| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              |                        |                         |  |
|              |                        |                         |  |

# Fighting Climate Change with FinTech

Antonio Gargano<sup>1</sup> Alberto Rossi<sup>2</sup>

<sup>1</sup>University of Houston <sup>2</sup>Georgetown University

ABFER, May 2024



# Motivation: The Science of Climate Change

- Human activity is causing changes to earth's environment and biology
  - IPCC report: official source of scientific evidence
    - The risks they pose, and policy recommendations (e.g. Kyoto Protocol and Paris Agreements)
- The most IMPORTANT: increase in emissions of Greenhouse Gases (GHG). Either trapped in the atmosphere or absorbed by the oceans  $\rightarrow$ 
  - **(**) An increase in temperature on earth's and oceans' surfaces (upper 700 m)
  - 2 A decrease in the p.h. of the oceans
- Chain reaction...
  - Melting of polar ice with consequent rising sea levels
  - Ø More frequent and more intense "Extreme (Weather) events"
  - **(2)** Loss of biodiversity on land and oceans (with consequences for food chains)



| Introduction | App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|--------------|------------------------|-------------------------|--|
| 000000000    |              |                        |                         |  |
|              |              |                        |                         |  |

# Motivation: (Some of the) Risks of Climate Change

#### • Risks

- Human Health and Labor Output
- Commercial and Residential Real Estate
- Infrastructure
  - ★ Especially power grids
- Agriculture and Ecosystem Services
  - \* Reduction in crop yields, degradation in water and soil quality
- Mass migrations and political instability
- Damage from extreme weather events

| Introduction | App and Data | Spending and Emissions |  |  |
|--------------|--------------|------------------------|--|--|
|              |              |                        |  |  |

# Motivation

- Climate change represents one of humanity's most pressing challenges
- Governments response: tax policies to reduce emissions from corporations
- Much less known how to help **individuals** reduce their emissions. Important:
  - (1) Individuals account for up to 30% (60%) of direct (indirect) global emissions
  - (2) 2022 projection from IPCC: target of Paris Agreement will not be met
- FinTech Apps: promising tool to promote consumers' sustainable behavior
  - 1~ High penetration of mobile phones worldwide  $\rightarrow$  deployed on a large scale
  - 2 Evidence FinTech apps improve households' financial decisions

| Introduction | App and Data | Spending and Emissions |  |  |
|--------------|--------------|------------------------|--|--|
|              |              |                        |  |  |

# What we do

• Partner with a digital bank offering tools to manage consumption's emissions

- 1 Footprint Calculator Displays real-time carbon emissions associated with card transactions
- 2 Carbon offsetting

Program pledging to offset individuals' emissions through reforestation

One of the first banks to introduce these tools

- Many have followed
  - ▶ Banco Santander, BNP Paribas, Standard Chartered, Nordea, ...
- $\rightarrow\,$  Millions of individuals exposed: no evidence of effectiveness

#### Benefits of our setting

(1) Rich Data: transaction-level info on CO2 emissions, Merchant Code and €
(2) Identification: Encouragement design based on a marketing campaign

| Introduction | App and Data | Spending and Emissions |  |  |
|--------------|--------------|------------------------|--|--|
|              |              |                        |  |  |

# Preview of Findings

- 1 Individuals are likely to purchase Carbon Calculator services
  - But it does not cause significant changes in consumption and emissions
- 2 Services that offset emissions by planting trees are less likely to be adopted
  - But prove effective in reducing users' emissions
- 3 No differences when conditioning on socio-demographic characteristics
- Next steps
  - Survey to understand the frictions at play
    - \* Better benchmarking of information? Lack of trust?
  - RCT to increase adoption rates

| Introduction | App and Data | Spending and Emissions |  |  |
|--------------|--------------|------------------------|--|--|
| 000000000    |              |                        |  |  |
|              |              |                        |  |  |

# Related Literature-I

Financial Technology (FinTech) and household behavior

- Benefits for households'
  - investment (D'Acunto, et al. 2019)
  - borrowing (Di Maggio et al 2022)
  - saving (Gargano and Rossi 2023)
  - spending (Lee 2023)
- Pitfalls and challenges of new technologies (e.g. Fuster et al 2018, Di Maggio and Yao 2020)

Our contribution: Benefits and challenges of FinTech for sustainable behavior

# Related Literature-II

#### Climate finance

- Risks posed by climate change to the financial system and pricing of assets (Giglio et al 2020)
- Surveys to capture attitudes toward climate change (Dechezlepretre et al. (2023))
  - To understand support for policies in public opinion
  - Risks are correctly incorporated into prices if investors evaluate them correctly
- Our contribution: Study actual consumption choices. Important b/c
  - Consumption decisions are a key driver of carbon emissions
  - Individuals might fail to substantiate their claims through actions

# Related Literature-III

Behavioral interventions to promote sustainable behavior

- Purely behavioral interventions (social comparison, nudges)
- Financial interventions offering monetary incentives (subsidies or discounts)
- The evidence is mixed and based on samples < 500
  - Little effect when targeting frequently occurring decisions (home energy)
  - Effective when targeting set-and-forget (install solar panels)
- Our contribution: Focus on
  - overall consumption
  - large-scale intervention

| App and Data<br>●○○○ | Spending and Emissions |  |  |
|----------------------|------------------------|--|--|
|                      |                        |  |  |

# The App-I

- A European FinTech app with deposit and payment features
- Also tools to monitor and manage the emissions resulting from spending
- Sample from January 2022 to May 2023

#### 1 Footprint Calculator

- Cost: €2.50, monthly
- Displays the carbon emissions from card transactions
- Updated once the transaction is approved, resets to zero at the end of month
- Provided by a third party (an industry leader in this space)
- Footprint<sub>i</sub> = €Spending<sub>i</sub> × Carbon\_per\_Euro<sub>MerchantCode(i)</sub>

proprietary technology

| App and Data<br>○●○○ | Spending and Emissions |  |  |
|----------------------|------------------------|--|--|
|                      |                        |  |  |

# The App-II

- 2 Carbon Offsetting Program
  - ► €7.50 more
  - Company pledges to offset up to 1,000kg of emissions per month
  - ▶ By partnering with external entities that engage in reforestation projects
    - \* One of the most economically efficient ways to perform carbon offsetting (Cornelius 2016)
    - \* Widespread based on Berkeley Carbon Trading Voluntary Registry Offsets Data
  - Cost in line with industry
    - The price to offset 1,000kg of emissions ranges from a low of \$2.55 to a high of \$69.2, with the majority of the prices falling between \$10 and \$25.

| App and Data<br>○○●○ | Spending and Emissions |  |  |
|----------------------|------------------------|--|--|
|                      |                        |  |  |

# The Data

Five tables (information is anonymized to guarantee user privacy)

- Transactions. Info on deposits and expenditures
  - ▶ Monetary amount, time-stamp, and channel (e.g., card, ATM, ...)
- Footprint. Footprint associated with card expenses
  - ▶ The C02 emission (in grams), and the Merchant Category Code
- Subscription. Activation of
  - Carbon calculator and/or offsetting features
- Users. Information users with a profile on the App since inception
  - > Dates of profile opening and closing, age, gender, location of residence, ...
- Logins. Information on the individual logins (with associated time stamps)

| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
| 0000         |                        |                         |  |
|              |                        |                         |  |

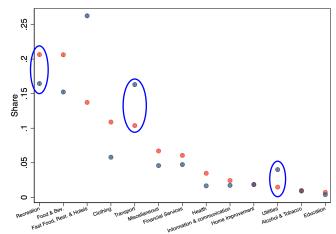
# Summary Statistics

|                           | Panel A. Demographic Characteristics |            |                      |       |  |  |
|---------------------------|--------------------------------------|------------|----------------------|-------|--|--|
|                           | Obs                                  | Mean       | Std                  | p50   |  |  |
| Age                       | 29,463                               | 30.04      | 13.52                | 24.00 |  |  |
| Gender                    | 29,463                               | 0.70       | 0.46                 | 1.00  |  |  |
| Income<€15K (Dummy)       | 29,589                               | 0.66       | 0.47                 | 1.00  |  |  |
|                           | F                                    | anel B. Lo | el B. Login Activity |       |  |  |
|                           | Obs                                  | Mean       | Std                  | p50   |  |  |
| Days Logins (%)           | 29,748                               | 31.98      | 26.93                | 23.48 |  |  |
| N. Logins per day         | 29,748                               | 2.89       | 2.02                 | 2.31  |  |  |
|                           | Panel                                | C. Spendir | ng and Emis          | sions |  |  |
|                           | Obs                                  | Mean       | Std                  | p50   |  |  |
| Days Transactions (%)     | 29,615                               | 35.95      | 30.90                | 25.15 |  |  |
| N. Transactions per day   | 29,615                               | 1.69       | 0.92                 | 1.51  |  |  |
| Avg. Spending (€)         | 29,615                               | 58.88      | 269.52               | 16.90 |  |  |
| Carbon Calculator (Dummy) | 29,795                               | 0.26       | 0.44                 | 0.00  |  |  |
| Carbon Offsetting (Dummy) | 29,795                               | 0.07       | 0.26                 | 0.00  |  |  |

# Spending and Emissions Patterns

Patterns of users' spending and emissions. Important

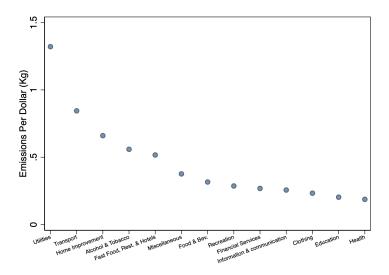
- $\bullet\,$  Emissions are ultimately estimated from spending  $\rightarrow\,$  to validate our data
- Previous studies focused on specific products (example, weatherization)
  - In quasi-experimental settings
  - Less known on how decisions are made
    - $\star$  in the field
    - \* across the full range of consumption categories


Two empirical exercises

- 1 Allocation of spending and emissions across consumption categories
- 2 Relation between income and
  - Emissions
  - Emissions per euro

| App and Data | Spending and Emissions<br>○●○○○○ |  | Conclusions |
|--------------|----------------------------------|--|-------------|
|              |                                  |  |             |

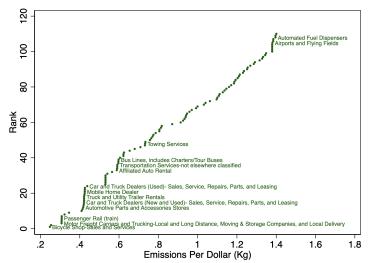
### Spending and Emissions


- Map MCCs into two-digit COICOP
  - Developed by the United Nations Statistics Division
- For each user, share of spending and emission in each category
- Report average across users for Spending and Emissions



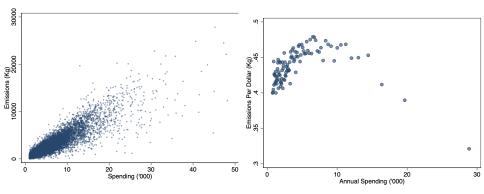
| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              | 000000                 |                         |  |
|              |                        |                         |  |

#### Emissions per Euro


#### • Average Carbon per Euro across MCCs in the COICOP categories



| App and Data | Spending and Emissions |  |  |
|--------------|------------------------|--|--|
|              | 000000                 |  |  |
|              |                        |  |  |


### Emissions per Euro: Transportation

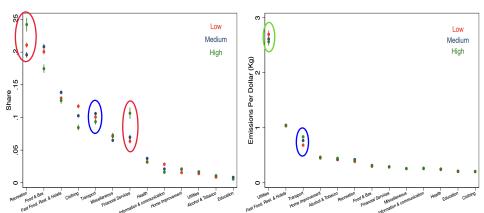
- Number of MCCs varies across COICOP categories
- For some, large heterogeneity



| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              | 000000                 |                         |  |
|              |                        |                         |  |

### Spending and Emissions (1)




- Strong positive relation ( $\rho$ = 0.9)
- Slope: for each additional €10,000 emissions ↑ 4,650kg.
- Heteroscedasticity: dispersion in emissions ↑ with spending

- Inverted U-shaped
- €0K to €3K: emissions per euro
- $\in$  3K to  $\in$  8K: emissions per euro  $\longleftrightarrow$
- €8K+: emissions per euro ∖<sub>4</sub>

| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              | 000000                 |                         |  |
|              |                        |                         |  |

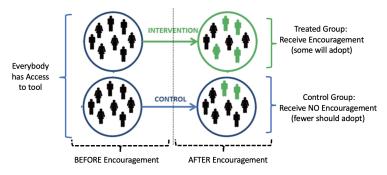
# Spending and Emissions (2)

- Two non-mutually exclusive channels. Income differentials could relate to
  - Differences between categories of consumption AND/OR
  - Differences within categories of consumption X



| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              |                        | 00000                   |  |
|              |                        |                         |  |

# Challenges of Establishing Causality


#### • Objective: Estimate the causal effect of providing

- Information on footprint of transactions (Carbon Calculator)
- Carbon offsetting services
- On
  - ► € Spending
  - CO2 Emissions
    - $\star$  Because fighting climate change ultimately requires to reduce emissions
  - Emissions per Euro
    - $\star\,$  Governments want to reduce emissions without depressing economic activity
- Challenging because the decision to subscribe is endogenous.
  - $\blacktriangleright$  Cannot compare users who adopt the tools with users who do not Unobservables might drive both consumption decisions and adoption of tools  $\rightarrow$  selection bias
  - ► Cannot compare the same user over time Users might decide to become more sustainable and *then* adopting the tools → reverse causality



### Encouragement design

- Tools available to everybody since App inception and cannot be denied
- BUT company ran a marketing campaign on a group of users
- Causal effect is still possible using Instrumental Variable (Imbens and Angrist, 1994)



| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              |                        |                         |  |

### Encouragement design

- Instrument Adoption with Encouragement. Intuition:
  - Remove endogenous factors of tool adoption
  - Exploit only exogenous variation driven by the campaign

(Fowlie et al., QJE, 2018)

• Step 1: First Stage

$$\mathbb{1}\{Sus\_Tool\}_{i,t} = \alpha_i + \alpha_t + \theta \ \mathbb{1}\{Encouraged\}_{i,t} + \epsilon_{i,t}$$

- Sus\_Tool equal to 1 if user adopted the tool at time t and 0 otherwise
- Encouraged equal to 1 for users targeted by the campaign after the campaign
- Step 2: Second Stage

$$Y_{i,t} = \alpha_i + \alpha_t + \beta \ \mathbb{1}\{\widehat{Sus_Tool}\}_{i,t} + \epsilon_{i,t}$$

 β: DIFFERENCE between change in treated AFTER the intervention and change in control AFTER the intervention

| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              |                        |                         |  |

### Encouragement design

Our Setting:

- Company ran a marketing campaign in July 2022
- The company divided the user population into:
  - control group: not contacted
  - treatment group: emails and App notifications to encourage sign-up
- The email and app notifications ranged in type and content
- Messages highlighted
  - the eco-balance
  - or carbon-offsetting tools

to combat climate change.



# Assumptions

To be interpreted causally, three assumptions must be satisfied

#### • RELEVANCE

Marketing campaign must be effective at increasing tools' adoption

#### • EXOGENEITY

 Group in the marketing campaign is **not** chosen based on characteristics that are correlated with sustainable behavior

#### • EXCLUSION RESTRICTION

- Encouragement affects users' behavior ONLY through their tools' adoption
- Inherently untestable, but we provide formal tests that the encouragement does not change the behavior of those who do not adopt treatment

| App and Data | Spending and Emissions | Identification Strategy |  |
|--------------|------------------------|-------------------------|--|
|              |                        | 00000                   |  |
|              |                        |                         |  |

### Balancing and Exogeneity of Encouragement

|                            |        |          | Panel A | : Treated | l      |        |          |
|----------------------------|--------|----------|---------|-----------|--------|--------|----------|
|                            | Mean   | Std      | p5      | p25       | p50    | p75    | p95      |
| Age                        | 29.85  | 13.16    | 18.00   | 20.00     | 24.00  | 37.00  | 56.00    |
| Gender                     | 0.68   | 0.47     | 0.00    | 0.00      | 1.00   | 1.00   | 1.00     |
| Frac Days Logins (%)       | 31.40  | 22.00    | 6.02    | 15.03     | 25.74  | 42.42  | 77.78    |
| N. Logins                  | 3.06   | 1.81     | 1.44    | 2.00      | 2.57   | 3.54   | 6.38     |
| Frac Days Transactions (%) | 37.39  | 29.42    | 5.38    | 13.64     | 27.43  | 57.58  | 100.00   |
| N. Transcations            | 1.68   | 0.79     | 1.00    | 1.22      | 1.50   | 2.00   | 2.86     |
| Avg. Spending              | 38.37  | 136.99   | 0.06    | 2.59      | 14.21  | 37.48  | 138.97   |
| Emissions                  | 920.08 | 4,210.73 | 0.00    | 8.06      | 136.87 | 689.64 | 3,884.81 |

|                            |        | Panel B: Non Treated |          |       |       |        |        |          |
|----------------------------|--------|----------------------|----------|-------|-------|--------|--------|----------|
|                            | t-test | Mean                 | Std      | p5    | p25   | p50    | p75    | p95      |
| Age                        | -1.45  | 30.38                | 12.87    | 18.00 | 20.00 | 25.00  | 37.00  | 57.00    |
| Gender                     | -1.32  | 0.70                 | 0.46     | 0.00  | 0.00  | 1.00   | 1.00   | 1.00     |
| Frac Days Logins (%)       | -1.57  | 32.36                | 22.19    | 6.29  | 15.56 | 26.87  | 43.75  | 79.01    |
| N. Logins                  | -1.30  | 3.11                 | 1.98     | 1.45  | 2.00  | 2.60   | 3.57   | 6.50     |
| Frac Days Transactions (%) | -0.72  | 37.82                | 28.61    | 5.38  | 13.95 | 29.31  | 60.00  | 100.00   |
| N. Transactions            | -0.57  | 1.69                 | 0.72     | 1.00  | 1.23  | 1.54   | 2.00   | 3.00     |
| Avg. Spending              | -1.31  | 43.70                | 217.58   | 0.03  | 1.67  | 13.46  | 38.52  | 155.20   |
| Emissions                  | 0.28   | 894.71               | 3,032.94 | 0.00  | 6.96  | 112.27 | 745.86 | 4,016.23 |

| App and Data | Spending and Emissions | Results<br>●00000000 |  |
|--------------|------------------------|----------------------|--|
|              |                        |                      |  |
|              |                        |                      |  |

### First Stage

 $\mathbb{1}\{Sus\_Tool\}_{i,t} = \alpha_i + \alpha_t + \theta \ \mathbb{1}\{Encouraged\}_{i,t} + \epsilon_{i,t}$ 

|                                                  | Sustainab                | ility Tool               |
|--------------------------------------------------|--------------------------|--------------------------|
|                                                  | Carbon Calculator<br>(1) | Carbon Offsetting<br>(2) |
| Encouragement                                    | 0.026***<br>(8.25)       | 0.004***<br>(3.56)       |
| User FE<br>Time FE<br>Adj- <i>R</i> <sup>2</sup> | 0.616                    | 0.479                    |

- Carbon Calculator: 2.8% of not targeted adopted  $\rightarrow$  campaign increased adoption by 2.6/2.8=92.8%
- Carbon Offsetting: 0.38% of not targeted adopted → campaign increased adoption by 100%

| App and Data | Spending and Emissions | Identification Strategy | Results  |  |
|--------------|------------------------|-------------------------|----------|--|
|              |                        |                         | 00000000 |  |
|              |                        |                         |          |  |

# Second Stage: Carbon Calculator Results Estimate:

$$Y_{i,t} = \alpha_i + \alpha_t + \beta \,\,\mathbb{I}\left\{\widehat{Sus_-Tool}\right\}_{i,t} + \epsilon_{i,t}$$

(Take logs of the dependent variable to take care of the skewness)

|                                          | Instrumental Variable Estimates |                 |                       |  |
|------------------------------------------|---------------------------------|-----------------|-----------------------|--|
|                                          | Consumption                     | Emissions       | Emissions<br>Per Euro |  |
| Carbon Calculator                        | 0.037**<br>(1.69)               | 0.014<br>(0.03) | -0.067<br>(-0.37)     |  |
| <i>F-statistic</i><br>User FE<br>Time FE | 68.22<br>✓                      | 68.22<br>✓      | 27.99<br>✓            |  |

Because log-linear regression: marginal effect is  $e^{\hat{eta}}$ -1

|          | App and Data | Spending and Emissions |        | Results  |   |
|----------|--------------|------------------------|--------|----------|---|
| 00000000 | 0000         | 000000                 | 000000 | 00000000 | 0 |

#### Second Stage: Carbon Offsetting Results Focusing on net emissions, estimate:

$$Y_{i,t} = \alpha_i + \alpha_t + \beta \, \mathbb{I}\{\widehat{Sus_-Tool}\}_{i,t} + \epsilon_{i,t}$$

(Take logs of the dependent variable to take care of the skewness)

|                   | Instrumental Variable Estimates |              |           |  |  |
|-------------------|---------------------------------|--------------|-----------|--|--|
|                   | Consumption                     | Emissions    |           |  |  |
|                   |                                 |              | Per Euro  |  |  |
| Carbon Offsetting | -0.071                          | -7.437**     | -5.531*** |  |  |
|                   | (-0.49)                         | (-2.05)      | (-5.01)   |  |  |
| F-statistic       | 12.69                           | 12.69        | 8.25      |  |  |
| User FE           | $\checkmark$                    | $\checkmark$ | 1         |  |  |
| Time FE           | $\checkmark$                    | 1            | 1         |  |  |

- $\bullet$  After-allowance emissions reduced by close to 100%
  - Log-linear regression, marginal effect is  $e^{\hat{eta}}$ -1
- Gross emissions are unchanged

| App and Data | Spending and Emissions | Identification Strategy | Results  |  |
|--------------|------------------------|-------------------------|----------|--|
|              |                        |                         | 00000000 |  |
|              |                        |                         |          |  |

### **Exclusion Restriction**

Estimate for those who do not adopt treatment:

|                            | Panel A                    | A: Carbon Calcula | ator         |  |
|----------------------------|----------------------------|-------------------|--------------|--|
|                            | Consumption                | Emissions         | Emissions    |  |
|                            |                            |                   | Per Euro     |  |
| <pre>1{Encouraged}</pre>   | 0.001                      | -0.004            | -0.002       |  |
| ,                          | (1.08)                     | (-0.30)           | (-0.21)      |  |
| User FE                    | Î. Î.                      | · /               | ` <b>√</b> ´ |  |
| Time FE                    | $\checkmark$               | $\checkmark$      | 1            |  |
| Adj- <i>R</i> <sup>2</sup> | 0.35                       | 0.54              | 0.28         |  |
|                            | Panel B: Carbon Offsetting |                   |              |  |
|                            | Consumption                | Emissions         | Emissions    |  |
|                            |                            |                   | Per Euro     |  |
| 1{Encouraged}              | -0.000                     | -0.023*           | 0.004        |  |
| ,                          | (-0.68)                    | (-1.90)           | (0.40)       |  |
| User FE                    | ` 🖌 '                      | ` <b>/</b> `      | Ì 🖌          |  |
| Time FE                    | 1                          | 1                 | ✓            |  |
| Adj- <i>R</i> <sup>2</sup> | 0.34                       | 0.54              | 0.28         |  |
|                            |                            |                   |              |  |

 $Y_{i,t} = \alpha_i + \alpha_t + \beta \ \mathbb{1}\{\text{Encouraged}\}_{i,t} + \epsilon_{i,t}$ 

#### $\rightarrow$ Encouragement doesn't change the behavior

| App and Data | Spending and Emissions | Results<br>○○○○●○○○○ | Conclusions |
|--------------|------------------------|----------------------|-------------|
|              |                        |                      |             |

### Intention-to-Treat Effects

- Our estimates are Local Average Treatment Effects (LATE)
  - The causal effect of adopting the tools on sustainability
  - Effect on those who adopt
- From a policy perspective, interested in the Intent-To-Treat (ITT) estimate
  - Causal effect of receiving a notification, irrespective of ultimate adoption
  - Effect on entire treated population
- We estimate the following regression:

$$Y_{i,t} = \alpha_i + \alpha_t + \beta \ \mathbb{1}\{\text{Encouraged}\}_{i,t} + \epsilon_{i,t}$$

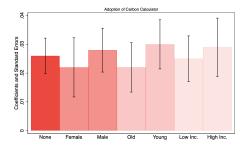
where  $\beta$  provides the ITT estimate of interest.

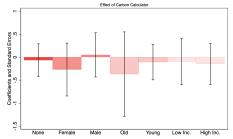
| App and Data | Spending and Emissions | Identification Strategy | Results   |  |
|--------------|------------------------|-------------------------|-----------|--|
|              |                        |                         | 000000000 |  |
|              |                        |                         |           |  |

### Intention-to-Treat Effects

|                            | Panel A: Carbon Calculator |                   |              |  |  |
|----------------------------|----------------------------|-------------------|--------------|--|--|
|                            | Consumption                | Emissions         | Emissions    |  |  |
|                            |                            |                   | Per Euro     |  |  |
| <pre>1{Encouraged}</pre>   | 0.001                      | 0.000             | -0.004       |  |  |
|                            | (1.47)                     | (0.03)            | (-0.36)      |  |  |
| User FE                    | $\checkmark$               | 1                 | $\checkmark$ |  |  |
| Time FE                    | $\checkmark$               | 1                 | $\checkmark$ |  |  |
| Adj- <i>R</i> <sup>2</sup> | 0.35                       | 0.54              | 0.28         |  |  |
|                            |                            |                   |              |  |  |
|                            | Panel E                    | 3: Carbon Offsett | ing          |  |  |
|                            | Consumption                | Emissions         | Emissions    |  |  |
|                            |                            |                   | Per Euro     |  |  |
| <pre>1{Encouraged}</pre>   | -0.000                     | -0.028**          | -0.047**     |  |  |
|                            | (-0.49)                    | (-2.27)           | (-2.42)      |  |  |
| User FE                    |                            | 1                 | $\checkmark$ |  |  |
| Time FE                    | $\checkmark$               | 1                 | $\checkmark$ |  |  |
| Adj- <i>R</i> <sup>2</sup> | 0.34                       | 0.54              | 0.35         |  |  |

| App and Data | Spending and Emissions | Results<br>○○○○○○●○○ | Conclusions |
|--------------|------------------------|----------------------|-------------|
|              |                        |                      |             |


# Heterogeneity


- Individual demographics are correlated with
  - Environmental literacy (Anderson et al., 2022)
  - Preferences & knowledge of socially responsible investments (Bauer et. al., 2021)
  - Support of policies addressing climate change (Stantcheva et. al., 2023)
- $\rightarrow\,$  Might affect the adoption of the sustainability tools and their effect
- $\rightarrow\,$  Null effects may be due to averaging positive and negative effects across users
  - Estimate main specification (carbon per euro) conditioning on
    - Gender
    - Age
    - Income

 Introduction
 App and Data
 Spending and Emissions
 Identification Strategy
 Results
 Conclusion

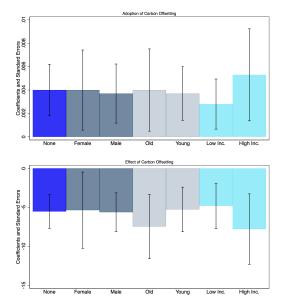
 00000000
 0000
 000000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

### Heterogeneity: Carbon Calculator





ntroduction App :


nd Data

pending and Emissions

Identification Strategy

Results

Heterogeneity: Carbon Offsetting



| App and Data | Spending and Emissions |  | Conclusions<br>• |
|--------------|------------------------|--|------------------|
|              |                        |  |                  |

# Conclusions

- Climate change is one of the most pressing challenges modern society faces
- Individual consumption accounts for 30% of global emissions
  - But little is known regarding how to promote sustainable consumption behavior
- We study the effectiveness of FinTech App tools delivered to help individuals
  - Monitor and reduce the emissions from consumption

#### MAIN FINDINGS

- 1 Individuals are likely to purchase Carbon Calculator services
  - But it does not cause significant changes in consumption and emissions
- 2 Services that offset emissions by planting trees are less likely to be adopted
  - But prove effective in reducing users' net emissions
- 3 No differences when conditioning on socio-demographic characteristics