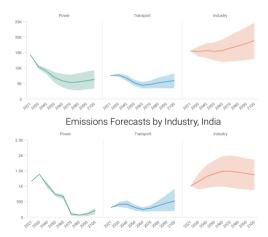
Opening the Brown Box: Production Responses to Environmental Regulation

Rebecca De Simone,¹ S. Lakshmi Naaraayanan,¹ Kunal Sachdeva²


¹London Business School ²Jesse H. Jones Graduate School of Business, Rice University


May 2024

ABFER 2024, Singapore

Focus on Reducing Industrial Emissions

- Industrial emissions $\approx \frac{1}{3}$ of total in 2022 (25.8% in India)
- Emissions of other sectors projected to decline, industrial emissions to rise
- Challenges are technological and uncertainty how to design regulation
- Robust evidence targeting firm emissions reduces them
 - $\rightarrow~$ Often by shifting emissions and selling polluting assets
 - → Mixed evidence on firm-level and aggregate effects
 - → No evidence on within-firm production responses

Units: Million metric tonnes of CO₂e. Source: Rhodium Group Climate Deck Database.

This Paper

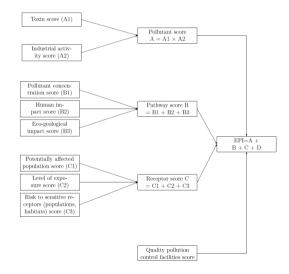
We combine:

- **Quasi-experiment:** Pollution index introduced in 2009 in India targeting place-based emissions; implementation based on pre-defined thresholds
 - \rightarrow Difference-in-discontinuity around treatment thresholds
 - $\rightarrow~$ Fixed effects: Firm and State \times industry $\times~$ Year
- Unique data: Inside the "brown box" of production processes and on firm outcomes
 - \rightarrow Product-level inputs and outputs
 - ightarrow Abatement expenditures and action plans

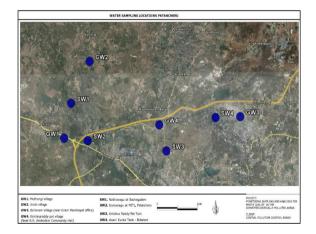
Contributions:

- Evidence on firm-level and within-firm production responses
- Evidence on which firms respond and which bear the burden

Results


- Improved pollution metrics at the cluster and product levels
 - ightarrow Hand-collect subsequent evaluations conducted by the CPCB
 - \rightarrow Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production --increase in abatement expenditures
 - $\rightarrow~$ Shift from high-emission and coal-dependent products
 - \rightarrow Electrify production
 - $\rightarrow~$ Abatement investments concentrated where required
 - ightarrow Highly-polluting firms bear costs, drive changes
- Highest polluting firms drive results
 - \rightarrow Average firm maintains profitability
 - ightarrow Production changes driven by high-polluting firms, which bear costs
 - \rightarrow Non high-polluting increase margins
- Firm and regulator actions lower cost, but loss of aggregate dynamism

Contribution to the Literature


- Quantify impact of environmental regulation on emissions
 - → Command-and-control and cap-and-trade policies can both lower targeted emissions (Fowlie, 2010; Harrison et al., 2019; Bartram et al., 2022; Ivanov et al., 2023, ...)
 - → Evidence for shifting emissions (Aichele and Felbermayr, 2015; Schiller, 2018; Ben-David et al., 2021; Dai et al., 2021a and 2021b; Kim and Xu, 2021, ...)
 - ightarrow We focus on industrial clusters and use unique data and identification to study mechanisms
- Impact of emissions regulations on firm outcomes
 - → Mixed evidence on impact on productivity (Duflo et al., 2013; Kalmenovitz and Chen, 2021; Kala and Gechter, 2023, ...) and financial performance (Lenox and Eesley, 2009; Servaes and Tamayo, 2013; Fan et al., 2019; Naaraayanan et al., 2021, ...)
 - $\rightarrow~$ We document firm-level and within-firm production response
- Broader literature on how firms impact the environment
 - → Highlighted importance of nature of ownership (Dimson et al., 2015, 2021; Krueger et al., 2020; Naaraayanan et al., 2021; Azar et al., 2021; Atta-Darkua et al., 2023; Berg et al., 2023; Ilhan et al., 2023, ...), disclosures (Jouvenot and Krueger, 2019; Bonetti et al., 2023; Tomar, 2023, ...), financial institutions (Kacperczyk and Peydro, 2022; De Haas, 2023; De Haas and Popov, 2023; Ivanov et al., 2023, ...), and self-commitment (Dahlmann et al., 2019; Comello et al., 2021; Freiberg et al., 2021; Duchin et al., 2022; Bolton and Kacperczyk, 2023, ...), trade (Barrows and Ollivier 2021)

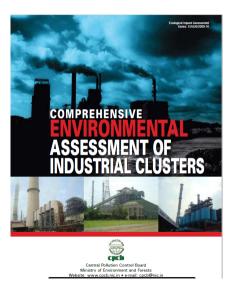
INSTITUTIONAL BACKGROUND

Methodology and Assessment

Methodology and Assessment

Methodology and Assessment

Ambient Air Monitoring Station. Sujana Metals Unit-IV


Surface Water Sampling Point. Isukavagu

Ground Water Sample Point. Bollaram Village

Ground Water Sample Point. Krishnareddypet

Table	Table 5 CEPIs of various Industrial areas/ clusters for Air Environment													
No.	Industrial Cluster/Area	A1	A2	Α	B1	B2	B3	в	C1	C2	C3	С	D	AIR CEPI
1	Agra (Uttar Pradesh)	6.00	2.50	15.00	8.00	3.00	3.00	14.00	5.00	3.00	5.00	20.00	10.00	59.00
2	Ahmedabad (Gujarat)	6.00	5.00	30.00	7.75	3.00	3.00	13.75	3.00	3.00	0.00	9.00	10.00	62.75
3	Aligarh (Uttar Pradesh)	6.00	2.50	15.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	10.00	53.00
4	Angul Talcher (Orissa)	2.00	5.00	10.00	3.00	3.00	3.00	9.00	5.00	5.00	5.00	30.00	15.00	64.00
5	Ankleshwar (Gujarat)	5.00	5.00	25.00	8.00	6.00	6.00	20.00	3.00	4.00	5.00	17.00	10.00	72.00

Table	Table 7 CEPIs of various Industrial areas/ clusters for Land (Soil & Groundwater)													
No.	Industrial Cluster/Area	A1	A2	Α	B1	B2	B3	в	C1	C2	C3	С	D	LAND CEPI
1	Agra (Uttar Pradesh)	5.50	2.50	13.75	7.00	0.00	0.00	7.00	5.00	4.75	5.00	28.75	10.00	59.50
2	Ahmedabad (Gujarat)	3.00	5.00	15.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	58.00
3	Aligarh (Uttar Pradesh)	2.00	2.50	5.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	48.00

Table	Table 6 CEPIs of various Industrial areas/ clusters for Surface Water													
No.	Industrial Cluster/Area	A1	A2	Α	B1	B2	B3	в	C1	C2	C3	С	D	WATER CEPI
1	Agra (Uttar Pradesh)	5.50	2.50	13.75	7.00	0.00	3.00	10.00	5.00	5.00	5.00	30.00	10.00	63.75
2	Ahmedabad (Gujarat)	3.00	5.00	15.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	58.00
3	Aligarh (Uttar Pradesh)	2.00	2.50	5.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	48.00

Table	Table 8 The CEPI scores for industrial areas/ clusters descending order									
No.	Industrial Cluster/Area	AIR	WATER	LAND	CEPI					
1.	Ankleshwar (Gujarat)	72.00	72.75	75.75	88.50	Ac_Wc_Lc				
2.	Vapi (Gujarat)	74.00	74.50	72.00	88.09	Ac_Wc_Lc				
3.	Ghaziabad (Uttar Pradesh)	68.50	75.25	71.50	87.37	Ac_Wc_Lc				
4.	Chandrapur (Maharashtra)	70.75	67.50	66.50	83.88	Ac_Wc_Lc				

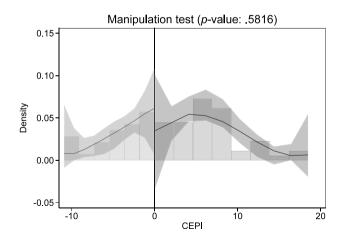
- Clusters with CEPI \geq 60 subject to central monitoring at the national level, rather than the relatively weak local control, and quarterly emissions audits.
- If CEPI \ge 70 additionally mandated to submit a remedial action plan for approval detailing the actions and timelines at the cluster and firm levels.
- Failure to comply with the directives of the action plan:
 - $\rightarrow\,$ Lose their Environmental Clearance and Consent to Operate permits that allow firms to function within the formal economy.
 - ightarrow Consent to Establish permits could not be issued to new operations.

DATA & EMPIRICAL STRATEGY

Datasets

- 2009 policy documents from the CPCB
- Location of industrial clusters in 2009 Construction
- Cluster-level air emissions from satellite readings
 - ightarrow Emission Database for Global Atmospheric Research (EDGAR) Construction
 - \rightarrow Van Donkelaar PM₂.5
- Prowess and CapEx databases from Centre for Monitoring the Indian Economy (CMIE)
 - \rightarrow Financial statements
 - \rightarrow Product-level inputs and outputs
 - \rightarrow Plant announcements
- Business formation from Ministry of Corporate Affairs (MCA)
- 2001 Population Census

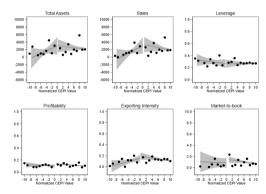
Empirical Specification

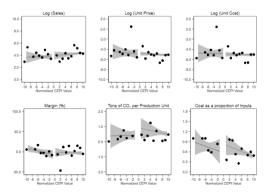

Cluster, firm, and product level specifications

$$Y_{kijcst} = \beta_1 Post_t \times CEPI_c^{[60,70)} + \beta_2 Post_t \times CEPI_c^{[70,100]} + \beta_3 CEPI_c + \beta_4 Post_t + \gamma_i + \kappa_{jst} + \epsilon_{kijcst}$$

- *k,i, j, c, s,* and *t* represent a product, firm, industry, city, state, and year, respectively.
- $CEPI_c^{[60,70)}$ is one if the firm's industrial cluster has a **max** CEPI score \geq 60 and below 70, and zero otherwise.
- $CEPI_c^{[70,100]}$ is one if the firm's industrial cluster has a **max** CEPI score \geq 70, and zero otherwise.
- *Post*_t is one after the regulation was implemented in 2009, and zero otherwise.
- Fixed effects: Firm (γ_i) and State \times industry \times Year (κ_{jst})
- Cluster standard errors at the cluster-level
- Estimate within a bandwidth of 10 CEPI ranking
- β_1 : difference in discontinuity effect of crossing the treatment threshold at CEPI = 60

DiD + RD = DiRD


1. No manipulation of the running variable


- 1. No manipulation of the running variable
- 2. No geographic clustering

- 1. No manipulation of the running variable
- 2. No geographic clustering
- 3. No jumps in firm and product characteristics around the threshold

- 1. No manipulation of the running variable
- 2. No geographic clustering
- 3. No jumps in firm and product characteristics around the threshold

- 1. No manipulation of the running variable
- 2. No geographic clustering
- 3. No jumps in firm and product characteristics around the threshold
- 4. Parallel trends Figures

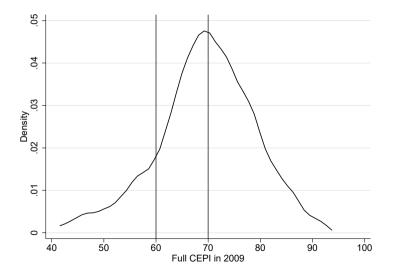
RESULTS

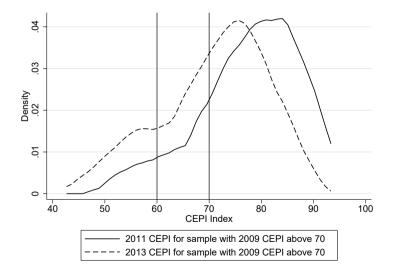
Results

• Improved pollution metrics at the cluster and product levels

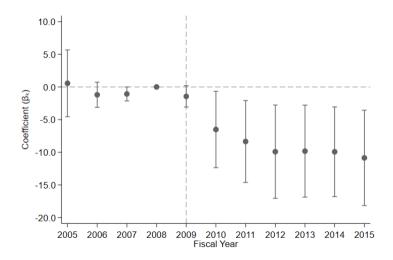
• Treated firms green production, invest in abatement

• Highest polluting firms drive results

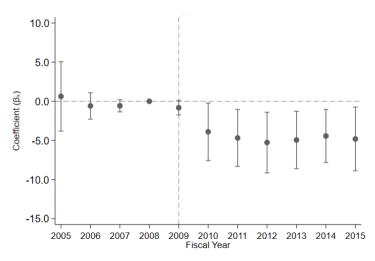

• Firm and regulator actions lower cost, but loss of aggregate dynamism


Results

- Improved pollution metrics at the cluster and product levels
 - ightarrow Hand-collect evaluations conducted by the CPCB
 - \rightarrow Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement


• Highest polluting firms drive results

• Firm and regulator actions lower cost, but loss of aggregate dynamism



Cluster-Level Satellite Readings: Industrial Emissions, All Pollutants

Cluster-Level Satellite Readings: Particulate Matter $< 2.5 \mu$ Units: mg per month

Results

- Improved pollution metrics at the cluster and product levels
 - ightarrow Hand-collect subsequent evaluations conducted by the CPCB
 - \rightarrow Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - $\rightarrow~$ Shift from high-emission and coal-dependent products
 - \rightarrow Electrify production
 - \rightarrow Abatement investments concentrated where required
 - ightarrow Highly-polluting bear costs, drive changes
- Highest polluting firms drive results
- Firm and regulator actions lower cost, but loss of aggregate dynamism

Product Energy Inputs

Firms reduce energy and coal use while electrifying production

Dependent variable	Ln(Value Energy Input)	$\mathbbm{1}$ Coal Use	Proportion Purchased Electricity
$Post \times CEPI^{[60,70)}(\beta_1)$	-1.006***	-0.289*	0.196***
	(0.219)	(0.150)	(0.059)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	-0.818**	-0.301***	0.100**
	(0.294)	(0.092)	(0.036)
Ln(Production Quantity)	-0.208	0.033	-0.034
	(0.300)	(0.027)	(0.036)
2008 Dependent Variable Mean (Control)	8.906 M INR	0.17	0.46
R^2	0.795	0.496	0.786
Observations	901	565	901
p -value [$\beta_1 - \beta_2 = 0$]	0.549	0.905	0.124
	-0.773	-0.308	0.151
	[5.465]	[3.350]	[3.159]

Product-Level Emissions

Product emissions fall, consistent with cluster level evidence

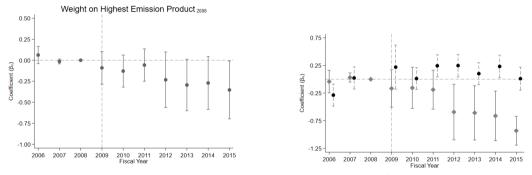
Dependent variable:	Ln(Product CO ₂ Emissions)	Ln(Per Unit CO ₂ Emissions)
$Post \times CEPI^{[60,70)} (\beta_1)$	-1.083*** (0.283)	-0.885*** (0.306)
$Post \times CEPI^{[70,100]}(\beta_2)$	-0.944** (0.346)	-0.687** (0.270)
Ln(Production Quantity)	0.801** (0.334)	
2008 Dependent Variable Mean (Control) R^2 Observations p -value [$\beta_1 - \beta_2 = 0$]	162,229.58 0.893 901 0.691	2.79 0.774 901 0.579
ATE	-1.414 [5.460]	-0.755 [3.709]

Product Portfolio Weights

Relative shift away from dirtiest products

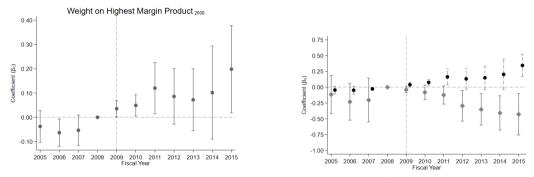
Dependent variable:	Product with Highest Coal Weight ₂₀₀₈	Product with Highest Emissions Weight ₂₀₀₈
Post ×CEPI ^[60,70] (β_1)	-0.309** (0.123)	-0.318** (0.118)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	-0.139 (0.114)	-0.184* (0.101)
2008 Dependent Variable Mean (Control) R^2 Observations p -value $[\beta_1 - \beta_2 = 0]$	0.78 0.775 705 0.123	0.65 0.758 705 0.215
ATE	-0.181 [1.438]	-0.218 [1.981]

Abatement Expenditures from Financial Statements


Abatement expenditures increase on extensive and intensive margins

Dependent variable:	1 Abatement	Abatement/Assets
Post ×CEPI ^{[60,70)} (β_1)	0.048	0.039*
0 - 7	(0.031)	(0.020)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.077**	0.038**
	(0.029)	(0.016)
2008 Dependent Variable Mean (Control)	0.06	0.01
R^2	0.725	0.753
Observations	10,752	10,752
p -value [$eta_1 - eta_2 = 0$]	0.029	0.933
ATE	0.072	0.038
	[2.419]	[2.385]

Results


- Improved pollution metrics at the cluster and product levels
 - ightarrow Hand-collect subsequent evaluations conducted by the CPCB
 - \rightarrow Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - $\rightarrow~$ Shift from high-emission and coal-dependent products
 - \rightarrow Electrify production
 - $\rightarrow~$ Abatement investments concentrated where required
 - ightarrow Highly-polluting bear costs, drive changes
- Highest polluting firms drive results
 - \rightarrow Average firm maintains profitability
 - ightarrow Production changes driven by high-polluting, which bear costs
 - \rightarrow Not high-polluting increase margins
- Firm and regulator actions lower cost, but loss of aggregate dynamism

Changes to Firm Emissions: Portfolio Shifts

High Polluting
 Others

Changes to Firm Profitability: Portfolio Shifts

Results

- Improved pollution metrics at the cluster and product levels
 - ightarrow Hand-collect subsequent evaluations conducted by the CPCB
 - \rightarrow Satellite emissions readings
 - \rightarrow Product energy inputs and imputed CO_2 emissions
- Treated firms green production, invest in abatement
 - $\rightarrow~$ Shift from high-emission and coal-dependent products
 - \rightarrow Electrify production
 - $\rightarrow~$ Abatement investments concentrated where required
 - ightarrow Highly-polluting bear costs, drive changes
- Highest polluting firms drive results
 - \rightarrow Average firm maintains profitability
 - ightarrow Production changes driven by high-polluting, which bear costs
 - \rightarrow Not high-polluting increase margins
- Firm and regulator actions lower cost, but loss of aggregate dynamism

Haldia Planning Area, West Bengal: 2009 CEPI: 75.43 2013 CEPI: 61.58

Fig. -1: Boundary of critically polluted area in Haldia

12. Summary of proposed action points

12.1 Short Term Action Points (up to 1 year, including continuous Activities)

Sr	Action Points (including source &	Responsible Stake	Time limit	Cost	Remarks
No	mitigation measures)	Holders			
WAT					
	1.	Standard flow	meter at fir	al outlet of	ETP
1	$\label{eq:linear} \begin{array}{l} \mbox{Identification} & \mbox{of units} \\ \mbox{having effluent quantity} \\ \mbox{more than 25 } \mbox{m}^3\mbox{/day}. \end{array}$	GPCB, Concerned industries, CIA	Completed 30.06.2010		To control overflowing of CIA pipeline in future, it is necessary to control the discharge of excessive quantity of wastewater from the industrial units. Identification completed
	Industrial Association will issue the circular to their member to provide the Standard flow meter.	Concerned industries, CIA	31.12.2010	3.30 lacs	It is necessary to have metering system consisting of Standard Flow Meter (MFA) at the final outlet for industries having discharge more than 25 m3/day. Out of identified units, four industries have already provided the flow meter and rest has procured for installation during connection to the conveyance system.

SI. No.	Action Points (including source & mitigation measures)	Responsible Stake Holders	Time Limit	Cost	Remarks
1	Installation of CETP	Industry Association & Industry, WBPCB, MOEF as per CETP cost sharing principle of MOEF coordinated by SPCB	By June 2012	1.5 Crore	Necessary funding may be granted through WBPCB
2	Installation of AAAQM	Industry Association & Industry	By June 2012	02 Crore	Necessary funding may be granted through WBPCB
3		Industry Association & Industry	By June 2012	02 Crore	Necessary funding may be granted through WBPCB. The possibility of accessing Infrastructural Funding Assistance from GOI will be explored.

Name	Technology adopted du	uring last one	year	Time
	Air	Water	Land	frame
5. Tata Chemicals Ltd.	I. Dry. Fog. system and water sprinking System. (Coal Handling plant, colke Handling system, Wagon Trippler) 2. Fully covered Wagon Trippler and conveyor belts .(Coal unloading station). 3. Green Belt Development. Within factory premises. 4. Power plant with 16 nos of WHRBs. Along with the process.	Boiler Boiler Boiler Boiler Boiler Boiler Boiler With water is used for Coke quenching purpose in 2 rower discharge water is used for Coke quenching purpose in other 2 rows	1 Coke Swamp breeze is the only solid waste (non – hazardous in nature) generated from the process. The average generation of swamp breeze is approx 1000 tons per month which is being sold to third party completely 2. Total 15000 (approx) numbers of trues planted till date, nearly 2000 sapings have been planted	Already implem nted

JK Lakshmi Cement Limited Annual Report

During the year, the Company further improved its operating efficiencies. There was reduction in consumption of both power and fuel per unit of production. In addition, the Company improved usage of alternate fuel of bio-mass from 2% to 6%. These improvements have enabled the Company to also reduce the carbon footprint.

Firm Productivity and Profitability

- Firms increase productivity and profitability, shifting towards high-margin products
- - ightarrow ...but achieve significant emission reductions ightarrow
 - ightarrow Regulator, local government share costs with industry groups ightarrow
- Non-highly polluting industries increase product margins

Aggregate Effect and Other Explanations

- Product variety decreases
- Business dynamism within cluster decreases driven by lower firm entry
 - ightarrow All firms (include small firms) ightarrow
 - \rightarrow Large firms (Prowess) \bigcirc
- No evidence firms shift production location
 - ightarrow No effect on mergers and acquisitions ightarrow
 - ightarrow No affect on new plant announcements ightarrow

Open the "Brown Box:" Production Responses to Emissions Regulation

We find:

- Firms lower emissions by (1) shifting away from high-emission energy sources, (2) electrifying production, and (3) investing in abatement
- Regulated clusters exhibit lower firm entry and product variety
- More highly regulated firms reduce emissions the most and bear the brunt of costs
- In aggregate, productivity and profitability maintained

Implications:

- Important for environmental regulation design when enforcement and monitoring are weak (Greenstone and Jack (2015), Duflo et al. (2018))
- Can cap geographically-tied emissions, but exacts economic cost
- Design of risk and cost-sharing between industry and government
- Need for coordinating decarbonization policies: industrial and electricity generation

THANK YOU!

Cluster-Level Satellite Readings: Van Donkelaar PM_{2.5} Measure

Dependent variable:	Fine $PM_{2.5}~(\mu~g/m^3)$			
Radii of circle:	5 kilometers	500 meters		
Post ×CEPI ^[70,100] (β_1)	-2.311***	-1.893**		
0 - 7	(0.775)	(0.743)		
$Post \times CEPI^{[60,70)}(\beta_2)$	-1.018	-0.560		
· -/	(0.756)	(0.673)		
2008 Dependent Variable Mean (Control)	84.0	84.0		
R^2	0.963	0.959		
Observations	17,952	18,216		

Notes. All models estimated within bandwidth of 10 CEPI; include Cluster & State × year-month FE.

• Reduction in PM₂.5 emissions of 4% relative to the pre-regulation control mean.

Cluster-Level Satellite Readings: Energy Sector Placebo

No effect on emissions of un-treated sector

Dependent variable:	Pollution Measurement			
- Pollutant(s):	All	$PM_{2.5}$	PM_{10}	NO_x
Post ×CEPI ^{[60,70)} (β_1)	-0.229	-0.112	-0.170	-0.405
	(0.715)	(0.274)	(0.542)	(1.415)
$Post \times CEPI^{[70,100]}(\beta_1)$	-0.169	-0.181	-0.184	-0.143
	(0.755)	(0.304)	(0.549)	(1.520)
2008 Dependent Variable Mean (Control)	8.18	1.78	3.34	19.43
R^2	0.756	0.795	0.823	0.734
Observations	29,808	9,936	9,936	9,936
p -value [$\beta_1 - \beta_2 = 0$]	0.915	0.765	0.975	0.792
ATE	-0.186	-0.161	-0.180	-0.217
	[0.266]	[0.579]	[0.357]	[0.153]

Firm-level energy input

Dependent variable:	Ln(Value Firm I	Energy Input)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.667*** (0.138)	-0.821*** (0.189)
$Post \times CEPI^{[70,100]}(\beta_2)$	0.031 (0.095)	-0.018 (0.190)
$Post \times CEPI^{[70,100]} \times High-Polluting(\beta_4)$		0.062 (0.280)
Post ×CEPI ^[60,70] × High-Polluting (β_3)		0.392* (0.223)
2008 Dependent Variable Mean (Control) Adjusted- R^2 Observations p -value $[\beta_1 - \beta_2 = 0]$	219.92 0.959 358 0.003	0.214 0.959 358
ATE	-0.119 1.266	

Lower Product Variety Return

Adjust product portfolio to lower product variety

Dependent variable:	Ln(Product-level Production	Ln(No. of Products)	${}^{l\!\!\!1}$ Add Product	$\mathbbm{1}_{Remove}$ Product
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.110	0.013	-0.117***	0.003
	(0.182)	(0.078)	(0.041)	(0.036)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.030	0.007	-0.057*	0.023
	(0.130)	(0.072)	(0.034)	(0.030)
2008 Dependent Variable Mean (Control)	29,784	2.71	0.27	0.17
R^2	0.582	0.746	0.263	0.242
Observations	15,521	10,752	10,752	10,752
p -value $[\beta_1 - \beta_2 = 0]$	0.429	0.904	0.094	0.314
ATE	0.007	0.008	-0.068	0.019
	[0.063]	[0.118]	[2.138]	[0.621]

Cluster business dynamism decreases from lower firm entry Return Full firm registry

Dependent variable:	$\mathbbm{1}_{\operatorname{New}\operatorname{Firm}}$	Log(No. of firms)) $asinh(No. of firms)$	No. of firms (Poisson)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.009	-0.011	-0.014	-0.105
	(0.011)	(0.010)	(0.013)	(0.138)
$Post \times CEPI^{[70,100]}(\beta_1)$	-0.018*	-0.016*	-0.020*	-0.185*
	(0.010)	(0.009)	(0.012)	(0.104)
2008 Dependent Variable Mean (Control) <i>R</i> ² Observations	0.08 0.449 33.534	0.20 0.570 33,534	0.20 0.570 33.534	0.20 19.958
p -value $[\beta_1 - \beta_2 = 0]$	0.154	0.402	0.373	0.735
ATE	-0.013	-0.010	-0.013	-0.169
	[1.360]	[1.206]	[1.189]	[1.582]

Firm Entry: Prowess (Large) Firms

Dependent variable:	nt variable: $\mathbbm{1}_{New Firm}$ Log(No. of firms) $asinh(No. of firms)$		No. of firms (Poisson)	
	(1)	(2)	(3)	(4)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.003	0.001	0.001	-0.289
	(0.017)	(0.016)	(0.021)	(0.440)
$Post \times CEPI^{[70,100]}\left(\beta_1\right)$	-0.041*	-0.035*	-0.045*	-0.795**
	(0.021)	(0.018)	(0.023)	(0.370)
2008 Dependent Variable Mean (Control)	0.01	0.01	0.01	0.01
Adjusted- R^2	0.172	0.212	0.213	
Observations p -value $[\beta_1 - \beta_2 = 0]$ ATE tvalue	4,416 0.018	4,416 0.074	4,416 0.076	678 0.103

No evidence firms shift production location remo

No effect on mergers and acquisitions

Dependent variable:	1 _{Target}	¹ Acquired
Post ×CEPI ^{[60,70)} (β_1)	0.018	-0.000
() -)	(0.012)	(0.008)
$Post \times CEPI^{[70,100]}(\beta_1)$	0.009	0.005
	(0.009)	(0.007)
2008 Dependent Variable Mean (Control)	0.00	0.00
Adjusted-R ²	0.193	0.148
Observations	10,752	10,752
$ ho$ -value [$eta_1-eta_2=0$]	0.345	0.430
ATE	0.007	0.003
	[0.740]	[0.534]

No evidence firms shift production location remo

No affect on new plant announcement or plant abandonment

Dependent variable:	1 _{New Plant}	1 Abandon Plant
Post ×CEPI ^{[60,70)} (β_1)	0.008	0.003
	(0.013)	(0.011)
$Post \times CEPI^{[70,100]} \left(\beta_1\right)$	-0.010	-0.004
	(0.011)	(0.010)
2008 Dependent Variable Mean (Control)	0.00	0.00
R^2	0.350	0.284
Observations	10,752	10,752
p -value [$eta_1 - eta_2 = 0$]	0.099	0.100
ATE	-0.007	-0.002
	[0.590]	[0.238]

Productivity and Profitability Return

Dependent variable:	Ln(TFP)	EBITDA/ Sales	Raw Material Expense
Post ×CEPI ^[60,70] (β_1)	0.100	0.004	-0.033
	(0.075)	(0.015)	(0.030)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.127***	0.008	-0.034
	(0.039)	(0.014)	(0.027)
2008 Dependent Variable Mean (Control)	2.77	0.10	0.56
R^2	0.851	0.638	0.641
Observations	10,752	10,752	10,752
p -value [$eta_1-eta_2=0$]	0.695	0.556	0.952
ATE	0.122	0.007	-0.034
	[3.238]	[0.496]	[1.326]

Productivity and Profitability Return

Firms in non-HPI drive productivity gains

Dependent variable:	Ln(TFP)	EBITDA/ Sales	Raw Material Expense
$Post \times CEPI^{[60,70)}(\beta_1)$	0.131*	0.008	-0.061**
	(0.074)	(0.015)	(0.030)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.146***	0.009	-0.039
	(0.043)	(0.015)	(0.027)
$Post \times CEPI^{[60,70)} \times High-Polluting \left(\beta_3\right)$	-0.114	-0.016	0.095***
	(0.161)	(0.011)	(0.032)
$Post \times CEPI^{[70,100]} \times High-Polluting(\beta_4)$	-0.076	-0.004	0.017
	(0.054)	(0.007)	(0.013)

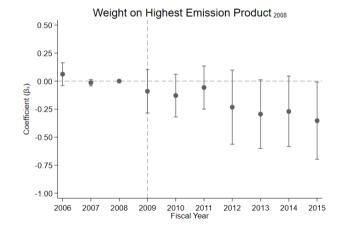
Quantity Productivity Return

Dependent variable:	Log(Quantity-based Productivity)		
$Post \times CEPI^{[70,100]} \left(\beta_1\right)$	-0.174 (0.153)	-0.118 (0.164)	
$Post \times CEPI^{[60,70)} (\beta_2)$	-0.287 (0.176)	-0.190 (0.302)	
$Post \times CEPI^{[70,100]} \times High\operatorname{-Polluting}(\beta_3)$		-0.184 (0.127)	
Post ×CEPI ^[60,70] × High-Polluting (β_4)		-0.189 (0.376)	
2008 Dependent Variable Mean (Control)	8.6	8.6	
Firm FE	Yes	Yes	
State $ imes$ industry $ imes$ year FE	Yes	Yes	
Bandwidth	Yes	Yes	
R^2	0.824	0.825	
Observations	1,898	1,898	

Competitive Effect? Return

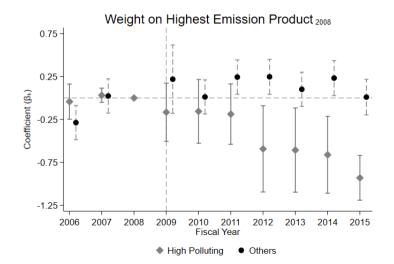
No change in pricing; margins likely driven by portfolio shift

Dependent variable:	Highest Margin Product Weight ₂₀₀₈	Product Margins	Ln(Unit Price)	Ln(Unit Cost)
$Post \times CEPI^{[60,70)} \left(\beta_1\right)$	0.120**	0.037	-0.059	-0.016
	(0.050)	(0.081)	(0.225)	(0.194)
$Post \times CEPI^{[70,100]}(\beta_2)$	0.124***	0.147***	-0.129	-0.221
	(0.046)	(0.054)	(0.220)	(0.197)
2008 Dependent Variable Mean (Control)	0.72	0.00	0.72	0.89
R^2	0.880	0.722	0.592	0.599
Observations	15,984	15,225	15,984	15,225
p -value $[\beta_1 - \beta_2 = 0]$	0.865	0.140	0.439	0.056
ATE	0.124	0.126	-0.116	-0.183
	[2.731]	[2.179]	[0.538]	[0.966]


Competitive Effect? (Return)

HPI de-emphasize highest-margin product because it is high emission?

Dependent variable:	Highest Margin Product Weight ₂₀₀₈	Product Margins	Ln(Unit Price)	Ln(Unit Cost)
$Post \times CEPI^{[60,70)}(\beta_1)$	0.166***	0.018	-0.055	0.024
	(0.053)	(0.096)	(0.218)	(0.193)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.129***	0.157***	-0.160	-0.255
	(0.047)	(0.052)	(0.220)	(0.200)
$Post \times CEPI^{[60,70)} \times High\operatorname{-Polluting}(\beta_3)$	-0.122**	0.043	0.003	-0.084
	(0.058)	(0.078)	(0.185)	(0.207)
$Post \times CEPI^{[70,100]} \times High-Polluting(\beta_4)$	-0.015	-0.042	0.112	0.137
	(0.017)	(0.032)	(0.082)	(0.123)


Product Portfolio: Weight Highest Emission Product Reun

Production changes driven by firms in HPI

Product Portfolio: Weight Highest Emission Product Reun

Production changes driven by firms in HPI

