THE ANATOMY OF A PEG: LESSONS FROM CHINA'S PARALLEL CURRENCIES

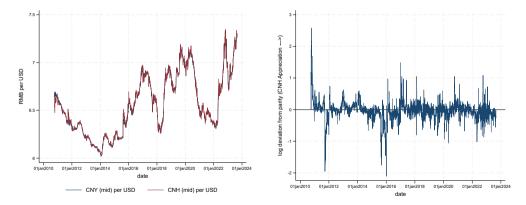
Saleem Bahaj¹ Ricardo Reis²

¹UCL and Bank of England

 ^{2}LSE

May 2024

CHINA'S LARGE-SCALE MONETARY EXPERIMENT


- CNY: mainland currency, Chinese
- CNH: parallel currency, anyone
- Controls to convert CNH-CNY

Part of internationalisation strategy

Open current account, closed capital account

- Open current account: CNH convertible. Chinese can export/import without restriction in CNH (or USD) and convert to CNY without limits against invoices.
- Closed capital account: restrictions on conversion for capital flows.
- Barrier: monitoring conversion of CNH to CNY and vice versa

GRESHAM'S LAW: THE PEG TO PARITY AND SUCCESSTension: if $ln(E) \neq 0$ for too long, capital controls will fail.CNH (\hat{E}) and CNY (\tilde{E}) to USDCNY to CNH (E)

CNY is domestic currency: $E \uparrow$ is a depreciation of CNY vs CNH. $\hat{E} \uparrow$ is a depreciation of CNH vs USD. So $E * \hat{E} \equiv \tilde{E} \uparrow$ is a depreciation of CNY vs USD.

THIS PAPER

1) How does the system work?

- Controlling scarcity of *M* to target *E*. Advantage: *E* as a pressure valve for \hat{E} .
- Setting virtuous as testing ground for link between money and exchange rates.
- Estimate elasticity of reserve demand; confirm scarcity.

THIS PAPER

1) How does the system work?

- Controlling scarcity of *M* to target *E*. Advantage: *E* as a pressure valve for \hat{E} .
- Setting virtuous as testing ground for link between money and exchange rates.
- Estimate elasticity of reserve demand; confirm scarcity.

2) Monetary anatomy of a peg:

- An increase in money demand is accommodated by response of money supply.
- Estimate the policy rule.
- Money adjustment insufficient to maintain peg, other policies required.

THIS PAPER

1) How does the system work?

- Controlling scarcity of *M* to target *E*. Advantage: *E* as a pressure valve for \hat{E} .
- Setting virtuous as testing ground for link between money and exchange rates.
- Estimate elasticity of reserve demand; confirm scarcity.

2) Monetary anatomy of a peg:

- An increase in money demand is accommodated by response of money supply.
- Estimate the policy rule.
- Money adjustment insufficient to maintain peg, other policies required.
- 3) Liquidity anatomy of a peg:
 - Liquidity policies matter for exchange rates.
 - Case studies on the role of capital controls.

2. The CNH monetary regime

People's Bank of China		
Assets Liabilities		
(a) CNY Assets	(c) CNY Onshore Reserves	
(b) FX Assets	(d) CNY Clearing Bank Reserves	
	(e) CNH Bills	
	(f) Equity, Others	

Olisitore Clearing Darks		
Assets	Liabilities	
(g) CNY Clearing Bank	(i) CNH Commercial	
Reserves	Bank Sight Deposits	
(h) Other Assets	(j) CNH HKMA Deposits	
	(k) CNY Equity, Others	

Offebore Clearing Banks

People's Bank of China		
Assets Liabilities		
(a) CNY Assets	(c) CNY Onshore Reserves	
(b) FX Assets	(d) CNY Clearing Bank Reserves	
	(e) CNH Bills	
	(f) Equity, Others	

Offshore Clearing Banks

Assets	Liabilities
(g) CNY Clearing Bank	(i) CNH Commercial
Reserves	Bank Sight Deposits
(h) Other Assets	(j) CNH HKMA Deposits (k) CNY Equity, Others

Hong Kong Commercial Banks CNH

Assets	Liabilities
(q) Deposits at Clearing	(t) Deposits
Banks	(u) PLP Balances
(r) PBoC CNH Bills	(v) HKMA Facilities
(s) Loans, Others	(w) Equity, Others

People's Bank of China		
Assets Liabilities		
(a) CNY Assets	(c) CNY Onshore Reserves	
(b) FX Assets	(d) CNY Clearing Bank Reserves	
	(e) CNH Bills	
	(f) Equity, Others	

Offshore Clearing Banks		
Assets Liabilities		
(g) CNY Clearing Bank	(i) CNH Commercial	
Reserves	Bank Sight Deposits	
(h) Other Assets	(j) CNH HKMA Deposits	
	(k) CNY Equity, Others	

0001

Hong Kong Commercial Banks CNH

Assets	Liabilities
(q) Deposits at Clearing	(t) Deposits
Banks	(u) PLP Balances
(r) PBoC CNH Bills	(v) HKMA Facilities
(s) Loans, Others	(w) Equity, Others

- PBoC weekly manages *M* through bills: (e) down (d) up; (g) up (i) up ; (q) up, (r) down.

	People's Bank of China		Offshore Clearing Banks	
	Assets	Liabilities	Assets	Liabilities
(a) CN	VY Assets	(c) CNY Onshore Reserves	(g) CNY Clearing Bank	(i) CNH Commercial
(b) FX	Assets	(d) CNY Clearing Bank Reserves	Reserves	Bank Sight Deposits
		(e) CNH Bills	(h) Other Assets	(j) CNH HKMA Deposits
		(f) Equity, Others		(k) CNY Equity, Others

Hong Kong Monetary Authority CNH

Assets	Liabilities
(l) Deposits at Clearing Banks	(p) Equity, Others
(m) PLP Balances	
(n) Liquidity Facilities	
(o) Other Assets	

Hong Kong Commercial Banks CNH

Assets	Liabilities
(q) Deposits at Clearing	(t) Deposits
Banks	(u) PLP Balances
(r) PBoC CNH Bills	(v) HKMA Facilities
(s) Loans, Others	(w) Equity, Others

- PBoC weekly manages *M* through bills: (e) down (d) up; (g) up (i) up ; (q) up, (r) down.
- HKMA hourly manages *M* through lending facility: (l) down (m) up; (q) up (u) up.

3. Money and the exchange rate

OFFSHORE BANKING AND THE EXCHANGE RATE

- Static, risk neutral + competitive. Banks raise deposits onshore or offshore. Cost of equity of 1. Chinese and RoW households supply deposits; liquidity benefit. Asset side unimportant.
- Key ingredient: Liquidity cost per deposit: $\phi(M/D)$, decreasing in reserve-deposit ratio

OFFSHORE BANKING AND THE EXCHANGE RATE

- Static, risk neutral + competitive. Banks raise deposits onshore or offshore. Cost of equity of 1. Chinese and RoW households supply deposits; liquidity benefit. Asset side unimportant.
- Key ingredient: Liquidity cost per deposit: $\phi(M/D)$, decreasing in reserve-deposit ratio
- Bank indifference between reserves in CNY or CNH

$$\left(\frac{\mathbb{E}(E')}{E}\right)\left(R^m - \phi'(M/D)\right) = \underbrace{\text{value of CNY reserve}}_{=1, \text{ normalisation}}$$

- $\rightarrow \mathbb{E}(E') = 1 \implies$ credible peg.
- $\rightarrow \mathbb{R}^m$ CNH reserve gross rate (1 in data, no interest rate shocks).
- $\rightarrow M/D$ is offshore reserve-deposit ratio ($\phi''(.) > 0$)
- \rightarrow onshore policy independent of *E*, normalise.

OFFSHORE BANKING AND THE EXCHANGE RATE

- Static, risk neutral + competitive. Banks raise deposits onshore or offshore. Cost of equity of 1. Chinese and RoW households supply deposits; liquidity benefit. Asset side unimportant.
- Key ingredient: Liquidity cost per deposit: $\phi(M/D)$, decreasing in reserve-deposit ratio
- Bank indifference between reserves in CNY or CNH

$$(R^m - \phi'(M/D)) = E$$

- \rightarrow Interest semi-elasticity of reserve demand $\varepsilon_m \equiv \partial ln(M) / \partial R^m$ negative of elasticity wrt *E*.
- → Key object in central banking. US estimate 50 to ∞. Lopez-Salido and Vissing-Jorgensen (2023), Afonso et al (2023)
- → For *M* to matter for *E*, we need $\varepsilon_m < \infty$... scarce reserves

- Chinese households demand for deposits (isoelastic convenience benefit)

$$\left(\frac{\mathbb{E}(E')}{E}\right)R^d = k - v(D_{dom})^{-\alpha}$$

- \rightarrow Rate of deposits R^d .
- $\rightarrow v$ is a preference (money demand) shock.
- \rightarrow interest semi-elasticity $\varepsilon_d \equiv (R^d \mathbb{E}(E')D^{\alpha})/(vE\alpha)$

- Chinese households demand for deposits (isoelastic convenience benefit)

$$\left(\frac{\mathbb{E}(E')}{E}\right)R^d = k - v(D_{dom})^{-\alpha}$$

 \rightarrow interest semi-elasticity $\varepsilon_d \equiv (R^d \mathbb{E}(E')D^{\alpha})/(vE\alpha)$

- Foreign households individually hold deposits subject to UIP condition (foreign return \hat{R}).

$$R^{d} = \left(\frac{\mathbb{E}(\hat{E}')}{\hat{E}}\right)(\hat{R})$$

→ Close the model with capital controls: exogenous NFA position is foreign deposits \hat{D} . → $D = \hat{D} + D_{dom}$, \hat{D} is another money demand shock.

- Chinese households demand for deposits (isoelastic convenience benefit)

$$\left(\frac{\mathbb{E}(E')}{E}\right)R^{d} = k - v(D_{dom})^{-\alpha}$$

 \rightarrow interest semi-elasticity $\varepsilon_d \equiv (R^d \mathbb{E}(E')D^{\alpha})/(vE\alpha)$

- Foreign households individually hold deposits subject to UIP condition (foreign return \hat{R}).
- Bank deposit supply

$$\left(\frac{\mathbb{E}(E')}{E}\right)\left[R^d + \phi(M/D) - \left(\frac{M}{D}\right)\phi'(M/D)\right] = 1$$

 $\rightarrow \phi(M/D) - {M \choose D} \phi'(M/D)$ is liquidity cost of issuing a deposit.

- Chinese households demand for deposits (isoelastic convenience benefit)

$$\left(\frac{\mathbb{E}(E')}{E}\right)R^d = k - v(D_{dom})^{-\alpha}$$

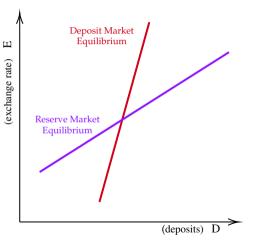
 \rightarrow interest semi-elasticity $\varepsilon_d \equiv (R^d \mathbb{E}(E')D^{\alpha})/(vE\alpha)$

- Foreign households individually hold deposits subject to UIP condition (foreign return \hat{R}).
- Bank deposit supply

$$\left(\frac{\mathbb{E}(E')}{E}\right)\left[R^d + \phi(M/D) - \left(\frac{M}{D}\right)\phi'(M/D)\right] = 1$$

- With credible peg $\mathbb{E}(E') = 1$, deposit market clearing:

$$E(1-k+v(D-\hat{D})^{-\alpha})=\phi\left(\frac{M}{D}\right)-\left(\frac{M}{D}\right)\phi'\left(\frac{M}{D}\right).$$

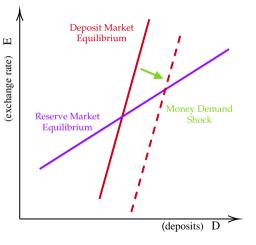

(1)

Equilibrium for (E, D) intersection of reserve and deposit market conditions.

 $\left(R^m - \phi'(M/D)\right) = E$

$$E(1-k+v(D-\hat{D})^{-lpha})=\phi\left(rac{M}{D}
ight)-\left(rac{M}{D}
ight)\phi'\left(rac{M}{D}
ight).$$

 \hat{E} , R^d solved for recursively, M, v, \hat{D} are exogenous shifters.

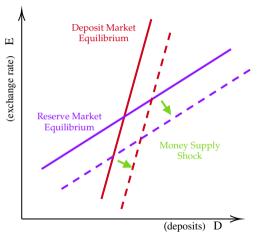


Equilibrium for (E, D) intersection of reserve and deposit market conditions.

 $\left(R^m - \phi'(M/D)\right) = E$

$$E(1-k+v(D-\hat{D})^{-lpha})=\phi\left(rac{M}{D}
ight)-\left(rac{M}{D}
ight)\phi'\left(rac{M}{D}
ight).$$

 \hat{E} , R^d solved for recursively, M, v, \hat{D} are exogenous shifters.

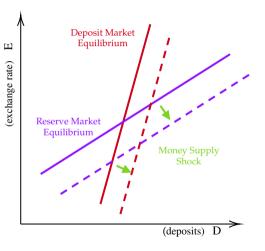


Equilibrium for (E, D) intersection of reserve and deposit market conditions.

 $\left(R^m - \phi'(M/D)\right) = E$

$$E(1-k+v(D-\hat{D})^{-lpha})=\phi\left(rac{M}{D}
ight)-\left(rac{M}{D}
ight)\phi'\left(rac{M}{D}
ight).$$

 \hat{E} , R^d solved for recursively, M, v, \hat{D} are exogenous shifters.

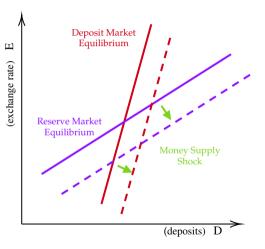


Equilibrium for (E, D) intersection of reserve and deposit market conditions.

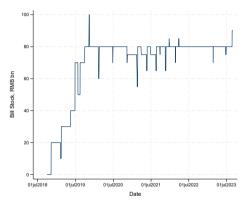
$$(R^m - \phi'(M/D)) = E$$
$$E(1 - k + v(D - \hat{D})^{-\alpha}) = \phi\left(\frac{M}{D}\right) - \left(\frac{M}{D}\right)\phi'\left(\frac{M}{D}\right).$$

Intuitively,

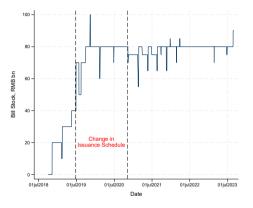
 $d\log(E)/d\log(M) = (\varepsilon_m + (M/D)\varepsilon_d)^{-1}$

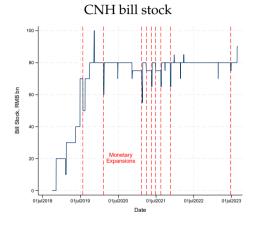

Equilibrium for (E, D) intersection of reserve and deposit market conditions.

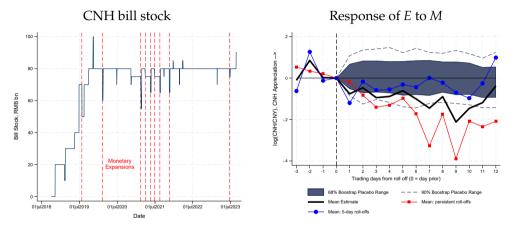
$$\left(R^m - \phi'(M/D)\right) = E$$
$$E(1 - k + v(D - \hat{D})^{-\alpha}) = \phi\left(\frac{M}{D}\right) - \left(\frac{M}{D}\right)\phi'\left(\frac{M}{D}\right).$$


Intuitively,

 $d\log(E)/d\log(M) = (\varepsilon_m + (M/D)\varepsilon_d)^{-1}$


- $-\frac{M}{D}=\frac{196}{730},$
- $\varepsilon_d pprox 10$, Benati et al (2021)
- $d \log(E) / d \log(M)$ estimate




CNH bill stock

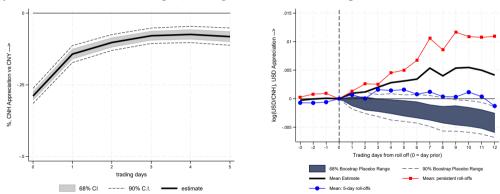
CNH bill stock

$$\varepsilon_m = \frac{11/196}{0.0011} - \left(\frac{196}{730}\right)\varepsilon_d = 48.$$
 (2)

Same figure as US in 2007 under scarce reserve system. Second, time series, exercise in the paper.

8 / 18

E as a pressure value for \hat{E}


How about \hat{E} ? UIP condition:

$$\mathbf{R}^{d} = \left(\frac{\mathbb{E}(\hat{E}')}{\hat{E}}\right)(\hat{R})$$

 R^d always comoves with *E* no matter the shock... and so \hat{E} and *E* should comove negatively. Implication:

- When the yuan is depreciating against USD, CNH depreciates more than CNY...
- ...and v.v. when appreciating...
- ... failure to perfectly maintain the peg is a tool to slow an FX adjustment.

Testing the co-movement between E and \hat{E}

Dynamic conditional corr. $\log(E)$ on $\log(\hat{E})$

Response of \hat{E} to M

4. Monetary anatomy of the peg

ESTIMATING THE POLICY RULE FOR MONEY SUPPLY

We posit the following policy rule

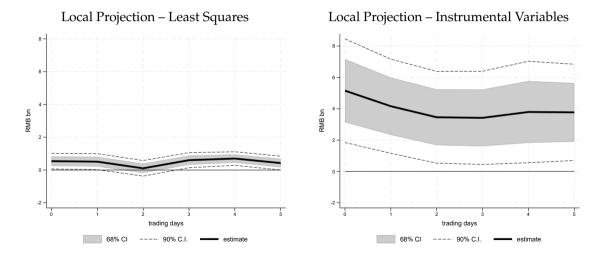
$$\log(M'/M) = \eta \log(E). \tag{3}$$

Is (i) $\eta \neq 0$ and, if so, (ii) is η big enough to maintain the peg.

E contaminated by high frequency policy changes (and other supply shocks). IV strategy based on CNY:

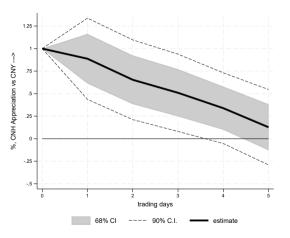
ESTIMATING THE POLICY RULE FOR MONEY SUPPLY

We posit the following policy rule


$$\log(M'/M) = \eta \log(E). \tag{3}$$

Is (i) $\eta \neq 0$ and, if so, (ii) is η big enough to maintain the peg.

E contaminated by high frequency policy changes (and other supply shocks). IV strategy based on CNY:


- CNY-USD exchange rate (\tilde{E}) trades in a 2% corridor around a central parity rate (\bar{E}).
- \overline{E} set in the morning and not set in response to E. Jermann et al (2022)
- Most of time \bar{E} tracks the previous close of CNY-USD. Sometimes it does not. Unfilled pressure on CNY rate to change.
- CNH is not controlled. When the central parity rate deviates from market rate, CNH adjusts in anticipation of CNY, for reasons unrelated to CNH monetary policy.
- Use deviation of \overline{E} today from \widetilde{E} yesterday as instrument for *E*, F-stat is 20.

RESPONSE OF M to E (PLP LENDING)

If *z* is PLP drawing, then plot from regression $y_{t+h} = \beta_h e_t + \gamma_h e_{t-1} + \delta_h y_{t-1} + \text{error}$

IS THE MONEY RESPONSE ENOUGH TO RESTORE PARITY?

After 5 days, 0.83 of 1% increase in the exchange rate has reverted. Channels:

- 0.53 can be accounted for by the shock dissipating (incl CNY adjustment),
- ¥5bn money response: using earlier estimate accounts for 0.05
- Remaining 0.25: other liquidity policies that shift $\phi(M/D)$

5. A liquidity anatomy of the peg

MODEL: DIGGING DEEPER ON THE LIQUIDITY COSTS $\phi(.)$

- Microfoundations from Bianchi-Bigio (2022)

φ

- Expected liquidity costs $\phi(.)$: random withdrawal shock $\Omega(\omega)$, match in interbank market with prob. $\Psi_+(\theta), \Psi_-(\theta)$, tightness θ , pay bargained rate $R^f(\theta)$, or go to discount window R^z .

$$(m/d)d = -\underbrace{\Psi_{+}(\theta)}_{\text{prob. find borrower}} \times \underbrace{(R^{f}(\theta) - R^{m})}_{\text{lending profit}} \times \underbrace{\int_{\bar{\omega}}^{\infty} s(\omega)d\Omega(\omega)}_{\text{liquidity surpluses}} \\ - \underbrace{\left[\underbrace{\Psi_{-}(\theta)(R^{f}(\theta) - R^{m})}_{\text{interbank borrowing}} + \underbrace{(1 - \Psi_{-}(\theta))(R^{z} - R^{m})}_{\text{CB borrowing}}\right]}_{\text{CB borrowing}} \underbrace{\int_{-1}^{\bar{\omega}} s(\omega)d\Omega(\omega)}_{\text{liquidity deficits}}$$

- Liquidity policies:
 - \rightarrow Reserve requirements onshore, not offshore
 - \rightarrow Price liquidity (R^z , $R^f(\theta)$) see paper. results
 - ightarrow Controls on flows of liquidity to/from onshore (capital controls) for today

LIQUIDITY POLICIES: CONTROLS

- Control on deposit flows

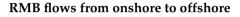
$$d\int_{-1}^{\infty}\omega d\Omega(\omega)=W^d$$

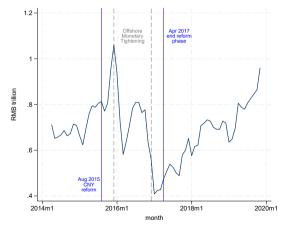
 W_d is net conversion of CNY in CNH – policy choice.

- Control on reserve flows: W^m lending from onshore market to offshore market.
- Control bill stock:
 - \rightarrow swap CNH reserves for bills, *E* appreciation.

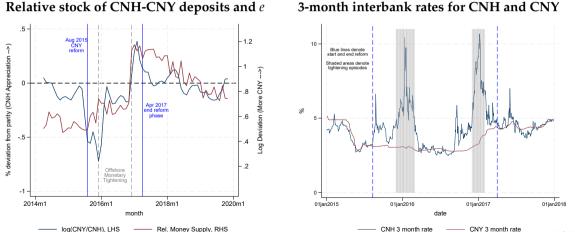
 \rightarrow swap CNY bills for CNH bills (or helicopter drop), *E* depreciation – effectively FXI.

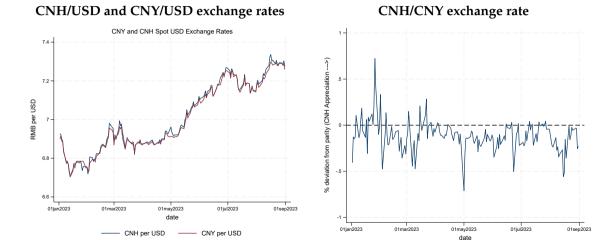
- Tightness now:


$$\theta = \frac{-\int_{-1}^{\bar{\omega}} s(\omega) d\Omega(\omega; W^d)}{\int_{\bar{\omega}}^{\infty} s(\omega) d\Omega(\omega, W^d) - G + W^m}.$$

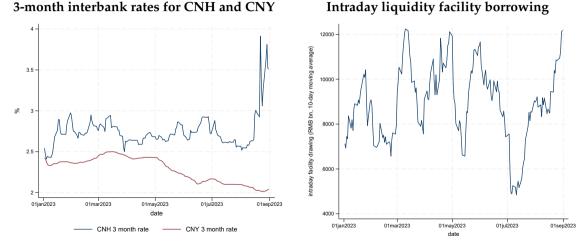

- Tightening controls by having lower W^d , lower W^m or lower G raises the marginal benefit of reserves $(-\phi'(M/D)$ higher).
- Can test with illustrative episodes.

EPISODE 1): THE 11/8/2015 DEPRECIATION AND LIQUIDITY CONTROLS


CNH/USD and CNY/USD exchange rates


EPISODE 1): THE 11/8/2015 DEPRECIATION AND LIQUIDITY CONTROLS

Deposits fall, interbank rate rises



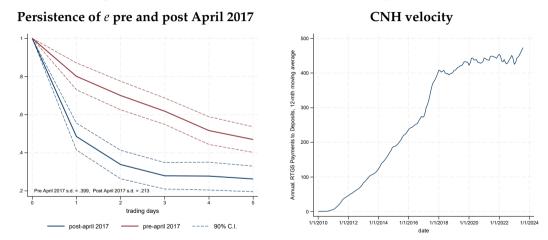
16 / 18

EPISODE 2) SUMMER 2023 AND MONETARY/LIQUIDITY POLICIES

EPISODE 2) SUMMER 2023 AND MONETARY/LIQUIDITY POLICIES

17 / 18

5. Conclusion


CONCLUSION

- China has offshore currency to enforce capital controls while allowing for an open current account and internationalization of the yuan.
- Monetarist anatomy of a peg to prevent Gresham's law: onshore-offshore is a pressure valve; transitory exogenous increase in money supply depreciate the exchange rate, elasticity of money demand is 0.13, increase in money demand comes with increase in money supply to keep the peg.
- Liquidity anatomy of a peg to prevent Goodhart's law: liquidity variables confirm anatomy, financial innovation is another source of shocks, liquidity policies and controls over discount window and controls on flows can offset shocks

Appendix

SUCCESS OF PEG AND CNH USAGE

Since 2017, not very persistent deviations, and CNH velocity is as high as the USD

Capital controls and CNH as means of payment

- Separate currencies, each with its settlement system, even if both convert one to one to physical currency.
- No limits in using CNH for payments or in converting to foreign currency or in who holds it.
- Only Chinese can use CNY, needed to invest in domestic assets and source of resources to invest abroad.
- Conversion is one to one but there are many limits to arbitrage:
 - \rightarrow quotas for FDI and investment,
 - \rightarrow quotas for household transfers
 - \rightarrow firms can transfer CNH revenues to CNY against export invoices.
 - $\rightarrow\,$ some banks can borrow/lend in CNY/CNH with limits.

OTHER CURRENCIES: CNY, USD, HKD

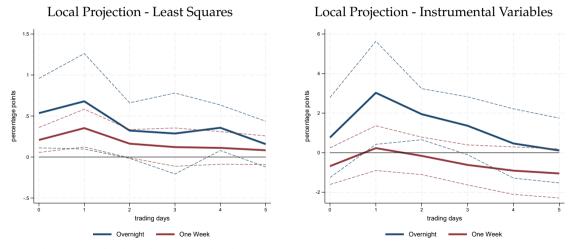
- CNY monetary policy
 - $\rightarrow\,$ Combination of interest rates, money supply, and other tools. See Jermann, Yue and others.
 - \rightarrow Ratio of CNY to CNH M1 is approx 200
 - \rightarrow CNY policy focussed on onshore goals, does not respond to *e*.
- USD exchange rate
 - \rightarrow With CNH is \hat{e} , "managed" by the PBoC to ensure smooth movement.
 - \rightarrow Central parity rate: set \bar{e} at start of day so that $|\hat{e} \bar{e}| < 0.02$.
 - $\rightarrow\,$ In 2015-17, band was 1%, and before that, more of a peg.
 - \rightarrow How it happens? Freely sell CNH for USD. While for CNY, sell my CNY for CNH first.
- HKD
 - $\rightarrow\,$ Currency of Hong Kong, completely separate, but also pegged to USD

PREDICTIONS ON THE INTERBANK MARKETS AND DISCOUNT WINDOW DRAWINGS

A rise in money demand that is only partially offset by a rise in money supply (E rises) leads to:

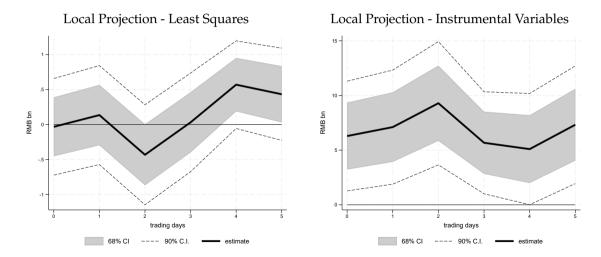
- *a) an increase in the tightness in the interbank market* θ *;*
- *b)* an increase in the interbank rate $\mathbb{R}^{f}(\theta)$;
- c) greater use of the discount window liquidity facilities.

A) INTERBANK MARKET TIGHTNESS: BILL AUCTION SUBSCRIPTIONS


Regression of bill auction subscription rate (bids / bills auctioned) on the exchange rate

Bill maturities	All	12M	6M	3M
	(1)	(2)	(3)	(4)
$\frac{1}{5}\sum_{0}^{4}\log(E_{t-h})$	-2.76***	-3.38***	-2.78***	-3.38***
5_0 0 0 0 0	(0.93)	(1.10)	(0.93)	(1.12)
Number of Auctions	35	19	16	19
R^2	0.142	0.335	0.131	0.324

Heteroskedasticity robust standard errors in parentheses


* p < 0.1, ** p < 0.05, ***p < 0.01

B) INTERBANK RATE RESPONSE TO A MONEY DEMAND SHOCK

z is interbank rate facility drawing, plot from regression $z_{t+h} = \frac{\beta_h e_t}{\rho_h e_t} + \gamma_h e_{t-1} + \delta_h z_{t-1} + \text{error}$

C) DISCOUNT WINDOW DRAWINGS

z is intraday facility drawing, plot from regression $z_{t+h} = \beta_h e_t + \gamma_h e_{t-1} + \delta_h z_{t-1} + \text{error}$

Does the exchange rate respond to R^{z} ?

- Prior to 5th of April of 2016 R^z was set as previous day's overnight R^f plus 50bp:
- On 5th of April of 2016, the rule was changed to the average of the previous three days overnight rate plus 50bp:

$$\log(E_{t}) = \underbrace{-0.04}_{(0.23)} R_{t-1}^{f} - \underbrace{0.62^{***}}_{(0.23)} R_{t-2}^{f} - \underbrace{0.51^{***}}_{(0.12)} R_{t-3}^{f} - \underbrace{0.01}_{(0.17)} R_{t-4}^{f} + Post_{t} \times \underbrace{(\underbrace{0.57^{**}}_{(0.28)} R_{t-1}^{f} - \underbrace{0.52}_{(0.37)} \times R_{t-2}^{f} + \underbrace{1.25^{***}}_{(0.29)} \times R_{t-3}^{f} + \underbrace{0.15}_{(0.27)} \times R_{t-4}^{f}) + \operatorname{controls}_{t} + \operatorname{error}_{t}.$$
(4)

- On 22nd of July of 2022, the spread was cut to 25bp: comparing 10 days before to 10 days: 2bp reduction in *E* and a 10bp reduction in *R*^f