Corporate Hedging, Contract Rights, and Basis Risk

Ilona Babenko Arizona State University

Yuri Tserlukevich Arizona State University

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Overview

• Evidence that firms in distress hedge less:

- Theoretical explanations are based on binding collateral constraints (Rampini and Vishwanathan, 2010; Rampini, Sufi, and Viswanathan, 2014), asset substitution (Jensen and Meckling, 1976) or firm inattention
- This paper: A standard OTC derivative contract can be terminated conditional on certain events of default. Questions we pursue:
 - When/why do counterparties terminate?
 - Show negative effect on intensity of hedging.
 - How does the option affect incentives to hedge ex ante?

◆□> ◆□> ◆三> ◆三> ● 三 のへで

Background: ISDA Master Agreements

- OTC derivative contracts are governed by the ISDA Master Agreements
- The ISDA Master Agreement contains eight standard events of default, when the derivative position can be closed before maturity, plus additional events
 - failure to pay or deliver under the terms of the contract
 - breach of agreement
 - credit support default (e.g., a cessation of a financial guarantee)
 - misrepresentation
 - default under a specified transaction (e.g., a failure to pay under the securities lending agreement)
 - cross-default (e.g., default on a loan, breach of a covenant)
 - bankruptcy of the firm
 - merger without full assumption of liabilities
 - Common additional event: credit rating downgrade

Babenko and Tserlukevich

Corporate Hedging, Contract Rights, and Basis Risk

Examples

- "the interest rate swap transactions were terminated due to an event of default relating to the Company's **non compliance** with certain covenants" *Sun Healthcare Group Inc.*
- "existing derivative contracts were involuntarily terminated as a result of cross default provisions between the Credit Facility and ISDA Master Agreements." Safety Kleen Corp
- "certain of the Company's derivative positions were terminated as a result of **defaults** under Sabine's derivative agreements that occurred **prior to the filing of the Bankruptcy Petition**." *Forest Oil Group*
- "the company has completely terminated its hedge portfolio and therefore is no longer party to any agreement whereby the counterparty financial institution can terminate a financial instrument **due solely to unfavorable changes in the company s credit ratings.**" *Baxter International Inc.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Model Assumptions $t = \{0, 1, 2\}$

- Firm has fixed liabilities, D_1 and D_2 , risky cash flows, C_1 and C_2 , and can enter into a derivative contract that pays at t = 2
- At t = 1, the firm cash flow is C_1^H with probability $1 p_1$ or C_1^L with probability p_1 .
- A hedging contract is signed at t = 0 at fair value. Portfolio value V_t is imperfectly correlated with firm performance, i.e., there is basis risk.

$$P[V_1^H | C_1^H] = P[V_1^L | C_1^L] = \rho$$

 $\rho>1/2$ captures the fact that the derivative is a hedging asset.

Babenko and Tserlukevich

Model Assumptions:

• If cash flow C₁ is low, an event of default is triggered whenever

$$C_1 - D_1 - V_1 < 0.$$

- The value of the derivative, V_1 , is payable to the counterparty if the contract is terminated at t = 1.
- If the counterparty chooses not to terminate, the firm may recover, $C_2 = C_2^H$, or get further into distress, $C_2 = C_2^L$. The firm is liquidated if it receives another low cash flow and bad derivative outcome.
- The derivative portfolio value $V_2 \in \{V_1 + \delta_H, V_1 + \delta_L\}$,

$$P(\delta_H | C_2^H) = P(\delta_L | C_2^L) = \rho$$

 Continuing the contract with the firm has benefits for the counterparty, θ, if the firm is not liquidated.

Babenko and Tserlukevich

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Model Solution: Optimal Exercise Policy

- The option to terminate contract is only available conditional on default, i.e., with C₁^L and V₁^H.
- The counterparty (bank) terminates the derivative contract at t = 1 if its immediate payoff V_1 is greater than the expected continuation value

$$egin{array}{rcl} V_{1}^{H} &> & (1-p_{2})(V_{1}^{H}+
ho\delta_{H}+(1-
ho)\delta_{L}+ heta) \ &+ p_{2}
ho(V_{1}^{H}+\delta_{L}+ heta) \ &+ p_{2}(1-
ho)ig(V_{1}^{H}+\delta_{H}ig)\,(1-lpha) \end{array}$$

$$V_1^H > \frac{\theta(1-p_2+\rho p_2)}{\alpha p_2(1-\rho)} - \delta_H = V^*$$

Babenko and Tserlukevich

Corporate Hedging, Contract Rights, and Basis Risk

Ex-Post Effects of Derivative Terminations

Proposition

Suppose $V_1^H > V^*$. Then derivative terminations result in:

1. The ex post change in the value of debt of

$$\Delta D = -p_2 \rho \left(D_1 + D_2 + V_1^H - C_1^L - C_2^L \right) + p_2 \left(1 - \rho \right) \left(1 - \alpha \right) \delta_H - \alpha p_2 \rho \left(C_1^L + C_2^L - V_1^H \right),$$

2. The ex post change in the value of equity of

$$\Delta E = p_2 \left(\rho \left(D_1 + D_2 + V_1^H - C_1^L - C_2^L \right) - (1 - \rho) \delta_H \right),$$

3. The ex post change in the value of firm of

$$\Delta V = \Delta E + \Delta D = -\alpha p_2 \left(\rho \left(C_1^L + C_2^L - V_1^H \right) + (1 - \rho) \delta_H \right) < 0.$$

Babenko and Tserlukevich

Corporate Hedging, Contract Rights, and Basis Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Model

Empirical Results

イロト 不得 トイヨト イヨト 二日

Appendix 0000

Firm's Incentive to Hedge

Corrolary

- 1. With the termination right, the firm's expected benefits of hedging are non-monotonic in α .
- **2.** The termination right reduces a firm's ex ante incentive to hedge.
 - The intuition is that an increase in bankruptcy costs can lead to a higher probability of exercising the termination right and becoming unhedged.

Motivation

Background

Model

Empirical Results

Appendix 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Extensions

• Multiple Counterparties

- Collateral
- When there are multiple counterparties, there may be incentives to "run" to terminate Multiple

Lenders

• Lenders partly internalize higher probability of liquidation, may exercise less Lender Counterparties

• Contract Settlements

• Higher frequency of contract settlements may mitigate incentive to terminate

Babenko and Tserlukevich

Sample and Data

• Detailed Sample of Commodity Producers/Airlines

- Collect events of default and hedging data for oil and gas producers, coal producers, and airlines for the period 1996-2021
- Main benefits: (i) can quantify hedging (hedge ratios, maturity) (ii) can better identify derivative termination events

• Broad SEC/Compustat Sample

- For derivative terminations, we parse 10-Ks for any keywords ('cancel', 'terminat', 'liquidat', 'unwound'), any keywords pointing to the nature of the contract ('deriv', 'hedg', 'swap', 'position') and any keywords pointing to the reason for termination or a governing document ('event of default', 'master agreement', 'master contract', 'ISDA', 'hedging agreement').
- Events of default keywords ('default', 'event of default', 'bankrupt', 'defaulted', 'bankruptcy')
- Hedging is measured by a dummy of gains and losses
- Hedging keywords ('collar', 'derivative', 'hedg', 'risk management', 'forwards', 'forward contract', 'swap').

E

Summary Statistics: Compustat/SEC Sample

Compustat/SEC Sample	Ν	Mean
Derivative user	135,413	0.211
Event of default (bankruptcy), %	191,045	0.318
High-cost bankruptcy (free fall), %	191,045	0.199
Low-cost bankruptcy (prepackaged), $\%$	191,045	0.119
Credit downgrade, %	159,237	1.619
Accounting restatement (fraud-related), $\%$	191,045	0.371
Use of exchange-traded futures	116,802	0.132
Derivative terminations, %	191,045	0.401
Reasons for Derivative Terminations	%	
Firm bankruptcy	5.3	
Merger	4.8	
Default, cross-default	1.2	
Credit rating, covenant violation	0.8	
Contract breach, misrepresentation	0.4	
Unspecified	87.5	

Summary Statistics: Detailed Sample

Detailed Sample	Ν	Mean	SD
Commodity hedger	3,399	0.592	0.492
Hedge ratio, %	3,399	31.2	42.7
Hedge maturity, months	3,430	15.3	18.4
Event of default	3,433	0.031	0.173
High-cost bankruptcy (free fall)	3,433	0.017	0.128
Low-cost bankruptcy (prepackaged)	3,433	0.014	0.119
Hedge ratio based on supply agreements	225	73.5	35.2
Detailed Sample: Bankruptcies	N	Mean	SD
Hedge ratio, %	121	41.9	47.8
Hedge maturity (months)	121	18.2	16.3
May be required to post collateral	105	0.181	0.387
Number of counterparties	70	3	4
Counterparties are lenders	88	0.566	0.460
Derivative fair value, \$M	121	44.5	182.2
Negative derivative fair value	121	0.240	0.429
Positive derivative fair value	121	0.537	0.501
Derivative terminations	97	0.598	0.493

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Exercise Strategy of Contract Termination Rights

- How does exercise vary conditional on different events of default, firm performance (ROA), and collateral (asset tangibility)?
 - Consider three types of events of default: bankruptcy, credit downgrade, accounting restatement

Dependent Variable:	L	Derivative Tei	minations, 🤅	%
Bankruptcy	5.308***	5.255***		
	[4.49]	[4.39]		
Credit downgrade	0.786***	0.784***		
	[2.73]	[2.63]		
Accounting restatement	1.141**	1.187**		
(fraud-related)	[2.09]	[2.13]		
Default-related words			2.721***	2.604***
frequency			[4.59]	[4.37]
Firm size	0.130***	0.173***	0.171***	0.183***
	[4.56]	[4.89]	[3.91]	[4.22]
Market-to-book ratio	0.001	0.000	0.001	-0.002
	[0.58]	[0.18]	[0.53]	[-0.68]
Asset tangibility	0.085	0.243	0.140	0.334
	[0.59]	[1.14]	[0.47]	[1.06]
Firm ROA	-0.233**	-0.283***	-0.266**	-0.285**
	[-2.55]	[-2.65]	[-1.99]	[-2.14]
Book leverage	0.135**	0.155**	0.110	0.100
	[2.35]	[2.33]	[1.30]	[1.14]
Observations	144,850	122,842	105,133	101,908
R-squared	0.123	0.133	0.124	0.138
$Firm/Year/Ind imesYear\ FE$	Y/Y/N	N/Y/Y	Y/Y/N	N/Y/Y

Exercise Strategy of Contract Termination Rights

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Contract Moneyness and Exercise Strategy

- How does exercise strategy vary with the costs of bankruptcy, contract moneyness, lenders as counterparties?
- Use the detailed sample since it allows us to observe moneyness of derivative contracts, also better quality of derivative terminations data

Contract Moneyness and Exercise Strategy

Dependent Variable:	(1)	(2) Derivative Te	(3) erminations	(4)
Derivative fair value (\$000s)	-0.448***	-0.350***	-0.587***	
High-cost bankruptcy (free fall)	0.297***	0.312***	0.231**	0.231**
Counterparties are lenders	[3.04]	[3.05] -0.270** [-2.39]	[2.25]	[2.25]
Negative derivative fair value		[=:00]		0.251**
Hedge ratio			0.002* [1.89]	[2.29] 0.001 [1.52]
Observations R-squared Industry FE	96 0.166 Y	65 0.226 Y	91 0.198 Y	91 0.195 Y

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Effect of Derivative Terminations on Hedging Outcomes

- How does hedging policy change conditional on events of default?
- Are contract exercises responsible for lower hedging of firms in distress?
- Consider placebo tests: coal firms and hedging with exchange-traded futures
- Better identification: Metavante v. Lehman Brothers Court Case

Events of Default and Hedge Ratio

Type of Bankruptcy and Fraction of Firms Hedging

훈

Detailed Sample: Events of Default and Risk Management

Dep. variable:	Hedge	e Ratio	Hedge I	Maturity	Commodi	ty Hedger
Bankruptcy	-18.83*** [-3.42]		-0.62*** [-3.42]		-0.19*** [-3.38]	
High-cost bankruptcy Low-cost bankruptcy		-23.55*** [-2.72] -13.71** [-2.14]		-0.80*** [-3.05] -0.42* [-1.81]		-0.25*** [-2.89] -0.13* [-1.89]
Observations R-squared Year FE Ind×Year FE	3,298 0.537 Y Y	3,298 0.538 Y Y	3,330 0.750 Y Y	3,330 0.750 Y Y	3,298 0.715 Y Y	3,298 0.715 Y Y

Broad Sample: Events of Default and Risk Management

Dep. variable:	D	erivative Us	er	He	dging Intens	sity
Bankruptcy High-cost bankruptcy Low-cost bankruptcy Default-related words	-0.08*** [-2.75]	-0.14*** [-3.39] -0.01 [-0.27]	-0.04* [-1.71]	-0.03*** [-4.24]	-0.04*** [-5.13] -0.01 [-1.30]	-0.09*** [-16.38]
Observations R-squared Controls Firm FE Ind×Year FE	95,577 0.728 Y Y Y	95,577 0.728 Y Y Y	70,080 0.723 Y Y Y	102,704 0.671 Y Y Y	102,704 0.671 Y Y Y	102,704 0.672 Y Y Y

Do Terminations Explain Low Hedging in Distress?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ の�?

Do Terminations Explain Low Hedging in Distress?

Dependent Variable:	Hedge Ratio	Hedge Maturity	Commodity Hedger
Bankruptcy with derivative terminations	-38.66***	-1.52***	-0.53***
	[-4.59]	[-5.27]	[-6.26]
Bankruptcy without derivative terminations	-11.59**	-0.23	-0.05
	[-2.04]	[-0.78]	[-0.44]
Observations	3,204	3,236	3,204
R-squared	0.545	0.757	0.723
<i>t</i> -stat	-2.66***	-3.99***	-4.86***
Controls	Y	Y	Y
Firm FE	Y	Y	Y
Industry×Year FE	Y	Y	Y

Form of Hedging May Matter

- If a firm hedges not with OTC derivatives, but with physical delivery contracts (also called supply agreements), the option to terminate upon an event of default does not apply.
 - Firm default is non-event. But, in case firm fails to deliver according to contract, there are penalties and other conditions.
 - Almeida, Hankins, and Williams (2021) show that hedging with purchase obligations does not subside as much in distress (attribute to greater pledgeability)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Placebo Test: Hedging with Derivatives vs. Supply Agreements in Coal Industry

Dep. variable:	(1)	(2)	(3)	(4)	(5)	(6)
	Hedge	Hedge	Commodi	ty Hedge	Hedge	Commodity
	Ratio	Maturity	Hedger	Ratio	Maturity	Hedger
Default with	-33.65***	-1.48***	-0.49***	1.66	0.09	-0.01
deriv. termin.	[-11.44]	[-5.39]	[-6.87]	[0.72]	[0.64]	[-0.29]
Default w/o	2.93	-0.16	-0.06	-15.55	-0.46	-0.18
deriv. termin.	[0.26]	[-0.48]	[-0.48]	[-1.10]	[-0.68]	[-1.03]
Observations	209	229	209	217	204	217
R-squared	0.728	0.713	0.748	0.935	0.940	0.953
t-stat	-3.14***	-3.12***	-3.21***	1.20	0.80	0.96
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Hedging type	Die	seel Derivativ	/es	Coal	Supply Agre	ements

Hedging with Exchange-Traded Futures (No Terminations)

Dependent Variable:	Us	e of Exchange	-Traded Futu	res
Bankruptcy	0.044**			
Credit downgrade	[2.00] 0.002 [0.27]			
Accounting restatement (fraud)	0.028**			
High-cost bankruptcy (free fall)	[2.55]	0.039		
Low-cost bankruptcy (prepack)		0.062**		
Default-related words frequency		[2:20]	0.339*** [18.52]	
Event of default with derivative termin.			[20:02]	0.129** [2.11]
Event of default w/o derivative termin.				0.038* [1.74]
Observations	92,588	105,133	105,133	105,133
K-squared Year FF	0.619 Yes	0.618 Yes	0.621 Yes	0.618 Yes
Firm FE	Yes	Yes	Yes	Yes

- The option to terminate the OTC derivative contract is valuable and explains the observed under-hedging in distressed firms.
 - The exercise probability increases in bankruptcy costs, but decreases in recontracting costs. The ex-ante value of the option increases in basis risk.
 - We document that the termination right is exercised in 59% of default cases.
 - Additional Result. Derivative terminations drive low hedge ratios: rely on Lehman Brothers vs. Metavante court case, which resulted in a larger number of early contract terminations of NY-based firms post the ruling.

イロト 不得 トイヨト イヨト 二日

Oil Price Movements Before Bankruptcy and Effect of Bankruptcy on Hedging

Dependent Variable:	(1)	(2)	(3)
	Hedge Ratio	Hedge Maturity	Commodity Hedger
Bankruptcy×Positive 1-month oil return Bankruptcy×Negative 1-month oil return	-39.852*** [-3.96] -8.750 [-0.82] [-0.73]	-0.927*** [-3.59] -0.251 [-0.71] [2.64]	-0.295*** [-3.92] -0.065 [-0.69] [3.15]
Observations	2,584	2,598	2,584
R-squared	0.520	0.747	0.718
t-stat for (a) – (b)	-2.15**	-1.54	-1.91*

Better Identification: Metavante v. Lehman

Brothers Court Case

- To identify exogenous variation in derivative terminations, we rely on the Bench Ruling issued by the U.S. Bankruptcy Court in New York on September 15, 2009.
- Metavante entered into an interest rate swap with LBSF in 2007. In October 2008, LBSF has filed for Chapter 11, which qualified as an event of default.
- Metavante did not terminate the swap and did not make the next 3 quarterly payments it owed to LBSF under the interest rate swap contract.
- US Bankruptcy Court in NY ruled that a party to a swap agreement could not withhold payments othewise due to the bankrupt counterparty. Further, a party to an ISDA Master Agreement waives it right to terminate the agreement if it fails to do it "promptly" following the event of default.

æ

• As a summary, we find that Metavante case outcome significantly increased the option exercise probability and

Lenders as Counterparties

• Lenders may require that the firm hedges with the lender's specialized derivatives desk or with the lender's affiliates.

Proposition

If the counterparty holds fraction κ of the firm's debt claim, then:

1. The termination right is exercised if

$$V_1^H > V^* + rac{\kappa \left(-\Delta D
ight)}{lpha p_2 (1-
ho)},$$

2. If, in addition, ΔD is negative, then there exists a minimum stake κ^* in the debt claim, which, when bundled with the counterparty's claim, guarantees that the right is optimally abandoned.

back

Multiple Counterparties

- Firms can have multiple/heterogeneous derivative counterparties
- Consider sequential-move and simultaneous move games.
- In sequential game, the exercise of the first counterparty lowers the threshold for exercise by the second counterparty.

Suppose B would not exercise the right had it owned the entire portfolio,

$$V^*(\theta_B) > V_1^H > V^*(\theta_A), \tag{1}$$

イロト 不得 トイヨト イヨト 二日

Proposition

Counterparty B exercises its termination right if $V_1^H > \widehat{V}(\theta_B)$, where

$$\widehat{V}(\theta_B) \equiv \frac{(1-p_2)\theta_B}{\alpha p_2(1-\rho)} - \delta_H < V^*(\theta_B).$$
(2)

Babenko and Tserlukevich

Corporate Hedging, Contract Rights, and Basis Risk