	(0.017)	(0.016)
SLR Risk × High Belief	0.051***	0.035***
	(0.015)	(0.012)
SLR Risk × High Belief × <i>i</i>	-0.010**	-0.005
	(0.005)	(0.004)
$Z \times D \times E \times B \times M$ fe	Y	Y
Property & buyer county controls	Υ	Y
Buyer county controls × SLR	Υ	Υ
Lender fe		Υ
Ν	405,908	150,746
R^2	0.473	0.441

i: Market Yield on Treasury Securities at 2-Year Maturity

Insignificant effects on borrowing amount (as model predicts)

	log(Mortgage amount)	
Climate Risk	-0.003	
	(0.011)	
Climate Risk × Pess. Buyer	0.004	
	(0.010)	
Moderate Climate Risk		-0.001
		(0.012)
High Climate Risk		-0.018
		(0.030)
Moderate Climate Risk × Pess. Buyer		0.005
		(0.010)
High Climate Risk × Pess. Buyer		-0.006
		(0.020)
Property & buyer county controls	Y	Y
$Z \times D \times E \times B \times M$ fe	Υ	Υ
Lender fe	Υ	Υ
Buyer county controls × SLR	Υ	Υ
N	167402	167402
R2	0.919	0.919

Insignificant effects on interest rates

	Interest rate		
Climate Risk	-0.095		
	(0.160)		
Climate Risk × Pess. Buyer	0.037		
	(0.088)		
Moderate Climate Risk		-0.074	
		(0.162)	
High Climate Risk		-0.348	
		(0.365)	
Moderate Climate Risk × Pess. Buyer		0.035	
		(0.098)	
High Climate Risk × Pess. Buyer		0.102	
		(0.206)	
Property & buyer county controls	Υ	Υ	
$Z \times D \times E \times B \times M$ fe	Υ	Υ	
Lender fe	Υ	Υ	
Buyer county controls × SLR	Υ	Υ	
30 year f.e.	Υ	Υ	
N	28873	28873	
R2	0.725	0.725	

Appendix: Selection

Sorting

Fraction of buyers from county choosing a coastal home

Buyer county belief	0.001*
	(0.001)
Buyer county income	0.003***
	(0.000)
Buyer county population	-0.000***
	(0.000)
Buyer county share with Bachelor degree	-0.006
	(0.072)
Buyer county share 18-29 age	-0.089
	(0.056)
Buyer county share of white	-0.067***
	(0.019)
Time F.E.	Y
State F.E.	Y
Ν	14921
R2	0.174

Using transaction-specific belief imputed from house prices

- Idea: higher capitalization of SLR in housing price implies likely more pessimistic buyer.
- Assume housing price follows true data generating process:

$$\log P^{i} = (\beta + \gamma \lambda^{i}) SLR^{i} + \text{controls} + \text{constant} + \epsilon^{i}$$
(6)

• Regress and predict error term $\hat{\zeta}^i$ in

$$\log P^{i} = \beta_{1} SLR^{i} + \text{controls} + \text{constant} + \zeta^{i}$$
(7)

- (6) and (7) implies $\zeta^i = \gamma SLR^i \lambda^i + \epsilon^i$ and therefore the predicted $\hat{\zeta}^i := E[\zeta^i] = \gamma SLR^i \lambda^i$
- Define our proxy for property-level climate belief as (the negative sign is because we expect γ to be negative)

$$\hat{\lambda}^i := -\hat{\zeta}^i. \tag{8}$$

 $\hat{\lambda}^i$ should be positively correlated with the true unobserved $\lambda^i.$

• For the subsample where $SLR^i = 1$, define $\widehat{PessiBuyer}'$ as 1 if $\hat{\lambda}^i$ is above median.

	Leveraged	Long maturity
SLR	-0.030	0.131**
	(0.044)	(0.059)
SLR × PessiBuyer	0.039***	0.012
	(0.009)	(800.0)
$Z \times D \times E \times B \times T$ fe	Y	Y
Property & buyer county controls	Υ	Υ
Buyer county controls × SLR	Υ	Υ
Lender fe		Υ
Ν	210774	62928
R2	0.440	0.443

PessiBuyer is transaction-specific and imputed from housing price regression.