Mutual Risk Sharing and FinTech: The Case of Xiang Hu Bao

Hanming Fang, Xiao Qin, Wenfeng Wu, and Tong Yu

2024 ABFER Conference

May 22, 2024

Xiang Hu Bao (October 2018 - January 2022). Rest in Peace.

Motivations

- A cornerstone of insurance is pooling/diversification
- Mutuality principle (Borch, 1962)
 - In a frictionless market, it is optimal for participants to pool idiosyncratic risks and mutually share risks
 - Market risks are allocated among participants based on risk tolerance
- Reality:
 - Mutual risk sharing is missing
 - insurance companies play a central role in managing risks, setting premiums for policyholders with a goal to maximize their value (Marshall, 1974)
 - \blacksquare Opaque; high operating and regulatory compliance costs \Rightarrow high premium
 - Insurers' operating expenses account for about one third of insurance premiums charged by U.S. insurance companies (data from the NAIC, 1990-2015)

FinTech makes decentralized mutual risk sharing possible

Mutual Risk Sharing and Fintech

- "Mutual aid" platforms: Emerging Fintech firms can use online platforms to reach traditionally un-insured customers and process business efficiently
- Xiang Hu Bao (XHB) is the largest so far
 - Launched in Oct 2018;
 - Provides critical illness indemnity to members who meet basic health and risk criteria
 - Spectacularly successful:
 - XHB had nearly 100 million members one year after its launch
 - $\blacksquare \approx$ total number of policyholders for the traditional critical illness insurance
- XHB stopped on January 28, 2022; 75 million members upon closure
 - Paid nearly CNY 20 billion to 200,000 participants from 2019/01 to 2022/01

XHB Aggregate Enrollment and Claim Payments

XHB Cost Per Member: Biweekly

- Fact 1: Much lower cost of XHB, compared to traditional critical illness insurance (CII)
 - On a biweekly basis, an ill member (below 40) receives \$53,000 by paying \$1
- Fact 2: Strikingly lower incidence rate of *XHB*, compared to traditional critical illness insurance (CII)
 - Its incidence rate is only 1/7 to 1/6 to that of traditional illness

Institutional Details

Two XHB Plans

Critical illness plan (CIP)

- Member age: young and middle-aged participants between 30 days and 59 years old
- Coverage: 100 critical illnesses + 5 rare illnesses
- Indemnity levels
 - 0-39: CNY300,000
 - 40-59: CNY100,000
 - Reduced plans since Jun. 1, 2020
 - 0-39: CNY100,000 (Reduced)
 - 40-59: CNY50,000 (Reduced)
- Senior cancer plan (SCP): only 4% of the membership
 - Member age: senior participants from 60 to 70 years old
 - Coverage: critical malignant tumor only
 - Indemnity level: CNY100,000

Claim Process

Panel B: Claim Process

Apply artificial intelligence to process claims

- Standardize claim procedure
- Applying textual and graphic analysis in evaluating claim materials
- Applying AI in task assignment
- Handled 200,000 claims in 2020, relative to PingAn: 50,000 claims; Taikang: 40,000 claims
- Crowd wisdom
 - Panel votes

XHB vs. Traditional Critical Illness Insurance (CII): Similarity

- Both provide fixed indemnity payments once the member (or policyholder) for covered critical illnesses.
- The set of covered critical illnesses are the same.

XHB vs. CII: Differences

Fixed indemnity amount:

- XHB: CNY300,000 for participants under 40 years of age, and CNY100,000 for participants aged between 40 and 59 for covered critical illness; The members do not have choices over the indemnity amount.
- Most of the traditional CII plans have an indemnity level of CNY300,000, though policyholders have more flexible choices.

Administrative cost:

XHB's 8% administrative cost charge is much lower than the typical 50% or higher administrative costs for CII products.

Ex-ante vs. ex-post pricing:

 XHB does not collect premiums ex ante from its members, instead equally allocates the aggregate indemnities payouts plus an 8% administrative fee among its active members at each claims payment period.

An Illustrative Model

Model

Denote *p_X* as the average incidence rate of the covered critical illnesses for *XHB* members, *k* as the indemnity amount, *λ_X* as *XHB*'s loading factor (8%). Then, the per member cost sharing, denoted by *π_X*, as:

$$\pi_X = p_X k (1 + \lambda_X)$$

Similarly, the premium for the traditional CII π_I with the same indemnity coverage k is:

$$\pi_I = p_I k (1 + \lambda_I)$$

where p_l is the average incidence rate and λ_l is the loading factor for traditional insurance.

• $\Delta \pi = \pi_X - \pi_I$ can be decomposed as:

$$\Delta \pi = \underbrace{[p_X - p_l]k(1 + \lambda_X)}_{P_l} + \underbrace{p_l K(\lambda_X - \lambda_l)}_{P_l}$$

IR difference

Loading difference

Possible Channels

Cost channel

- Fintech lowers administrative costs: λ_X < λ_I: enrollment costs and claim processing
- Pricing channel
 - Ex-post loss sharing vs. ex-ante risk sharing
 - variable price versus "fixed" price
- Alipay users are healthier than the general population
 - Credit scores, incomes, mobile users, etc are sources of advantageous selection, at least in the short term
 - Indemnity level restrictions can result in advantageous selection in XHB's competition against CII

Rothschild-Stiglitz Framework: *MRS* vs. Insurance in State Space

 W_1

Explanations and Interpretations

- W_1 is wealth in the no loss state; W_2 is wealth in the loss state
- Holding risk aversion constant, the high risk individual selects I (insurance) while low-risk individual selects X (XHB)
- I offers more coverage than X
- Alternatively, holding risk constant, The interpretation holds
 - individuals differ in their risk attitudes

Individual Choices under Asymmetric Information

	Decision
Risk type	
High	
Low	

When only insurance is available

	Decision
Risk type	
High	buy insurance
Low	Do nothing

When XHB is also available

	Decision
Risk type	
High	buy insurance
Low	Buy XHB

Choice between Mutual Aid versus Insurance: Separating Equilibrium

When individuals only differ in risk types, individuals with high risk (private information) choose I and individuals with low risk choose X when I offers more coverage than E.

Data Sets

XHB Data Sets

Enrollment data:

- *XHB*'s total number of participants in each two-week period from January 2019 to June 2021.
- For two periods (2020 January #1 and 2020 November #1): number of enrolled participants by six age groups: 0-9; 10-19; 20-29; 30-39; 40-49; and 50-59.
- Claims Data: Detailed information of each approved claim
 - Payment date, claimant's name, city of residence, age, gender;
 - Covered critical illness (including identifiers for mild critical illnesses), indemnity amount, and number of participants who share the costs.
- Survey of online mutual aid products conducted by Ant Financial in 2019: sample size 58,721

Critical Illness Insurance Participation and Incidence Rate Data

- Our data for participation and claims of CII come from the 2020 Historical Critical Illness Incidence Rate Table report published by the China Association of Actuaries (CAA).
- The table reports the incidence rates separately for, by age and by gender:
 - 6 leading critical illnesses;
 - 25 leading critical illnesses.
- Incidence rate is calculated based on the payouts of a group of most popular critical illness insurance policies:
 - Excludes the first year policies;
 - Only the first payment is included to construct the insurance incidence rate table (CII often allows multiple payments).
 - Thus comparable to the incidence rates observed for XHB members in concept.

Enrollment Distribution across Ages: XHB vs. CII

26 / 33

Incidence Rates across Ages: XHB vs. CII

Group	# XHB	# >	KHB	I	R [×]	I	R'	IR I	Ratio
	(6-period lag)	Ca	ses	(per n	nillion)	(per n	nillion)	CII/	XHB
		CI6	CI25	CI6	CI25	CI6	CI25	CI6 (t-stats)	CI25 (t-stats)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
<10	$6,\!686,\!520$	23	25	81	91	173	254	2.46(7.47)	3.19(8.79)
$10{\sim}19$	4,854,522	9	11	46	54	239	309	6.39(8.80)	7.21(7.84)
$20{\sim}29$	$27,\!647,\!050$	153	162	133	141	1,024	1,132	8.51 (14.50)	8.80(15.11)
$30{\sim}39$	$28,\!843,\!376$	475	494	395	411	2,440	2,610	6.45(17.34)	6.64(17.38)
$40{\sim}49$	$14,\!904,\!129$	477	492	768	793	4,910	5,272	6.80(13.89)	7.07(14.15)
$50{\sim}59$	11,103,777	666	690	1,440	1,491	7,986	8,657	6.53(10.33)	6.85(10.41)
Total	94,039,375	$1,\!804$	$1,\!875$	460	478	$3,\!192$	$3,\!459$	7.34(15.06)	7.66 (15.12)

Mutual Aid Survey Evidence

	(1)	(2)	(3)
	All ages	< 40 years	≥ 40 years
Age	-0.0001	0.01^{***}	-0.01**
	(-0.06)	(6.81)	(-2.50)
Female	0.01	-0.004	0.06
	(0.39)	(-0.18)	(1.47)
Ins	-0.29***	-0.28***	-0.34***
	(-16.56)	(-14.07)	(-9.47)
CityTier	-0.01	-0.01***	0.03^{***}
	(-1.02)	(-2.77)	(3.02)
Inc2	0.28^{***}	0.30^{***}	0.15^{***}
	(14.40)	(13.26)	(3.68)
Inc3	0.37^{***}	0.38^{***}	0.21^{***}
	(14.32)	(12.83)	(3.92)
Inc4	0.43***	0.46^{***}	0.22**
	(9.27)	(8.47)	(2.38)
Inc5	0.24^{***}	0.17	0.42^{**}
	(2.67)	(1.63)	(2.22)

- Survey on Alipay account holders' participation in mutual aid programs
- Mutual aid members often do not have commercial critical illness insurance
- High incomers are more likely to be mutual aid program members

Survey Result: Subsequent Insurance Purchase

	(1)	(2)	(3)
	All ages	< 40 years	≥ 40 years
MA	0.34^{***}	0.39^{***}	0.17^{*}
	(8.83)	(8.94)	(1.71)
AGE	-0.04***	-0.04***	-0.04***
	(-27.09)	(-13.24)	(-8.59)
FEMALE	0.37^{***}	0.42^{***}	0.22^{***}
	(10.73)	(10.4)	(3.05)
TIER	-0.01	-0.02*	0.02
	(-1.17)	(-1.88)	(1.08)
INC2		0.26^{***}	0.67^{***}
		(6.9)	(9.87)
INC3		0.53^{***}	0.86^{***}
		(10.54)	(9.49)
INC4		0.75^{***}	1.11^{***}
		(7.69)	(7.1)
INC5		0.51^{***}	1.33^{***}
		(2.87)	(3.87)
\mathbf{SS}	0.21^{***}	0.21^{***}	-0.11
	(4.92)	(4.47)	(-1.04)
INS	2.11***	1.89***	2.44^{***}
	(58.53)	(45.32)	(31.24)

Question: Would you plan to buy or continue to buy commercial health insurances in the future?

Survey Result: Subsequent Insurance Purchase

	$MA_t = 0$	$MA_t = 1$	Total
$INS_{t+1} = 0$	5,962	3,346	9,308
$INS_{t+1} = 1$	$13,\!846$	11,011	$24,\!857$
Total	19,808	$14,\!537$	34,165

$$Prob(INS_{t+1} = 1 | MA_t = 0) = \frac{13,846}{19,808} = 0.70$$
$$Prob(INS_{t+1} = 1 | MA_t = 1) = \frac{11,011}{14,357} = 0.77$$

Mutual aid participation appears to positively affect household commercial insurance consumption.

Conclusions

- Fintech makes mutual risk sharing possible
 - Pooling risk in a large pool
- Mutual risk sharing such XHB are different from traditional insurance;
 - Ex-post cost sharing
 - Low coverage
- More efficient risk sharing arrangement than traditional insurance.

Thank You!