EXIM's Exit:

The Real Effects of Trade Financing by Export Credit Agencies

Poorya Kabir

(NUS)

Adrien Matray

(Stanford GSB, NBER, CEPR)

Karsten Mueller

Chenzi Xu (Stanford GSB, NBER, CEPR)

ABFER

ECAs (Export Credit Agencies) aim to increase exports by supplying trade financing

The most common tool of industrial policy (Juhasz, Lane, Oehlsen and Perez 2022)

- Ubiquitous in both emerging and advanced economies

ECAs (Export Credit Agencies) aim to increase exports by supplying trade financing

The most common tool of industrial policy (Juhasz, Lane, Oehlsen and Perez 2022)

- Ubiquitous in both emerging and advanced economies

Question: What is their impact?

2015–2019 Shutdown of the Export-Import Bank of the United States (EXIM)

Due to a lapse in EXIM Bank's authority, as of July 1, 2015, the Bank is unable to process applications or engage in new business or other prohibited activities. For more information, please click here.

1. Does EXIM matter on the margin?

- 1. Does EXIM matter on the margin?
 - **<u>Firm level</u>**: No, firms are unconstrained \rightarrow EXIM is a windfall
 - Industry level: No, EXIM reallocates export across US firms \rightarrow does not create trade

1. Does EXIM matter on the margin? Yes

- **<u>Firm level</u>**: \Downarrow exports, sales, K, L
- Industry level: \$1 financing \Rightarrow \$4 exports

1. Does EXIM matter on the margin? Yes

- **<u>Firm level</u>**: \Downarrow exports, sales, K, L
- Industry level: \$1 financing \Rightarrow \$4 exports

2. It raises output for the average firm...but does EXIM raise misallocation?

1. Does EXIM matter on the margin? Yes

- **<u>Firm level</u>**: \Downarrow exports, sales, K, L
- Industry level: \$1 financing \Rightarrow \$4 exports

2. It raises output for the average firm...but does EXIM raise misallocation? Not in our context

- Higher MRPK firms \Downarrow more during shutdown

1. Does EXIM matter on the margin? Yes

- **<u>Firm level</u>**: \Downarrow exports, sales, K, L
- Industry level: \$1 financing \Rightarrow \$4 exports

2. It raises output for the average firm...but does EXIM raise misallocation? Not in our context

- Higher MRPK firms \Downarrow more during shutdown

3. What framework rationalizes these results?

1. Does EXIM matter on the margin? Yes

- **<u>Firm level</u>**: \Downarrow exports, sales, K, L
- Industry level: \$1 financing \Rightarrow \$4 exports

2. It raises output for the average firm...but does EXIM raise misallocation? Not in our context

- Higher MRPK firms \Downarrow more during shutdown

3. What framework rationalizes these results?

- Distortionary wedges in market for trade financing \rightarrow intervention will \Uparrow output and \Downarrow misallocation

1. Export Credit Agencies

Germany (Felbermayr Yalcin, 2013; Heiland Yalcin, 2021); Austria (Badinger Url, 2013); Pakistan (Zia, 2008; Defever Riano Varela, 2020); Korea (Hur Yoon, 2022); US (Desai Hines, 2008; Benmelech Monteiro, 2023)

Causal estimates of the impact of ECAs on firms and exports, and impact on misallocation

2. Finance and Trade

Bank credit and export volumes: Amiti Weinstein, 2011; Chor Manova, 2012; Manova, 2013; Paravisini Rappoport Schnabl Wolfenzon, 2014; Demir Michalski Ors, 2017; Hombert Matray, 2018; Xu, 2022; Beaumont Lenoir, 2023; Bruno Shin, 2023; Monteiro Moreira, 2023

Bank networks and export patterns: Michalski Ors, 2012; Niepmann Schmidt-Eisenlohr, 2017; Paravisini Rappoport Schnabl, 2023; Xu Yang, 2024

Demonstrates specificity of trade financing \neq omnibus firm credit shock

3. Design and Effects of industrial policies

Harrison Rodriguez-Clare, 2010; Juhasz, 2018; Criscuolo Martin Overman Van Reenen, 2019; Itskhoki Moll, 2019; Choi Levchenko, 2021; Garin Rothbaum, 2022; Lane, 2023; Juhasz Lane Oehlsen Perez, 2022; Juhasz Steinwender, 2023; Juhasz Lane Rodrik, 2023; Ottonello Perez Witheridge 2024

Provides framework for discussing ECAs as a tool of industrial policy

EXIM Institutional Setting

1. EXIM Increases Real Activity

Aggregate product level results Firm level results

2. EXIM Reduces Capital Misallocation

3. Framework for EXIM Intervention

Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...] when private sector lenders are unable or unwilling to provide financing."

- Each transaction must be justified to satisfy this mission
- And must provide evidence of attempt to attain private sector financing

Operational constraints:

- Institution must remain self-financing (WTO)
- Each EXIM transaction must be "subsidy neutral" or generate "negative subsidy" (Federal Credit Reform Act)
 - Fees & interest collected to offset defaults, cost of borrowing from US Treasury, and operational expenses
 - Since 1992, EXIM returned net profit of \$9 billion to the U.S. Treasury

- 2015: Full shutdown of EXIM for five months

- Driven by Tea Party (Paul Ryan) criticizing the bank for "providing corporate welfare"

- 2015 2019: Limited capacity for four years
 - No board quorum (full board = five people)
 - Republicans blocked the nomination of three vacant seats
 - ⇒ EXIM cannot approve long-term transactions larger than \$10M

Effect of Shutdown on Operations

- Total value of new financial support (\$B): -84%

[Average]

Distribution of EXIM Financing (% of Exports)

Aggregate financing: $\approx 0.8\%$ of total exports

EXIM Institutional Setting

1. EXIM Increases Real Activity

Aggregate product level results Firm level results

2. EXIM Reduces Capital Misallocation

3. Framework for EXIM Intervention

EXIM Institutional Setting

1. EXIM Increases Real Activity Aggregate product level results Firm level results

2. EXIM Reduces Capital Misallocation

3. Framework for EXIM Intervention

Data

- EXIM dependence: EXIM loan registry
 - Loan level data: 2007-2022 (FOIA)
 - Matched on export product and firm name
- Aggregate trade flows: BACI
 - Bilateral: country \times product \times year (2010–2019)
 - Exporters: focus on USA + developed countries
- Firm outcomes: Compustat
 - Panel: 2010-2019
 - Segment: includes foreign sales
- Firm exports: Datamyne
 - Universe of maritime exports at the firm \times product \times destination level

$$\Delta_{2014}^{t}[X_{o,p,d,t}] = \beta \text{ EXIM}_{o,p} \times Post_{t \ge 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{o,p,d,t}$$

: Origin \times Products (HS-6) \times Destinations

$$\Delta_{2014}^{t}[X_{o,p,d,t}] = \beta \operatorname{EXIM}_{o,p} \times \operatorname{Post}_{t \ge 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{o,p,d,t}$$

: Origin \times Products (HS-6) \times Destinations : EXIM intensity₀₇₋₁₀ = EXIM /

$$\Delta_{2014}^{t}[X_{o,p,d,t}] = \beta \text{ EXIM}_{o,p} \times Post_{t \ge 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{o,p,d,t}$$

- $X_{o,p,d,t}$
- EXIM_{o,p}
- Post_{t≥2015}

: Origin × Products (HS-6) × Destinations : EXIM intensity₀₇₋₁₀ = \$EXIM / \$exports : Year > 2015

$$\Delta_{2014}^{t}[X_{o,p,d,t}] = \beta \text{ EXIM}_{o,p} \times Post_{t \ge 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{o,p,d,t}$$

- $X_{o,p,d,t}$
- EXIMo,p
- Post_{t≥2015}
- Origin × Product × Destination

- : Origin \times Products (HS-6) \times Destinations
- : EXIM intensity₀₇₋₁₀ = \$EXIM / \$exports
- : Year ≥ 2015
- : Remove level differences

$$\Delta_{2014}^{t}[X_{o,p,d,t}] = \beta \text{ EXIM}_{o,p} \times Post_{t \ge 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{o,p,d,t}$$

- $X_{o,p,d,t}$
- EXIMo,p
- $Post_{t \ge 2015}$
- $Origin \times Product \times Destination$
- Product × Destination × Year

- : Origin \times Products (HS-6) \times Destinations
- : EXIM intensity₀₇₋₁₀ = \$EXIM / \$exports
- : Year \geq 2015
- : Remove level differences
- : Export market specific shocks

$$\Delta_{2014}^{t}[X_{o,p,d,t}] = \beta \text{ EXIM}_{o,p} \times Post_{t \ge 2015} + \gamma_{p,d,t} + \delta_{o,t} + \varepsilon_{o,p,d,t}$$

- $X_{o,p,d,t}$
- EXIMo,p
- Post_{t≥2015}
- $Origin \times Product \times Destination$
- Product \times Destination \times Year
- $Origin \times Year$

- : Origin \times Products (HS-6) \times Destinations
- : EXIM intensity₀₇₋₁₀ = \$EXIM / \$exports
- : Year \geq 2015
- : Remove level differences
- : Export market specific shocks
- : Origin market specific shocks

Parallel trends: outcomes between treated (EXIM_{o,p} = 1) and control (EXIM_{o,p} = 0) groups would have evolved similarly absent the reform, after controls

Does not require...

- Random selection of treated vs control
- Random timing of shutdown

Parallel trends: outcomes between treated (EXIM_{o,p} = 1) and control (EXIM_{o,p} = 0) groups would have evolved similarly absent the reform, after controls

Does not require...

- Random selection of treated vs control
- Random timing of shutdown

Threats to identification: other unobserved reform/event coinciding with EXIM support

- Demand shock (e.g., tariffs_{p,d,t}) correlated with treatment \rightarrow absorbed by $\gamma_{p,d,t}$
- US×products (EXIM_{o,p} = 1) shocks that happens exactly in 2015 \rightarrow firm level evidence shows unlikely

Baseline effect \approx control for $\gamma_{p,d,t} \Rightarrow$ EXIM exposure \perp demand shocks

Average effect: Elasticity \approx -4

Elasticity of response: $\beta_{post} \approx$ (-3, -4)

- \$1 less of EXIM lowers exports by \$3-\$4 to the average destination relative to exports in 2014

Elasticity of response: $\beta_{post} \approx$ (-3, -4)

- \$1 less of EXIM lowers exports by \$3-\$4 to the average destination relative to exports in 2014

Estimates of the trade elasticity $\theta \approx$ (-2, -8)

Elasticity of response: $\beta_{post} \approx$ (-3, -4)

- \$1 less of EXIM lowers exports by \$3-\$4 to the average destination relative to exports in 2014

Estimates of the trade elasticity $\theta \approx$ (-2, -8)

- EXIM is a tool where 1% financing ightarrow 3-4% impact on exports \Longrightarrow 1% financing ightarrow prices 0.5-2%
- Aggregate customs level

- Aggregate customs level
 - EXIM creates trade for the US

- Aggregate customs level
 - EXIM creates trade for the US
 - Elasticity comparable to a tariff shock

- Aggregate customs level
 - EXIM creates trade for the US
 - Elasticity comparable to a tariff shock
- But
 - Firms might absorb the export loss with higher domestic activities

EXIM Institutional Setting

1. EXIM Increases Real Activity Aggregate product level results Firm level results

2. EXIM Reduces Capital Misallocation

3. Framework for EXIM Intervention

 $Y_{i,j,t} = \beta_t \operatorname{\mathsf{EXIM}}_i \times \operatorname{Post}_{\geq 2015} + \alpha_i + \gamma_{j,t} + \operatorname{Destinations}_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$

 $- EXIM_i$

: Firm received EXIM support over 2010–2014

- Post $_{\geq 2015}$

: Year \geq 2015; no staggered treatment

 $Y_{i,j,t} = \beta_t \operatorname{EXIM}_i \times \operatorname{Post}_{\geq 2015} + \alpha_i + \gamma_{j,t} + \operatorname{Destinations}_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$

: Firm received EXIM support over 2010-2014

- $Post_{\geq 2015}$

 $- EXIM_i$

: Year \geq 2015; no staggered treatment

 $Y_{i,j,t} = \beta_t \operatorname{EXIM}_i \times \operatorname{Post}_{\geq 2015} + \alpha_i + \gamma_{j,t} + \operatorname{Destinations}_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$

- EXIM_i
- Post $_{\geq 2015}$
- Firm

- : Firm received EXIM support over 2010–2014
- : Year \geq 2015; no staggered treatment
- : Remove level differences

 $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$

- EXIM_i
- Post $_{\geq 2015}$
- Firm
- Industry×year

- : Firm received EXIM support over 2010–2014
- : Year \geq 2015; no staggered treatment
- : Remove level differences
- : Industry specific shocks

 $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$

- EXIM_i
- Post $_{\geq 2015}$
- Firm
- Industry×year
- Destinations × year

- : Firm received EXIM support over 2010–2014
- : Year \geq 2015; no staggered treatment
- : Remove level differences
- : Industry specific shocks
- : Export markets specific shocks

Top 10 destinations from 10-K (Hoberg-Moon, 2017)

 $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$

- EXIM_i
- Post $_{\geq 2015}$
- Firm
- Industry×year
- Destinations × year
- Firm ex-ante characteristics × year

- : Firm received EXIM support over 2010–2014
- : Year \geq 2015; no staggered treatment
- : Remove level differences
- : Industry specific shocks
- : Export markets specific shocks

Top 10 destinations from 10-K (Hoberg-Moon, 2017)

: Additional firm controls

Impact on Firms' Global Sales: Raw Data

-
$$Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \delta_t + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$$

- No differential pre-trend

- Sharp drop

- No recovery

- $Y_{i,j,t} = \beta_t \operatorname{EXIM}_i \times \operatorname{Post}_{\geq 2015} + \alpha_i + \gamma_{j,t} + \operatorname{Destinations}_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$

-
$$Y_{i,j,t} = \beta_t \operatorname{EXIM}_i \times \operatorname{Post}_{\geq 2015} + \alpha_i + \gamma_{j,t} + \operatorname{Destinations}_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$$

- $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$

- Average effect: -18%

Additional Effects: Treated Firms Scale Down

- Decrease in capital, tangible and intangible (Peters and Taylor 2017)

	Tangible capital	Intangible capital	Employment	ROA
	(1)	(2)	(3)	(4)
Treated×Post	-0.16***	-0.18***	-0.093***	0.0062
	(0.040)	(0.044)	(0.034)	(0.0074)
Fixed Effects				
Firm	\checkmark	\checkmark	\checkmark	\checkmark
Industry × Year	\checkmark	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark
Observations	27,972	28,245	28,386	28,386

Additional Effects: Treated Firms Scale Down

- Decrease in employment

	Tangible capital	Intangible capital	Employment	ROA
	(1)	(2)	(3)	(4)
Treated×Post	-0.16***	-0.18***	-0.093***	0.0062
	(0.040)	(0.044)	(0.034)	(0.0074)
Fixed Effects				
Firm	\checkmark	\checkmark	\checkmark	\checkmark
Industry × Year	\checkmark	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark
Observations	27,972	28,245	28,386	28,386

Additional Effects: Treated Firms Scale Down

- No change in $\text{ROA} \rightarrow \text{EXIM}$ support not infra-marginal & just boosting firms' profits

(Event study)

	Tangible capital	Intangible capital	Employment	ROA
	(1)	(2)	(3)	(4)
Treated × Post	-0.16*** (0.040)	-0.18*** (0.044)	-0.093*** (0.034)	0.0062 (0.0074)
Fixed Effects				
Firm	\checkmark	\checkmark	\checkmark	\checkmark
Industry × Year	\checkmark	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark
Observations	27,972	28,245	28,386	28,386

Additional results

- Similar results for exports using Datamyne, Compustat Segment, Hoberg-Moon (2017) 10-Ks (Result)

Robustness

- Quarterly sales: decline starts exactly after shutdown in June (Result)
- Selection on EXIM treatment: within-EXIM exposure variation (Result)
- Additional firm controls: lobbying, state, fiscal month, size, profitability, leverage (Result)
- Removing the 10 largest beneficiaries (Result)
- Different level of industry (Result) and HS products (Result)
- Different winsorizing (Result)

EXIM Institutional Setting

1. EXIM Increases Real Activity

Aggregate product level results Firm level results

2. EXIM Reduces Capital Misallocation

3. Framework for EXIM Intervention

The average results are <u>not enough</u> to claim that the EXIM shutdown is detrimental to the US economy.

The average results are <u>not enough</u> to claim that the EXIM shutdown is detrimental to the US economy.

The "allocative efficiency" could improve because of the EXIM shutdown, if

The average results are <u>not enough</u> to claim that the EXIM shutdown is detrimental to the US economy.

The "allocative efficiency" could improve because of the EXIM shutdown, if

"good" firms expand, and "bad" firms shrink substantially

The average results are <u>not enough</u> to claim that the EXIM shutdown is detrimental to the US economy.

The "allocative efficiency" could improve because of the EXIM shutdown, if

"good" firms expand, and "bad" firms shrink substantially

Changes in "allocative efficiency" can be signed by studying the interaction of EXIM shutdown with MRPK (Baqaee-Farhi 2020)

Removing EXIM Increases Misallocation Within Listed Firms

- Estimate change in capital misallocation (Bau-Matray, 2022)
- With Cobb-Douglas, MRPK = $\frac{\partial Revenue_{it}}{\partial K_{it}} = \alpha_j^k \frac{Revenue_{it}}{K_{it}} \rightarrow \text{within industries } \alpha_j^k \text{ is the same} \Rightarrow \text{APK} = \text{MRPK}$
- High MRPK = above industry median [2010-2014]

Removing EXIM Increases Misallocation Within Listed Firms

- Estimate change in capital misallocation (Bau-Matray, 2022)
- High MRPK = above industry median [2010-2014]
- Capital shrinks more for high MRPK firms \Rightarrow misallocation increases

Dependent variable		Capital	
Sample	Low	High	All
	(1)	(2)	(3)
EXIM×Post	-0.044	-0.25***	
	(0.055)	(0.061)	
$Treated \times Post \times MRPK$			-0.21***
			(0.087)
Fixed Effects (interacted)			
Firm	\checkmark	\checkmark	\checkmark
Industry imes Year	\checkmark	\checkmark	\checkmark
Destinations×Year	\checkmark	\checkmark	\checkmark
Treated × Year	_	_	\checkmark
Observations	13,782	13,691	27,473

EXIM Institutional Setting

1. EXIM Increases Real Activity

Aggregate product level results Firm level results

2. EXIM Reduces Capital Misallocation

3. Framework for EXIM Intervention

Framework for EXIM Intervention

In the presence of distortionary wedges (e.g., Hsieh-Klenow, 2009; Baqaee-Farhi 2020)

$$\pi_{i,m} = \mathbf{p}_{i,m} \times f_{i,m}(\mathbf{K}_{i,m}) - r_{i,m}^{adj} \times (1 + \tau_{i,m} - EXIM_{i,m}) \times \mathbf{K}_{i,m}$$

- FOC wrt K_{i,m}

Framework for EXIM Intervention

In the presence of distortionary wedges (e.g., Hsieh-Klenow, 2009; Baqaee-Farhi 2020)

$$\pi_{i,m} = p_{i,m} \times f_{i,m}(K_{i,m}) - r_{i,m}^{adj} \times (1 + \tau_{i,m} - EXIM_{i,m}) \times K_{i,m}$$

- FOC wrt K_{i,m}

- 1. What are these wedges?
- 2. How is EXIM able to reduce them?

Sources of $\tau_{i,m}$ in Trade Financing

Model

$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \tau_{i,m})$$

as:

$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \lambda_i + \tau_m)$$

1. λ_i : Firm collateral constraint

- Theoretically: Incomplete contracts / info asymmetry

2. τ_m : Trade financing constraint

- Theoretically: Imperfect competition or balance sheet limits + fixed costs
- Empirically: Specialized (Paravisini Rappoport Schnabl 2023) and Concentrated (Niepmann Schmidt-Eisenlohr 2017)
$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \lambda_i + \tau_m - EXIM_{i,m})$$

- 1. Empirical evidence on correlation with λ_i and τ_m ?
- 2. Can EXIM be self-financing?

$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \lambda_i + \tau_m - EXIM_{i,m})$$

1. Empirical evidence on correlation with λ_i and τ_m **?**

2. Can EXIM be self-financing?

Firm Financing Friction Heterogeneity

- Proxies for financing frictions:
 - High leverage (e.g., Giroud and Mueller, 2016; Giroud and Mueller, 2019)

Dependent variable			Global sales	
Financing frictions proxy:		Leverage	Dividends	Hoberg and Maskimovic (2015)
	(1)	(2)	(3)	(4)
$EXIM{\times}Post$	-0.18*** (0.037)			
EXIM imes Post imes Constrained		-0.16**	-0.21**	-0.25***
		(0.077)	(0.087)	(0.081)
Fixed Effects (interacted)				
Firm	\checkmark	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark
Treated × Year	-	\checkmark	\checkmark	\checkmark
Observations	26,732	25,592	25,297	25,438

Firm Financing Friction Heterogeneity

- Proxies for financing frictions:
 - Low dividends (e.g., Fazzari, Hubbard, and Petersen, 1988)

Dependent variable	Global sales						
Financing frictions proxy:	Leverage		Dividends	Hoberg and Maskimovic (2015)			
	(1)	(2)	(3)	(4)			
EXIM×Post	-0.18*** (0.037)						
$EXIM \times Post \times Constrained$		-0.16** (0.077)	-0.21** (0.087)	-0.25*** (0.081)			
Fixed Effects (interacted)							
Firm	\checkmark	\checkmark	\checkmark	\checkmark			
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark			
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark			
$Treated \times Year$	-	\checkmark	\checkmark	\checkmark			
Observations	26,732	25,592	25,297	25,438			

Firm Financing Friction Heterogeneity

- Proxies for financing frictions:
 - High mention of financing frictions in 10K (Hoberg and Maksimovic, 2015)

Dependent variable			Global sales	
Financing frictions proxy:		Leverage	Dividends	Hoberg and Maskimovic (2015)
	(1)	(2)	(3)	(4)
EXIM imes Post	-0.18*** (0.037)			
$EXIM{\times}Post{\times}Constrained$		-0.16**	-0.21**	-0.25***
		(0.077)	(0.087)	(0.081)
Fixed Effects (interacted)				
Firm	\checkmark	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark
Treated × Year	-	\checkmark	\checkmark	\checkmark
Observations	26,732	25,592	25,297	25,438

Destination Country (τ_m) Heterogeneity in EXIM Financing

EXIM financing strongly correlated with the riskiness of a destination country

Hassan et al (2023) annual measures of country risk perceived by any firm

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2.265***	2.208***						
(0.743)	(0.739)						
		1.702**	2.027***				
		(0.642)	(0.607)				
				1.570*	1.433*		
				(0.888)	(0.810)		
						-0.005	0.041
						(0.083)	(0.077)
_	\checkmark	_	\checkmark	_	\checkmark	_	~
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
822	795	822	795	822	795	668	651
	(1) 2.265*** (0.743) - √ √ 822	(1) (2) 2.265*** 2.208*** (0.743) (0.739) - √ √ × 822 795	(1) (2) (3) 2.265*** 2.208*** (0.743) (0.743) (0.739) 1.702*** (0.642) (0.642) - - - -	(1) (2) (3) (4) 2.265*** 2.208*** (0.743) (0.739) 1.702** 2.027*** 1.702** 2.027*** (0.642) (0.607) - - - - - ✓ ✓ - - - ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
isk (by all)	2.265***	2.208***						
	(0.743)	(0.739)						
isk (by financial)			1.702**	2.027***				
			(0.642)	(0.607)				
isk (by foreign)					1.570*	1.433*		
					(0.888)	(0.810)		
isk (by domestic)							-0.005	0.041
							(0.083)	(0.077)
ontrols	_	\checkmark	_	\checkmark	_	\checkmark	_	\checkmark
ountry FE	\checkmark	\checkmark						
ear FE	\checkmark	\checkmark						
bservations	822	795	822	795	822	795	668	651
ontrols ountry FE ear FE Observations	- ✓ ✓ 822	√ √ √ 795	- ✓ ✓ 822	√ √ √ 795	- √ √ 822	√ √ √ 795	- √ √ 668	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265***	2.208***						
	(0.743)	(0.739)						
Risk (by financial)			1.702**	2.027***				
			(0.642)	(0.607)				
Risk (by foreign)					1.570*	1.433*		
					(0.888)	(0.810)		
Risk (by domestic)							-0.005	0.041
							(0.083)	(0.077)
Controls	_	\checkmark	_	\checkmark	_	\checkmark	_	✓
Country FE	\checkmark							
Year FE	\checkmark							
Observations	822	795	822	795	822	795	668	651

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265***	2.208***						
	(0.743)	(0.739)						
Risk (by financial)			1.702**	2.027***				
			(0.642)	(0.607)				
Risk (by foreign)					1.570*	1.433*		
					(0.888)	(0.810)		
Risk (by domestic)						(-0.005	0.041
							(0.083)	(0.077)
Controls	_	1	_	1	_	1	_	<i>√</i>
Country FE	1		1		1		1	
Vear FF								
	v 000	705	v 000	705	v 000	705	×	V (FA
Observations	822	795	822	795	822	795	668	651

$$MRPK_{i,m} = r_{i,m}^{adj} \times (1 + \lambda_i + \tau_m - EXIM_{i,m})$$

✓ Empirical evidence on correlation with λ_i and τ_m ?

2. Can EXIM be self-financing?

 $p_{i,m}^{EXIM} < p_{i,m}^{banks}$

EXIM can have lower prices relative to private banks if:

$$MC_{i,m}^{EXIM} + \mu_{i,m}^{EXIM} = p_{i,m}^{EXIM} < p_{i,m}^{banks} = MC_{i,m}^{banks} + \mu_{i,m}^{banks}$$

EXIM can have lower prices relative to private banks if:

- Private banks have higher markups:
 - Theoretically: EXIM has additional term in objective function = α Profits + (1α) Exports
 - Empirically: Bank mark-up plausibly high in trade financing (Niepmann Schmidt-Eisenlohr 2017)
 Government bank profitability in development setting (Townsend, 2010; Fonseca Matray, 2024)

$$MC_{i,m}^{EXIM} + \mu_{i,m}^{EXIM} = p_{i,m}^{EXIM} < p_{i,m}^{banks} = MC_{i,m}^{banks} + \mu_{i,m}^{banks}$$

EXIM can have lower prices relative to private banks if:

- Private banks have higher markups:
 - Theoretically: EXIM has additional term in objective function = α Profits + (1α) Exports
 - Empirically: Bank mark-up plausibly high in trade financing (Niepmann Schmidt-Eisenlohr 2017)
 Government bank profitability in development setting (Townsend, 2010; Fonseca Matray, 2024)

- EXIM has lower cost:

- Theoretically: access to better loss recovery technology (e.g., state department)
- Empirically: maintains low default rate

$$MC_{i,m}^{EXIM} + \mu_{i,m}^{EXIM} = p_{i,m}^{EXIM} < p_{i,m}^{banks} = MC_{i,m}^{banks} + \mu_{i,m}^{banks}$$

EXIM can have lower prices relative to private banks if:

- Private banks have higher markups:
 - Theoretically: EXIM has additional term in objective function = α Profits + (1α) Exports
 - Empirically: Bank mark-up plausibly high in trade financing (Niepmann Schmidt-Eisenlohr 2017)
 Government bank profitability in development setting (Townsend, 2010; Fonseca Matray, 2024)

- EXIM has lower cost:

- Theoretically: access to better loss recovery technology (e.g., state department)
- Empirically: maintains low default rate

EXIM might have lower markup or cost; hence, being self-financing is *a possibility*.

Export credit agencies are ubiquitous across countries, but difficult to evaluate their causal effects

US EXIM had large overall and allocative effects in a context with

- Developed financial markets
- Large, publicly listed firms

 \implies Trade-specific frictions create role for government intervention in trade financing

Thank You!

Effect of Shutdown on Operations

- Average loan size (\$M): -75%

[Back]

A New Solution to Handle Entry and Exit in Trade Data

Entry and exit is prevalent in trade data: \approx 25% of "zeros" at origin×destination×product (HS-6) over 10 years

Beaumont, Matray, Xu (2024): Aggregation property of midpoint growth rate

- Methodology:
 - Create balanced panel and fill missing with zeros
 - Define growth rate $\Delta_{pre}^t[X_{o,p,d,t}]$ as:

$$\Delta_{\textit{pre}}^{t}[\textit{X}_{o,\textit{p},\textit{d},t}] = \frac{\textit{X}_{o,\textit{p},\textit{d},t} - \textit{X}_{o,\textit{p},\textit{d},t=\textit{pre}}}{(\textit{X}_{o,\textit{p},\textit{d},t} + \textit{X}_{o,\textit{p},\textit{d},t=\textit{pre}}) \times 0.5}$$

A New Solution to Handle Entry and Exit in Trade Data

Entry and exit is prevalent in trade data: \approx 25% of "zeros" at origin×destination×product (HS-6) over 10 years

Beaumont, Matray, Xu (2024): Aggregation property of midpoint growth rate

- Methodology:
 - Create balanced panel and fill missing with zeros
 - Define growth rate $\Delta_{pre}^t[X_{o,p,d,t}]$ as:

$$\Delta_{\textit{pre}}^{t}[\textit{X}_{\textit{o},\textit{p},\textit{d},t}] = \frac{\textit{X}_{\textit{o},\textit{p},\textit{d},t} - \textit{X}_{\textit{o},\textit{p},\textit{d},t=\textit{pre}}}{(\textit{X}_{\textit{o},\textit{p},\textit{d},t} + \textit{X}_{\textit{o},\textit{p},\textit{d},t=\textit{pre}}) \times 0.5}$$

– Advantages:

- 1. Recovers full elasticity of intensive + extensive margins (e.g., estimating separate elasticities)
- 2. Not sensitive to small variations around zero (e.g., log transformations)
- 3. Is linear and allows perfect (dis)aggregation with appropriate weights (e.g., non-linear count models)

Estimates:

- Aggregate effect: weight by value of cell (denominator) [Details]
- Decompositions: weights = share of the denominator at the higher cell level [Details]

A New Solution to Handle Entry and Exit in Trade Data

Entry and exit is prevalent in trade data: \approx 25% of "zeros" at origin×destination×product (HS-6) over 10 years

Beaumont, Matray, Xu (2024): Aggregation property of midpoint growth rate

- Methodology:
 - Create balanced panel and fill missing with zeros
 - Define growth rate $\Delta_{pre}^t[X_{o,p,d,t}]$ as:

$$\Delta_{\textit{pre}}^{t}[\textit{X}_{\textit{o},\textit{p},\textit{d},t}] = \frac{\textit{X}_{\textit{o},\textit{p},\textit{d},t} - \textit{X}_{\textit{o},\textit{p},\textit{d},t=\textit{pre}}}{(\textit{X}_{\textit{o},\textit{p},\textit{d},t} + \textit{X}_{\textit{o},\textit{p},\textit{d},t=\textit{pre}}) \times 0.5}$$

– Advantages:

- 1. Recovers full elasticity of intensive + extensive margins (e.g., estimating separate elasticities)
- 2. Not sensitive to small variations around zero (e.g., log transformations)
- 3. Is linear and allows perfect (dis)aggregation with appropriate weights (e.g., non-linear count models)

Estimates:

- Aggregate effect: weight by value of cell (denominator) [Details]
- Decompositions: weights = share of the denominator at the higher cell level [Details]

Similar to recent Amiti-Weinstein (2018) estimator, but simpler, linear and naturally bounds extreme growth values

Covariate Balance (2010-2014)

- Unconditionally different

[Back]

Covariate Balance (2010-2014)

- Control for industry and exporter: reduced differences

Event Study: Other Firm Outcomes

[Back]

Sample	Compustat Segment	Hoberg-Moon Δ # 10K mention	Datamyne				
Dependent variable	Δ Foreign sales			Δ Maritime export			
Unit of analysis	Firm	Firm	Firm	Fir	m×destina	tion×produ	ct
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Exim×Post	-0.16** (0.077)	-0.12* (0.070)	-0.39** (0.18)	-0.39** (0.17)	-0.33* (0.19)	-0.44*** (0.16)	-0.31** (0.15)
Fixed Effects							
Industry×Post	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Product × Post	_	_	_	_	\checkmark	_	\checkmark
Destination × Post	-	-	_	_	_	\checkmark	\checkmark
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938

Event Study: Quarterly Sales

[Back]

Robustness to EXIM Exposure: Within-treatment Variation

- EXIM characteristics: \$10M contract or long-term support

 $\begin{aligned} \mathbf{Y}_{i,j,\mathbf{c},t} &= \beta \; \mathbf{EXIM}_i \times \mathbf{Post} \times \mathbf{EXIM} \; \text{characteristics}_i + \alpha_i \\ &+ \mathbf{EXIM}_i \times \delta_t + \mathbf{EXIM}_i \otimes [\gamma_{j,t} + \textit{Destinations}_{i,t_0} \times \delta_t] + \varepsilon_{i,j,t} \end{aligned}$

Robustness to EXIM Exposure: Within-treatment Variation

- EXIM characteristics: \$10M contract or long-term support
- Estimate effects within EXIM backed firms \Rightarrow rules out results driven by other differences of EXIM backed vs. non backed

 $Y_{i,j,c,t} = \beta \ EXIM_i \times Post \times EXIM \ characteristics_i + \alpha_i$

+ $\mathsf{EXIM}_i \times \delta_t + \mathsf{EXIM}_i \otimes [\gamma_{j,t} + \textit{Destinations}_{i,t_0} \times \delta_t] + \varepsilon_{i,j,t}$

Robustness to EXIM Exposure: Within-treatment Variation

- EXIM characteristics: \$10M contract or long-term support
- Estimate effects within EXIM backed firms \Rightarrow rules out results driven by other differences of EXIM backed vs. non backed

Dependent Variable	0	lobal sales	
	(1)	(2)	(3)
Treated × Post	-0.18*** (0.030)		
$Treated \times Post \times Large \ EXIM$		-0.19*** (0.060)	
$Treated \times Post \times Long-term \ EXIM$			-0.20** (0.072)
Fixed Effects			
Firm	\checkmark	\checkmark	\checkmark
Industry×Year	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark
Treated × Year	-	\checkmark	\checkmark
Observations	28,386	28,386	28,386

Robustness: Other Firm Controls

Dependent variable		Global sales							
Sample		All							
	(1)	(2)	(3)	(4)	(5)				
EXIM×Post	-0.17*** (0.037)	-0.13*** (0.037)	-0.16*** (0.038)	-0.16*** (0.037)	-0.17*** (0.039)				
Fixed Effects									
Firm	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Fiscal month $ imes$ Year	\checkmark	_	-	_	_				
Balance sheet controls×Year	-	\checkmark	-	_	_				
State×Year	-	-	\checkmark	-	_				
Lobbying×Year	-	-	-	\checkmark	_				
Observations	28,386	28,386	28,386	28,386	28,286				

Dependent variable		Global	sales	
	(1)	(2)	(3)	(4)
EXIM×Post	-0.17*** (0.039)	-0.16*** (0.040)	-0.13*** (0.042)	-0.15*** (0.049)
Fixed Effects				
Firm	\checkmark	\checkmark	\checkmark	\checkmark
Destinations × Year	\checkmark	\checkmark	\checkmark	\checkmark
Industry (1-digit) $ imes$ Year	\checkmark	_	_	_
Industry (2-digit)×Year	_	\checkmark	_	_
Industry (3-digit)×Year	_	_	\checkmark	_
Industry (4-digit) $ imes$ Year	_	_	_	\checkmark
Observations	28,286	28,286	28,286	28,286

Dataset	Datamyne						
Product level	2 digit	4 digit	6 digit				
	(1)	(2)	(3)				
EXIM×Post	-0.41*** (0.15)	-0.37** (0.15)	-0.31** (0.15)				
Fixed Effects							
Industry×Post	\checkmark	\checkmark	\checkmark				
Product × Post	\checkmark	\checkmark	\checkmark				
Destination country $ imes$ Post	\checkmark	\checkmark	\checkmark				
Observations	40,137	85,375	126,938				

Dependent variable Winsorization	Global sales					
	1%	2% (2)	3%	4%	5% (5)	10%
Fixed Effects						
Firm	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Industry×Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Destinations×Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	28,386	28,386	28,386	28,386	28,386	28,386

Interest Expense

EXIM Interest Rate is defined as a Loan Interest Expense on U.S. Treasury Borrowings (EXIM annual Statement of Net Costs) divided by the Intragovernmental Borrowings from and Amounts Payable to the U.S. Treasury (EXIM annual balance sheets).

- Congressional Budget Justification submitted at the beginning of each fiscal year:
 - Key Costs: Administration, Programs, Defaults/Losses
 - Additional Costs: Cybersecurity, SMEs, MWOBs Support
- EXIM's Self-Financing:
 - Used directly to offset operating expenses and program budget
 - Sent to Treasury to offset the U.S. budget deficit at the end of each fiscal year