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Introduction Data and sample Writers vs. users Hunting Benefits Mechanisms Identification Takeaways

How is innovation generally recognized?

(a) Annual citation count (b) Cumulative percent citation
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Some most influential patents do not following the pattern
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Example: Patent US5025407 by Texas Instruments

▸ Granted to Texas Instruments in 1991.

▸ Became the top 5% cited patent in 2006
(bloomed late).

▸ Technology class:
▸ G06F Electric digital data processing

▸ G06T Image data processing

▸ This technology is distant to TI’s core
technology (semiconductor devices) with the
proximity score of 0.13.

▸ This technology is closer to Nvidia three
times more at 0.32.

Title: “Graphics floating point coprocessor having matrix capabilities”
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Example: Patent US5025407 and Nvidia Corp.

▸ Zero citations for the first five years.

▸ Most early citations are from CPU developers.

▸ Nvidia started citing it intensely around 2006 related to GPU computing.
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Other Examples
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Other Examples
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Motivation

▸ Because not all successful ideas are immediately recognized,

▸ Search and implementation are fundamental components of the innovation
process.

▸ Yet, the literature has been mainly focusing on the initiation of innovation.
(i.e., patent grants, grant-year stock reaction)

▸ Search and implementation processes are relatively less understood.

▸ In this paper, we aim to fill this gap.
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This paper

▸ We identify eventually successful patents that are not immediately recognized
(“late-bloomer patents”).

▸ We show that there are important economic agents in the innovation chain
who deliberately and persistently search out for the late-bloomer patents and
add value to them (“patent hunters”).

▸ We show there are rents from patent hunting, which accrue to patent
hunters, exceeding those to original writers.
▸ The rents are larger if patent hunters are more experienced (learning).

▸ The rents are smaller if they face greater search costs.

▸ Patent hunting has both the firm and inventor-level components.

▸ Patent hunting rents are causal with an IV analysis.
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Data construction

We use the universe of USPTO patents (1.7 million) from 1976 to 2020.

▸ For patent classification, we use patents granted between 1976 and 1999.
▸ Some patent variables merged from PatentsView start in 1976.

▸ We require full 20-year citations for the classification.

▸ We later focus on public firms for firm outcome regressions.
▸ Merge with Compustat for financial variables.

▸ Merge with the new product offerings data from Mukherjee, Thornquist, and
Z̆aldokas (2022) for commercialization proxies.
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We focus on the extremely successful patents

Superstar patents are exceptionally impactful patents based on:

▸ the number of citations received
(net of self-citations)

▸ within the same CPC class and
grant year cohort

▸ over the initial 20-year patent
lifespan

▸ in the top 5% of the cumulative
forward citation distribution
(Trajtenberg, 1990; Sampat and
Ziedonis, 2004)

We have 213,772 superstar patents granted between 1976 and 1999.
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Superstar patents take different paths to success

We classify superstar patents into late-bloomer (LB) and early-bloomer (EB) by
the time it took to become a superstar patent.

▸ The cutoff point is the 90th percentile of the duration (14 years).
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Summary statistics

▸ Characteristics at the time of patenting?

Early-bloomers Late-bloomers
mean mean Difference

Cum. citations at age 20 52.53 69.80 -17.27***
Count class 2.05 2.17 -0.12***
Count claims 15.83 16.02 -0.19**
Backward citation 12.09 12.41 -0.32***
KPSS value 11.29 11.15 0.14

Number of patents 191,812 21,960

▸ LBs accumulate a substantially larger number of citations compared to EBs
towards the end of 20 years.

▸ Economically small differences suggest that EB and LB cannot be predicted
by the characteristics at patenting.
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Summary statistics

▸ Who are the users, then?

Early-bloomer Late-bloomer
citing patents citing patents

mean mean Difference
Cum. citations at age 20 23.21 35.99 -12.77***
Count class 2.00 2.22 -0.22***
Count claims 17.26 19.56 -2.30***
Backward citation 43.96 96.89 -52.94***
KPSS value 13.65 16.34 -2.69***

Number of patents 2,797,100 790,936

▸ LB users have significantly more backward citations, implying a substantially
broader search of patents.

▸ LB users themselves write patents with higher value.

▸ Motivated by these patterns, we focus on answering
▸ Who are these LB users?

▸ Why do LB users discover neglected innovation (benefits to hunting)?
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LB writers vs. users (age-matched)

With a strong assumption of exclusivity for this comparison only:

▸ Writers: produce at least one LB and possibly also cite them.
▸ Writers are old, big, value firms with a larger stock of patents and citations

and bigger R&D spending.

▸ Users: cite LBs but do not produce them.
▸ Users are younger (by 4-5 years), smaller, growth firms with more products per

patent, greater consumer dependence, and comparable R&D spending.

Writers Users ATE SE
no. patents per year 29.71 2.840 26.87*** 3.234
no. external cites per year 63.91 4.135 59.78*** 6.330
no. external cites/no. patents 2.450 1.517 0.933*** 0.112
no. new products/no. patents 0.181 0.256 -0.0749*** 0.0271
consumer dependent 0.231 0.256 -0.0250** 0.0116
log asset 5.212 4.665 0.546*** 0.0827
tobinq 2.495 2.523 -0.0281 0.0698
salegr 0.167 0.157 0.00998 0.0102
rnd asset 0.101 0.0849 0.0161*** 0.00498
adv asset 0.0109 0.0111 -0.000197 0.00102
d dv 0.425 0.384 0.0414*** 0.0143
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Writer/user persistence

Now relaxing the exclusivity assumption:

▸ We consider a transition matrix among:
▸ Strict LB Writer: write LBs but never cite an LB.

▸ Flexible LB Writer/User: write LBs and also cite LBs.

▸ Strict LB User: cite LBs but never write an LB.

▸ We find that 50.82% of strict users remain as strict users next year.
Status at t + 1

Status at t Strict Writer Flexible Writer/User Strict User Not Writer, not User Total
Strict Writer 113 148 184 416 861

13.12% 17.19% 21.37% 48.32% 100%

Flexible Writer/User 46 1,709 788 2,53 2,796
1.65% 61.12% 28.18% 9.05% 100%

Strict User 118 832 2,019 1,004 3,973
2.97% 20.94% 50.82% 25.27% 100%

Not Writer, not User 444 379 1,308 5,185 7,316
6.07% 5.18% 17.88% 70.87% 100%

Total 721 3,068 4,299 6,858 14,946
4.82% 20.53% 28.76% 45.89% 100%
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Main results
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User benefits

The utilization of LB vs. EB is sharply different.

(a) User Sales (b) User Value

▸ The benefits of using LB (hunting), measured by firm sales and value, are
significantly larger than those of using EB.
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User benefits regressions (firm-year level)

Yt,t+4 = b1log(1 + LBhunting)jt + b2log(1 + EBhunting)jt + γj + ηt
Sales growth Avg Tobin’s Q

(1) (2)
log(1+LBhunting) 0.0831*** 0.0658***

(0.0275) (0.0168)
log(1+EBhunting) -0.0962*** -0.0217**

(0.0181) (0.00866)
Mean 0.901 2.080
H0 ∶ LB = EB (p-value) 0.000 0.000
Firm FE Y Y
Year FE Y Y
Observations 75589 98776
Adjusted R2 0.350 0.719

▸ User sales growth and Tobin’s Q increase by 6.4% and 2.2% from the means
with doubling the number of LB hunting.

15 / 25



Introduction Data and sample Writers vs. users Hunting Benefits Mechanisms Identification Takeaways

User benefits from LB hunting (patent-year level)

We consider user vs. writer and the superstar year additionally.

Yijpt = b1userijp + b2ssyearpostpt + b3userijp × ssyearpostpt + γij + ηt
Sales growth Tobin’s Q

(1) (2)
user × ssyearpost 0.00730*** 0.0179**

(0.00125) (0.00816)

user 0.0143*** 0.0644***
(0.000923) (0.00525)

ssyearpost -0.00146 -0.000481
(0.00145) (0.00625)

Cited patent FE Y Y
Year FE Y Y
Observations 1523717 1534074
Adjusted R2 0.226 0.386

▸ LB user benefits exceed those of writers, particularly after LB is recognized.

▸ These benefits are NOT prevalent to other patents (EB or non-superstar).
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New demand by focused users: Patent applicability

We now consider the tech proximity between the focal and citing patents.

▸ In general, the tech proximity between the focal and citing patents decreases
over patent age (Kuhn et al. 2020) – i.e., gradually becoming obsolete.

▸ For LB, the proximity sharply stabilizes when it is recognized.

▸ The stabilizing tech proximity suggests the rising demand for LB technology
by a new group of focused users.
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Creation of new markets: New innovation space

Log(Patent counts in tech-class groups) Log(1+new product)
Focal CPC Citing CPC LB hunting only

(1) (2) (3)
latebloomer×ssyearpost 0.145*** 0.0398**

(0.00495) (0.0198)
user× ssyearpost 0.0472***

(0.00842)
Focal patent FE Y Y Y
Year FE N N Y
Observations 696851 1274268 1201198
Adjusted R2 0.410 0.458 0.626

▸ LB patents define new technology spaces with significantly more patenting
after being hunted.
▸ LB patents’ own tech space by 16%.

▸ New overlapping tech classes among user patents by 5%.

▸ The new demand creates a new market by the users.
▸ LB users’ new product launches (Mukerjee et al., 2022) increase by 5%.
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Why do writers neglect some patents?

Late-bloomers
(1) (2)

tech-class dist to core 0.0143∗∗ 0.0142∗∗

(0.00534) (0.00551)
ln(competing patent stock) -0.00561∗∗∗ -0.00543∗∗∗

(0.00131) (0.00135)
fin const (KZ) -0.00695∗∗

(0.00293)
equity const (LW) -0.00936

(0.00776)
debt const (LW) -0.00165

(0.00770)
Writer FE Y Y
Grant year FE Y Y
Observations 94889 86801
Adjusted R2 0.033 0.033

▸ LBs exist possibly due to
▸ Writers’ intellectual capacity constraints: LBs are peripheral to their core.

▸ Low competitive threat at the time of patenting.

▸ Financial constraints are not the reason. Rather, writers are less constrained
to work on innovation not in immediate use.
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Moderating factors of benefits

Sales growth Avg Tobin’s Q Sales growth Avg Tobin’s Q
(1) (2) (3) (4)

complexity -0.000675 -0.0191∗∗∗

(0.00174) (0.00387)
competition -0.00251∗∗∗ -0.00795∗∗∗

(0.000925) (0.00209)
Focal patent FE N N N N
Focal patent class FE Y Y Y Y
Year FE Y Y Y Y
Observations 95841 116692 108953 135942
Adjusted R2 0.117 0.220 0.117 0.212

▸ Given searching,
▸ LB’ complexity could decrease benefits through processing/integration costs.

▸ Severe competition for a given LB’s technology space could decrease benefits.
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Patent hunting has inventor-level component

Sales growth Tobin’s Q
(1) (2)

inventor move × user × ssyearpost 0.0371∗∗∗ 0.115∗∗∗

(0.00567) (0.0388)
Cited patent FE Y Y
Year FE Y Y
Observations 1501145 1510968
Adjusted R2 0.228 0.397

▸ When inventors move from writers to users, the user benefits are greater.

1(LB hunting) next firm no.(LB hunting) next firm
(1) (2)

1(LB hunting) current firm 0.0681∗∗∗

(0.00606)
no.(LB hunting) current firm 0.136∗∗∗

(0.0224)
Current employment FE Y Y
Work start year FE Y Y
Observations 51544 51544
Adjusted R-squared 0.053 0.062

▸ Hunting inventors keep hunting after job switch.
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Identification - IV regressions

We exploit the forced inventor moves from bankrupt neighboring firms.

▸ We only look at focal firms that
have bankrupt neighbors.

▸ The intensity of hunting inventors in
bankrupt neighbors is the
treatment. Stat

▸ The intensity of hunting inventors in
bankrupt neighbors could make
focal firms hunt more with labor
spillovers, but is not directly related
to focal firms’ future sales growth.
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Identification - IV regressions

First-stage Second-stage
Log(1+LB hunting) Sales growth

(1) (2)
bankrupt neighbor hunting intensity 0.454***

(0.0982)
instrumented log(1+LB hunting) 2.475***

(0.955)
First-stage F-stat 21.41
Firm FE Y Y
Year FE Y Y
Observations 25874 25874
Adjusted R-squared 0.776 0.135

▸ There is a strong IV effect on nearby firms’ LB hunting (a strong instrument).

▸ The 2nd-stage coefficients are positive and significant.

▸ The results suggest that the benefits of hunting LB are causal.
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Nothing is a sideshow here

▸ The cited patent was important to its user. evidence1

▸ LB’s technology was closer to users’ technology than any other cited patents.

▸ LB’s technology booms after being hunted by the user.

▸ Citing LB was essential. evidence2

▸ LB is more likely to be referenced by inventors as an in-text citation and less
likely to be added by examiners.
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Takeaways

▸ The paper is the first to examine initially neglected but becoming extremely
influential innovation.

▸ We provide new insight into *search and *implementation beyond the
initiation of innovation.

▸ We find that patent hunters amass significant rents from searching out
neglected patents.

▸ Patent hunting is persistent and deliberate and requires skills.

▸ “Patent hunters” play a critical role in innovation by creating attention and
developing new technology areas in the spaces of neglected ideas.
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Is the hunting benefit prevalent in any superstar patents?

Superstar vs. non-superstar
Diff(Sales growth) Diff(Tobin’s Q)

(1) (2)
superstar ×ssyearpost 0.00247 -0.00813

(0.00156) (0.0148)
superstar 0.00668*** 0.196***

(0.00144) (0.0167)
ssyearpost 0.00751*** 0.0501***

(0.00126) (0.0135)
SSyear FE Y Y
Observations 10805288 11069516
Adjusted R2 0.051 0.026
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Late-bloomer vs. non-superstar
Diff(Sales growth) Diff(Tobin’s Q)

(1) (2)
latebloomer × ssyearpost 0.0143*** 0.210***

(0.00283) (0.0299)
latebloomer 0.00444** 0.133***

(0.00209) (0.0226)
ssyearpost 0.00564*** 0.0254*

(0.00129) (0.0140)
SSyear FE Y Y
Controls Y Y
Observations 2115307 2167795
Adjusted R2 0.039 0.043

Early-bloomer vs. non-superstar
Diff(Sales growth) Diff(Tobin’s Q)

(1) (2)
earlybloomer × ssyearpost -0.0000402 -0.0406***

(0.00157) (0.0148)
earlybloomer 0.00661*** 0.178***

(0.00157) (0.0220)
ssyearpost 0.00696*** 0.0138

(0.00124) (0.0132)
SSyear FE Y Y
Observations 9066974 9283734
Adjusted R2 0.053 0.021

Back
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Inventor moves are geographically restricted but flexible
across industries

▸ About 20% of inventors move within a 100-mile distance, unconditionally.

▸ About 50% (60%) of inventors (from bankrupting firms) move across firms
outside 1-digit SIC. Back
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LB technology is not a sideshow

▸ LB patent technology booms after being hunted.

▸ LBs are technologically closer to hunter’s patents than EBs.
Technology Proximity

(1)
LB 0.00795***

(0.00192)
Comparison group EB, non-superstar
Citing patent FE Y
Tech class FE Y
Observations 2938358
Adjusted R2 0.523

Back
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Citing LB is not a sideshow

▸ Patent hunting is deliberate: LBs are more likely to be referenced by
inventors as an in-text citation but less likely to be cited by examiners.

Late-bloomers Non-late-bloomers (1)-(2)
(1) (2) (3)

1(in-text cited) 0.0552 0.0446 0.0106***
No.(in-text mentions) 0.0676 0.0558 0.0117***
Sent(in-text mentions) 0.373 0.329 0.0438***
1(examiner cited) 0.178 0.285 -0.184***

▸ There is learning: Experienced hunters reap larger benefits.
(based on the cited LB fraction in the past 5 years)

Experienced Less experienced
Sales growth Tobin’s Q Sales growth Tobin’s Q

(1) (2) (3) (4)
user × ssyearpost 0.0160*** 0.0993*** 0.00405*** -0.0384***

(0.00404) (0.0282) (0.00123) (0.00734)
Cited patent FE Y Y Y Y
Year FE Y Y Y Y
Observations 241937 247010 1281769 1287061
Adjusted R2 0.222 0.410 0.241 0.424

Back
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