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Expertise is what makes labor valuable 
in industrialized economies

• Definition: Expertise is domain-specific knowledge or competency 
that’s needed to accomplish a particular goal 

• For expertise to command a substantial market wage
i. The goal it enables must have market value

ii. The expertise must be scarce

• Why should we care?



Crossing Guard 
Median annual earnings $31,450

Air Traffic Controller
Median annual earnings $129,750

Non-expert work pays poorly



The Birth of  
Mass Expertise

During the  
Industrial Revolution
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The 1st and 2nd Industrial Revolutions, 1760–1914
Advent of mass production

• Displaced Artisanal expertise

• Mass production — Machines 
+ managers + untrained low-
paid workers

• Ultimately, mass production 
required: Mass expertise — 
mastering tools, following 
rules

Illustrator T. Allom, Engraver J. Tingle 
Public Domain, 1835



‘Mass Expertise’

Tool and die workers,  
Ford River Rouge plant, 1920s or 1930s 

© Adobe Stock (licensed)

Office workers at International Harvester 
© Wisconsin Historical Society
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The Computer Revolution — Automating routine tasks

What is a computer?

• Symbolic processor — 
Accesses, analyzes, and acts upon 
information

• Follows rules — Carries out 
codifiable, ‘routine’ tasks, specified in 
programs

Jacquard loom of 1801 
The first industrial computer
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a large share of mass expertise
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“We know more than we can tell…”

Michael Polanyi (1891 - 1976)

Polanyi’s Paradox – Rules vs. tacit knowledge

Implication — we cannot ‘computerize’ 
tasks that we don’t explicitly understand
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• Enhancing the value of elite 
expertise — Doctors, lawyers, 
managers, engineers, researchers 

• Pushing workers in middle-
skill jobs downward into 
non-expert work — Food 
service, cleaning, security

Autor, Mindell, Reynolds, 2020



Computerization fostered wage polarization

Today’s concerns originate in what happened after 
1980. As compared to the earlier period, earnings 
growth in the past 40 years has been slow, sporadic, 
and unequal. Between 1948 and 1978, U.S. total 
output per hour of work rose by 108%, as shown in 
Figure 4, an annual growth rate of 2.4%. During the 
same period, average compensation of production 
and nonsuper visor y workers (a stand-in for the 
median since median wages are not available for this 
period) rose in near lockstep, increasing by 95%. By 
contrast, in the subsequent four decades, between 
1978 and 2016, ag gregate productivity rose by a 
further 66% (an annual growth rate of 1.3%), while 
production and nonsupervisory compensation rose 
by a mere 10% and median compensation rose by 9%. 
This growing gulf between rising productivity and  
stagnating median wages is often referred to as “the 
great divergence.”

Within this “great divergence” lurk further dispar-
ities of race and gender. In this period, white men  
and white women notched the bulk of the modest 
median wage growth (see Figure 5). Specifically, the 
median hourly wages of white men rose by 7% while 
those among Black and Hispanic men rose by only 
1% and 3%, respectively. And among women, median 
hourly wages rose by 42% among white women, rel-
ative to only 25% and 26% among Black and Hispanic 
women, respectively. 

Reported changes in “real” wage levels should be 
viewed as approximate; it is not possible to capture 
all changes in living standards across decades using 
a single cost of living index. Indeed, the true purchas-
ing power of the median worker has likely risen faster 
than these numbers suggest, which also means that 

Figure 3. Real Wages Have Risen for College Graduates and Fallen for Workers with High School  
Degree or Less Since 1980
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The Artificial 
Intelligence era — 

Augmenting Expertise  
or Displacing Experts?
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Discovery and invention





Critical Assessment of Protein Structure 
Prediction (CASP) Competition

•Competition has run annually since 1994 

•215 teams entered in 2020



make biofuels and degrade waste plastic.

For decades, researchers deciphered pro-

teins’ structures using experimental tech-

niques such as x-ray crystallography or 

cryo–electron microscopy (cryo-EM). But 

such methods can take years and don’t al-

ways work. Structures have been solved for 

only about 170,000 of the more than 200 mil-

lion proteins discovered across life forms.

In the 1960s, researchers realized if they 

could work out all interactions within a pro-

tein’s sequence, they could predict its shape. 

But the amino acids in any given sequence 

could interact in so many different ways that 

the number of possible structures was astro-

nomical. Computational scientists jumped 

on the problem, but progress was slow.

In 1994, Moult and colleagues launched 

CASP, which takes place every 2 years. En-

trants get amino acid sequences for about 

100 proteins whose structures are not 

known. Some groups compute a structure 

for each sequence, while others determine 

it experimentally. The organizers then com-

pare the computational predictions with the 

lab results and give the predictions a global 

distance test (GDT) score. Scores above 

90 on the 100-point scale are considered on 

par with experimental methods, Moult says.

Even in 1994, predicted structures for 

small, simple proteins could match experi-

mental results. But for larger, challenging 

proteins, computations’ GDT scores were 

about 20, “a complete catastrophe,” says 

Andrei Lupas, a CASP judge and evolution-

ary biologist at the Max Planck Institute for 

Developmental Biology. By 2016, competing 

groups had reached scores of about 40 for the 

hardest proteins, mostly by drawing insights 

from known structures of proteins that were 

closely related to the CASP targets. 

When DeepMind first competed, in 2018, 

its algorithm, called AlphaFold, relied on this 

comparative strategy. But Alpha-

Fold also incorporated a computa-

tional approach called deep learn-

ing, in which the software is trained 

on vast data troves—in this case, 

the sequences and structures of 

known proteins—and learns to spot 

patterns. DeepMind won handily, 

beating the competition by an aver-

age of 15% on each structure, and 

winning GDT scores of up to about 

60 for the hardest targets.

But the predictions were still 

too coarse, says John Jumper, who 

heads AlphaFold’s development at 

DeepMind. “We knew how far we 

were from biological relevance.” So 

A
rtificial intelligence (AI) has solved 

one of biology’s grand challenges: pre-

dicting how proteins fold from a chain 

of amino acids into 3D shapes that 

carry out life’s tasks. This week, orga-

nizers of a protein-folding competition 

announced the achievement by research-

ers at DeepMind, a U.K.-based AI company. 

They say the DeepMind method will have 

far-reaching effects, among them 

dramatically speeding the creation 

of new medications.

“What the DeepMind team has 

managed to achieve is fantastic and 

will change the future of structural 

biology and protein research,” says 

Janet Thornton, director emeritus 

of the European Bioinformatics In-

stitute. “This is a 50-year-old prob-

lem,” adds John Moult, a structural 

biologist at the University of Mary-

land, Shady Grove, and co-founder 

of the competition, Critical Assess-

ment of Protein Structure Predic-

tion (CASP). “I never thought I’d 

see this in my lifetime.”
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Structures of a protein that were predicted

by artificial intelligence (blue) and experimentally 

determined (green) match almost perfectly.

NEWS

The body uses tens of thousands of dif-

ferent proteins, each a string of dozens to 

hundreds of amino acids. The order of the 

amino acids dictates how the myriad pushes 

and pulls between them give rise to proteins’ 

complex 3D shapes, which, in turn, determine 

how they function. Knowing those shapes 

helps researchers devise drugs that can lodge 

in proteins’ crevices. And being able to syn-

thesize proteins with a desired structure 

could speed development of enzymes to 
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Getting real 
At the Critical Assessment of Protein Structure Prediction (CASP) competition, 
AlphaFold matched experimental findings on a measure of accuracy.

‘The game has changed.’
AI triumphs at protein folding
In milestone, software predictions finally match structures 
calculated from experimental data
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“Artificial intelligence (AI) has solved one 
of biology’s grand challenges”

—- Science, December 2020
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Critical Assessment of Protein Structure 
Prediction (CASP) Competition

•Competition has run annually since 1994 

•215 teams entered in 2020
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“Artificial intelligence (AI) has solved one 
of biology’s grand challenges”

—- Science, December 2020

“This is a 50-year-old problem…I never 
thought I’d see this in my lifetime.” 

—- John Moult, co-founder of the CASP
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AI is a tool

• Many tools augment the value of human expertise, e.g., 
pneumatic hammer, stethoscope 

• The potential — AI could enable workers with 
complementary skills to perform more expert tasks

• But not all tools — London taxi drivers vs. Waze

• The peril — AI could commodify (‘strand’) expertise
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The Peril — 
Undermining  

Human Expertise



Expertise delegation and expertise denigration

Air France flight #447 tail fin recovery, 2009
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Expertise delegation and expertise denigration
• June 1, 2009: Pitot tubes (speed sensors) on 

Air France flight #447 iced over at 35K feet

• Auto-pilot partly disengaged automatically, 
plane rolled

• In the confusion, the first officer stalled the 
plane — a catastrophic error

• During the 3.5 minutes between auto-pilot off 
and water collision, crew did not understand 
that the plane was stalling

• Cause: “Crew lacked experience on the 
characteristics of high-altitude manual flying”

Air France flight #447 tail fin recovery, 2009
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Radiologists using AI — The case of CheXpert26

Figure 3: Conditional treatment e�ect given AI prediction
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(b) Incorrect Decision
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Note: Panel (a) shows the conditional average treatment e�ect of providing AI information on the absolute value of di�erence

between the radiologist probability and the ground truth. Panel (b) shows analogous treatment e�ects on incorrect diagnosis,

where a correct diagnosis is defined as the treatment recommendation matching the ground truth. Both these treatment e�ects

are conditional on the ranges of AI prediction. Standard errors are two-way clustered at the radiologist and patient-case level.

The error bars depict 95% confidence intervals. Robustness to experimental design is in appendix C.4.1 and C.4.2.

4.2.3 Treatment E�ects on Time Per Case and Proxies of E�ort

Finally, we turn our attention to the e�ects of AI assistance on time taken and the number
of unique interaction (clicks) as a proxy for e�ort. One hypothesis is that AI assistance could
economize on costly human e�ort without sacrificing overall performance by enabling quicker
assessments. At the polar opposite, it is possible that humans take more time because they
are provided with more information to process. Which of these e�ects dominate determines
the e�ect on labor costs when humans use AI assistance, and therefore the optimality of
delegating cases versus a collaborative setup.

Our results indicate that radiologists are slower when provided with AI assistance. The last
panel of table 2 shows the treatment e�ects on time spent per case and clicks. These outcomes
are measured at the case level. In the X-Ray Only treatment, radiologists spend about 2.6
minutes per case. Both AI and CH increase the time spend per case by a statistically
significant amount of approximately 4%. The interaction e�ct “AI◊CH is not significant
for either of the two outcome variables. These e�ects suggest that decisions where both
radiologists and the AI are involved come at a non trivial increase in time spent per case.
This result further undercuts the potential benefits in performance from including humans
assisted with AI predictions “in the loop.”

Agarwal, Moehring, Rajpurkar, and  Salz 2023



The Potential — 
Augmenting  

Human Expertise



Nurse Practitioners (NP)
Employment doubled between 2010 and 2017

tion-adjusted earnings growth, though growth
in earnings was highest in outpatient care clin-
ics, where employment also grew the fastest.
This suggests growing demand for NPs in these
care delivery settings.
There were also different regional patterns in

growth in the number of NPs (exhibit 4). Across
all nineUS regions the increase in the number of
NPs per capita in 2010–17 varied from49percent
in theSouthAtlantic regiontomore than150per-
cent in the East South Central and West South
Central regions (the states in each region are
listed in the notes to exhibit 4). In 2017 the East
South Central region led the nation in the num-
ber ofNPsper capita, followedbyNewEngland—
which had had the most NPs in 2010. Consistent
with other literature, we also found that NP sup-
ply growth from2010 to 2017was notably slower
in states with restrictive scope-of-practice regu-
lations (100 percent) than in states with full
practice authority for NPs (133 percent) (data
not shown).12,13

The percentage of the RN workforce repre-
sented by NPs grew in all regions from 2010 to
2017, reflecting faster growth in the NP supply
than in the RN supply (exhibit 5).Yet there were
substantial differences across regions. In 2010
the percentages of all RNs who were NPs varied
from just 2.6 percent in the West South Central
region to5.1 percent inNewEngland. In2017 the

region with the smallest share was the South
Atlantic region (5.1 percent) and that with the
largest share was the East South Central region
(8.6 percent). In the latter region nearly one in

Exhibit 1

Number and average annual earnings of full-time-equivalent (FTE) nurse practitioners (NPs)
in the US, 2010–17

SOURCE Authors’ calculations based on data from the American Community Survey. NOTES The earn-
ings data are for survey respondents who worked at least thirty hours per week. The amounts were
adjusted for inflation using the Consumer Price Index for All Urban Consumers and are reported in
2017 dollars.

Exhibit 2

Number of full-time-equivalent nurse practitioners, by age group, 2010 and 2017

SOURCE Authors’ calculations based on data from the American Community Survey.
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on each submission (each of which is graded on a 1-7 point scale), and a “convex” scheme in
which respondents are additionally paid $3 for earning a grade of 6 or 7, giving them an extra
incentive to produce high-quality output.

Figure 1: Treatment Effects on Productivity

(a) Time Taken Decreases

Treatment Effect:     -0.83 SDs
                95% CI:  [-0.63, -1.03]
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Note: Panels (a) and (b) plot means (and 95% confidence intervals for those means) of self-reported time taken
and average grades in the first and second task, separately in the treatment and control groups. The results look
very similar for the objective measure of time active; see Supplementary Materials. The panels also display the
coefficient on the treatment dummy from a person-evaluator-level OLS regression of the outcome variable (the
within-person difference in the outcome between task 2 and task), on a treatment dummy, evaluator fixed effects,
incentive arm fixed effects, and occupation*task-order fixed effects, clustering at the worker level. The treatment
effect coefficient and standard error are normalized by dividing by the pre-treatment standard deviation of the
outcome in the relevant incentive group(s). Panels (c)-(d) display raw graphs of the outcome distribution in the
treatment versus control group on the second task.

Two supplementary interventions allow us to probe further. In one arm involving 20%
of participants, we require participants in both the treatment and control group to spend
exactly 15 minutes on each task. This holds effort fixed across the treatment and control
groups, allowing us to interpret any difference in grades as a pure effect of ChatGPT access on
productive capacity. In this arm, the treatment increases grades by a similar 0.39 standard
deviations (p = 0.13), albeit imprecisely estimated and with a slight imbalance in pre-treatment
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Two supplementary interventions allow us to probe further. In one arm involving 20%
of participants, we require participants in both the treatment and control group to spend
exactly 15 minutes on each task. This holds effort fixed across the treatment and control
groups, allowing us to interpret any difference in grades as a pure effect of ChatGPT access on
productive capacity. In this arm, the treatment increases grades by a similar 0.39 standard
deviations (p = 0.13), albeit imprecisely estimated and with a slight imbalance in pre-treatment

4

respondents do not receive higher average grades than raw ChatGPT output that we give
to evaluators to grade, meaning we find no evidence that human editing is improving the
ChatGPT output. This is true even when participants are given strong pecuniary incentives to
do so, in the convex incentives group.

Figure 2: Effects on Grades and Time Across the Initial Grade Distribution

(a) Grade Inequality Decreases

Change in Slope:   -0.243
                95% CI: [-0.08, -0.41]
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(b) Time Taken Decreases Across Grade Distribution

Change in Slope:   -0.999                95% CI: [0.62, -2.61]
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Note: this figure display scatterplots, binning responses in equal intervals, of respondents’ task-2 grade (Panel
(a)) and task-2 time spent (Panel (b)) on their task-1 grade, separately by treatment and control group. Slopes are
calculated through a worker-level regression.
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Using a LLM to support call-center work
— Evidence from a commercial rollout

Brynjolfsson, Li, and Raymond 2023

Figure 9: Experience Curves by Deployment Cohort

Resolutions Per Hour, by Agent Tenure
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Notes: This figure plot the relationship between productivity and job tenure. The red line plots the performance of
always-treated agents, those who have access to AI assistance from their first month on the job. The blue line plots
agents who are never treated. The green line plots agents who spend their first four months of work without the AI
assistance, and gain access to the AI model during their fifth month on the job. 95th percent confidence intervals are
shown.

35

Figure 1: Sample AI Output

A. Sample Customer Issue

B. Sample AI-generated Suggested Response

Notes: This figure shows sample suggestions of output generated by the AI model. The suggested responses are
only visible to the agent. Workers can choose to ignore, accept or somewhat incorporate the AI suggestions into their
response to the customer.
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‘Leveling up’ expertise at scale — Some critical questions

1. Who is complemented — 
Does AI reduce the 
inequality of productivity?

2. Who is substituted — Non-
users, elite experts?

3. Will ‘leveling up’ make 
expertise more valuable—or 
‘too cheap to meter’?
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Will AI augment expertise or displace experts?

• “The future is not a forecasting 
exercise; it’s a design problem”  
— Josh Cohen, Apple University 

• The jobs we get depend on 
how we choose to build and 
apply the technology

© Adobe Stock (licensed)



Artificial Intelligence — The ‘Great Firewall’ of China



Artificial Intelligence — The ‘Great Firewall’ of China

• The world’s most effective 
automated censorship 
system

• The world’s most compre-
hensive surveillance state



Artificial Intelligence — Augmenting human capacities



Artificial Intelligence — Augmenting human capacities

• Assisting with elder care, 
telepresent (‘robotic’) surgery, 
mobile medicine

• Providing real-time info  
for workers doing construction, 
diagnosis, maintenance, repair (e.g., 
Google Glass)

• Enabling immersive learning 
through augmented and virtual 
reality — cheap, convenient, fun
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no job is needed.” – Elon Musk, 2023



“There will come a point where  
no job is needed.” – Elon Musk, 2023

“Get a job as a plumber.”  
– Geoffrey Hinton, 2023



Working-age pop falling in Europe and Asia, 2020–2060 

OECD 2020
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Otto Lilienthal, Gliding experiment 
1894 (2 years before death)

Scanning Electron Microscope, mid-1970s 
Dr Graham Beards, https://commons.wikimedia.org/w/index.php?curid=81768453

Most innovations do not automate work
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  1940

  1950

  1960

  1970

  1980

  1990

  2000

  2010

  2018

  Automatic welding machine operator

  Airplane designer

  Textile chemist

  Engineer computer application

  Controller, remotely-piloted vehicle

  Circuit layout designer

  Artificial intelligence specialist

  Technician, wind turbine

  Cybersecurity analyst

  Acrobatic dancer

  Tattooer

  Pageants director

  Mental-health counselor

  Hypnotherapist

  Conference planner

  Amusement park worker

  Sommelier

  Drama therapist

Autor, Chin, Salomons, Seegmiller 2022



How much new work is there?

Autor, Chin, Salomons, Seegmiller 2022
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The questions we should be asking

1. We will use AI to empower and extend expertise?
• Or instead to devalue expertise, displace workers?

2. If we want to extend expertise, how do we make that happen?

• This is an R&D opportunity — and an R&D necessity

3. How can industry, government, universities, trade unions  
shape the work of the future?



Whirlpool washing machine smart app, 2023



The Apollo Guidance Computer (AGC), 1966Whirlpool washing machine smart app, 2023





Beyond replicating human capabilities, 
we should be looking for moonshots





Thank You


