Prospect Theory in the Field: Revealed Preferences from Mutual Fund Flows

Bing Han[†] Pengfei Sui[‡] Wenhao Yang[§] May 20, 2024 ABFER 11th ANNUAL CONFERENCE

[†]University of Toronto

[‡]The Chinese University of Hong Kong, Shenzhen

[§]University of North Carolina at Charlotte

Introduction

Motivation

Prospect theory has become a prominent alternative utility framework that describes investors' decision-making under uncertainty

• Barberis and Thaler (2003); Barberis (2013)

Initially, it was developed to explain choices in the *laboratory*, from which they derived a set of important parameters to govern the framework

• Kahneman and Tversky (1979); Tversky and Kahneman (1992);

However, these parameters are rarely confronted with choice outcomes outside of the laboratory, largely due to the scarcity of data

- existing field studies rely on prices, an outcome variable of market equilibrium (Barberis, Mukherjee, and Wang 2016; Baele, et al. 2019)
- choices and prices do not always "agree" (Bossaerts, Fattinger, Frans and Yang (2022))

This Paper

Our logic is simple:

$flows \implies choices \implies preferences.$

- We examine the link between mutual funds' prospect theory values and fund flows
 - flows represent the aggregate choices of investors
 - prospect theory values are based on the standard parameters from the laboratory
- We test whether prospect theory explains individual investors' buy and sell decisions of mutual funds
 - granular evidence based on account-level transactions
- Taking a revealed preference approach, we estimate the prospect theory parameters through a discrete choice model

We provide strong support for prospect theory using choice outcomes in the market

- under a standard set of parameters, funds with higher prospect theory value attract significantly larger future flows
- we also find corroborative evidence using account-level data
- our field-based estimates (the revealed preference parameters) align well with previous experiment-based estimates

Prospect theory offers a new framework for understanding flows

- as it has incremental predictive power over existing drivers
 - alphas which proxy for manager skills
 - · expected utility value based on power utility
 - extrapolation measurements
 - salience measurements
 - maximum or skewness of fund returns
 - MorningStar Ratings
- compared to existing drivers, prospect theory is a well-established psychologically realistic framework

Prospect theory captures the non-fully rational aspect of mutual fund flows

- the predictive power is stronger among retail funds and broker-sold funds
- the effect is stronger during periods of high investor sentiment while drops during recessions
- flows driven by prospect theory significantly predict under-performance of funds

Prospect Theory and Measure Construction

History:

- The original Prospect Theory: Kahneman and Tversky (1979)
- Cumulative Prospect Theory (CPT): Tversky and Kahneman (1992)
 - overcome some limitations in the original version
 - we use CPT.

Two steps of decision-making under prospect theory (Barberis et al (2016)):

- 1. Representation
 - the decision maker constructs a representation of the contingencies and outcomes relevant to the decision.
- 2. Valuation
 - the decision maker assesses the value of each prospect and chooses accordingly.

Assumption of prospect theory: investors form a mental representation of gains and losses when evaluating risks

In the mutual fund context: investors mentally represent a fund by the distribution of its past returns over the past 60 months

- to most investors, past returns is good and easily accessible proxy for future return
- past performance is an important information source for mutual fund investors
 - other information is limited for funds: no "fundamental" information
- we use last 60 months, as typical price charts on MorningStar website go back on average five years at the monthly frequency

The representation of distribution is as follows:

$$(r_{-m}, \frac{1}{60}; ...; r_{-1}, \frac{1}{60}; r_1, \frac{1}{60}; ...; r_n, \frac{1}{60})$$

- we assign an equal probability of $\frac{1}{60}$ to each past monthly return
- r_i are sorted ascendingly: r_{-m} is the most negative return and r_n is the most positive return

Prospect Theory — Value Function

Prospect Theory Value (TK) is computed as:

$$TK = \sum_{-m}^{n} \pi_{i} v(x_{i})$$

 $v(\cdot)$ is the value function:

$$v(x) = egin{cases} x^lpha & x \ge 0 \ -\lambda(-x)^lpha & x < 0 \end{cases}$$

Prospect Theory — Decision Weights

 π_i is known as *decision weights*

$$\pi_i = \begin{cases} w^+(p_i + \dots + p_n) - w^+(p_{i+1} + \dots + p_n) & 0 \le i \le n \\ w^-(p_{-m} + \dots + p_i) - w^-(p_{-m} + \dots + p_{i-1}) & -m \le i \le 0 \end{cases}$$

 $w^+(\cdot)$ and $w^-(\cdot)$ are functions to transform probabilities

$$w^{+}(P) = \frac{P^{\gamma}}{(P^{\gamma} + (1-P)^{\gamma})^{1/\gamma}}, w^{-}(P) = \frac{P^{\delta}}{(P^{\delta} + (1-P)^{\delta})^{1/\delta}}$$

where α , γ , $\delta \in (0, 1)$ and $\lambda > 1$

- Reference Point = risk-free rate
 - a common choice in the literature
 - other reference points also work: zero, market return, and fund style averages
- Other parameter values: ($\alpha = 0.88, \lambda = 2.25, \gamma = 0.61, \delta = 0.69$)
 - originally estimated by Tversky and Kahneman (1992)
 - · sensitivity analysis shows our results are robust

Prospect Theory — A Simple Example

Prospect Theory — A Simple Example

Baseline Results

Sample

- Mutual fund data drawn from CRSP
- Sample period: 1981 to 2022
- Brokerage data from Odean
- Share classes aggregated following Berk and van Binsbergen (2015)

	mean	p50	sd
Flow	-0.002	-0.005	0.034
ТК	-0.033	-0.031	0.019
Age	17.440	14.000	11.637
TNA	1533.457	258.500	5799.611
Expense Ratio	0.013	0.012	0.013
Turnover Ratio	0.822	0.540	2.015
CAPM Alpha	-0.086	-0.095	0.510

Prospect Theory Value and Fund Net Inflows

• The "low", "high", and "H-L" are statistically significant at 1%.

Prospect theory (TK value) significantly predicts future mutual fund flows

		Dependent Variable: Flow		
	(1)	(2)	(3)	(4)
ТК	0.604*** (26.89)	0.343*** (12.88)	0.307*** (10.24)	0.383*** (11.27)
performance controls		\checkmark	\checkmark	\checkmark
risk loadings controls			\checkmark	\checkmark
fund characteristics controls				\checkmark
Adjusted R-Squared	0.124	0.128	0.130	0.138
N	871,549	861,927	861,927	859,562
Fund FE	Yes	Yes	Yes	Yes
Date FE	Yes	Yes	Yes	Yes
Controls	No	Yes	Yes	Yes

	Dependent Variable: Flow			
	(1)	(2)	(3)	(4)
тк	0.604***	0.343***	0.307***	0.383***
	(26.89)	(12.88)	(10.24)	(11.27)
Cumulative Returns(60m)		0.006***	0.007***	0.008***
		(6.16)	(6.61)	(7.05)
CAPM Alpha		0.001	0.002**	0.002*
		(1.06)	(2.28)	(1.91)
Market Loading			-0.001	-0.003
			(-0.53)	(-1.56)
SMB Loading			0.003***	0.001
			(2.99)	(0.88)
HML Loading			0.000	0.000
			(0.10)	(0.14)
MOM Loading			-0.010***	-0.008***
			(-8.43)	(-6.32)
FF4 R Squared				-0.001
				(-0.59)
Return Volatility				0.114***
				(3.91)
Ln(Age)				-0.013***
				(-13.01)
Ln(TNA)				-0.003***
				(-16.30)
Expense Ratio (t-1)				0.001
				(0.04)
Turnover Ratio (t-1)				0.000
				(1.35)
Adjusted R-Squared	0.124	0.128	0.130	0.138
N	871,549	861,927	861,927	859,562
Fund FE	Yes	Yes	Yes	Yes
Date FE	Yes	Yes	Yes	Yes

Which Feature of Prospect Theory Plays a Role?

We investigate the standalone explanatory power of each feature of prospect theory on mutual fund flows

- To focus on one feature, we shut down other features.
- all three features contribute to the predictive power

		Dependent Variable: Flow			
	(1)	(2)	(3)	(4)	(5)
LA	0.839***			0.415***	
сс	(14.17)	0.974***		(5.77) 0.598***	
PW		(15.12)	0.623***	(7.78) 0.233***	
ТК			(9.59)	(3.55)	0.383*** (11.27)
Adjusted R-Squared	0.139	0.140	0.137	0.140	0.138
Ν	859,562	859,562	859,562	859,562	859,562
Fund FE	Yes	Yes	Yes	Yes	Yes
Date FE	Yes	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes	Yes

Alternative Data — Account Level Evidence

We use Odean's data to provide account-level evidence.

Panel A. TK and Holdings			
	(1) Amt Held/Balance (%)	(2) Amt Held/Fund Size (bps)	
тк	49.884 ^{***} (6.00)	0.458*** (3.91)	
Adj. Rsq. N	0.840 1,316,974	0.755 1,519,974	
	Panel B. TK and Tr	ansactions	
	(1) NetBuy/Balance (%)	(2) NetBuy/Fund Size (bps)	
ТК	7.412*** (6.31)	0.074*** (4.97)	
Adj. Rsq. N	0.094 1,368,438	0.100 1,513,620	
Acct FE Date FE Controls	Yes Yes Yes	Yes Yes Yes	

Panel A. TK and Holdings

Now, we estimate the parameters directly from mutual fund flows

- we capture investor's choice of mutual funds using discrete choice models
- when making investment decisions, investors select a fund *i* from the "product space" of all funds.

We write down the investor's indirecty utility function as:

$$\delta_i = bTK_i(\theta, R_i) + c_k \sum_k x_i^k + e_i$$

The probability of an investor selecting fund *i* is determined as $Prob_i = e^{\delta_i} / \sum_{j=0}^{J} e^{\delta_j}$

Revealed Preference Analysis

We link the probability of selecting fund i to the "market share" of fund i

$$s_i = f_i / \sum_{j=0}^J f_j$$

where f_i is the inflows to fund i

Then estimate the discrete choice model based on market shares of inflows using MLE:

	Estimation of Parameters						
	description	mean	s.e.	Literature			
α	Curvature of the value function	0.745	0.061	[0.5, 0.95]			
λ	Loss aversion	1.824	0.110	[1.31, 2.25]			
γ	Probability weighting in gain region	0.110	0.028	(0, 1)			
δ	Probability weighting in loss region	0.228	0.041	(0,1)			

Lab-based Parameters: $\alpha = 0.88, \lambda = 2.25, \gamma = 0.61, \delta = 0.69$

A New Framework for Mutual Fund Flows

We directly compare prospect theory and expected utility in explaining future fund flows

- for preference, we take the power utility with a risk aversion coefficient θ of 0.88. 1
- we then calculate:

$$EU = \sum_{t=1}^{60} rac{1}{60} u(r_i)$$
 ,where $u(r) = rac{(1+r)^{1- heta}}{1- heta}$

	D	Dependent Variable: Flow		
	(1)	(2)	(3)	
тк	0.383***		0.137***	
	(11.27)		(3.68)	
EU		1.628***	1.418***	
		(14.56)	(11.38)	
Adjusted R-Squared	0.138	0.139	0.140	
N	859,562	859,562	859,562	

¹This parameter is consistent with the α in TK calculation.

- Extrapolation follows Barberis, Greenwood, Jin and Shleifer (2015)
- *Salience* follows Bordalo, Gennaioli, and Shleifer (2013) and Cosemans and Frehen (2021)
- *Max Return* is the maximum value of a fund's monthly returns from the past 60 months, from Akbas and Genc (2020).
- Morningstar Rating comes from Morningstar Direct.

Other Behavioral Theories

	Dependent Variable: Flow				
	(1)	(2)	(3)	(4)	(5)
ТК	0.247 ^{***} (6.70)	0.354*** (10.59)	0.327*** (9.80)	0.295*** (6.58)	0.112*** (3.25)
Extrapolation	1.177*** (15.90)				
ST		0.106*** (12.25)			
MAX			9.566*** (13.25)		
Skewness				0.002 ^{***} (3.78)	
MorningStar Rating					0.008*** (36.25)
Adjusted R-Squared	0.152	0.140	0.141	0.134	0.165
N	859,562	859,562	859,562	522,823	631,401
Fund FE	Yes	Yes	Yes	Yes	Yes
Date FE	Yes	Yes	Yes	Yes	Yes
Controls	Yes	Yes	Yes	Yes	Yes

Bounded-rational Drivers of Fund Flows

Institutional vs. Retail Investors

The predictive power of prospect theory is stronger for retail investors

- Institutional = TNA in institutional share classes > 75%
- Retail = TNA in retail share classes > 75%

	D	Dependent Variable: Flow		
	(1)	(2)	(3)	
ТК	0.383 ^{***} (11.27)	0.390*** (11.36)	0.368*** (10.50)	
Institutional \times TK		-0.033** (-2.22)		
Institutional		-0.000 (-0.32)		
Retail \times TK			0.024* (1.95)	
Retail			-0.001 (-1.51)	

Investor Sophistications

Prospect theory predicts fund flows stronger for the funds dominated by less sophisticated investors

 broker/direct sold ≈ less/more sophisticated clientele (Barber, Huang and Odean, 2016 among others)

	D	Dependent Variable: Flow		
	(1)	(2)	(3)	
ТК	0.383*** (11.27)	0.363*** (10.51)	0.392 ^{***} (11.51)	
Broker Sold \times TK		0.038*** (3.22)		
Broker Sold		0.001 (1.10)		
Direct Sold \times TK			-0.036*** (-2.76)	
Direct Sold			-0.004*** (-5.41)	

Are investors making the "right" choices by picking the funds with high TK value?

We decompose flow into 2 components by projecting flows on past TK: $Flow_{i,t} = a + bTK_{i,t-1} + u_{i,t}.$

- expected: the fitted flow = \hat{flow}
- unexpected: the residual flow = μ

Then we regress future fund performance (four-factor alpha) on these components respectively.

TK and Future Returns — Cont'd

	Panel A	: TK and Fund Performan	ce
	(1) 1 Month	(2) 3 Months	(3) 12 Months
тк	-0.014	-0.053	-0.380
	(-0.39)	(-0.52)	(-1.13)

	Panel B: TK-I	Driven Flows and Fund Per	formance	
	(1) 1 Month	(2) 3 Months	(3) 12 Months	
flow	-0.001 ^{**} (-2.07)	-0.003* (-1.87)	-0.008 (-1.56)	
	Panel C: Non-Th	K-Driven Flows and Fund F	Performance	
	(1) 1 Month	(2) 3 Months	(3) 12 Months	
и	0.006 ^{***} (5.62)	0.009*** (4.27)	0.010** (2.31)	

Concluding Remarks

Summary

- Prospect Theory aligns with the choices of mutual fund investors
 - aggregate
 - individual
 - structural estimation
- Prospect theory offers a new framework for understanding flows, as it has incremental predictive power over
 - alphas, EU, extrapolation measure, salience theory, max returns, and MorningStar Ratings
- Prospect theory reflects the irrational aspect of fund flows
 - stronger among funds dominated by retail and less sophisticated investors
 - stronger during high sentiment period
 - TK-Driven fund flow predicts lower future performance- dumb money effect

Prospect Theory and Investor Sentiment

Prospect theory predicts fund flows more strongly for the funds during episodes of high investor sentiment

- Sentiment index from Baker and Wurgler (2006)
- Recession Dummy from NBER

	Dependent Va	ariable: <i>Flow</i>	
	(1) Investor Sentiment	(2) NBER Recessions	
ТК	0.082**	0.084***	
	(2.55)	(2.70)	
TK imes High Sentiment	0.074*		
	(1.71)		
High Sentiment	0.002*		
	(1.67)		
$TK \times Recession$		-0.099**	
		(-2.15)	
Recession		-0.007***	
		(-3.62)	

Prospect theory implies a type of "mean-variance-skewness" preferences

	Dependent Variable: TK			
	(1)	(2)	(3)	(4)
Cumulative Returns(60m)	0.022*** (86.39)			0.011*** (34.27)
Return Volatility		-0.499*** (-31.53)		-0.510*** (-35.88)
Skewness			0.009*** (20.24)	0.006*** (15.68)

TK Values and Characteristics of Past Fund Return Distributions

- The negative coefficient of Volatility is due to loss aversion.
- The positive coefficient of Skewness is due to probability weighting.

Alternative Flow Measures — Buys and Sells

We look at new subscriptions and redemption separately.

- from SEC filings, starting 2003
- more accurate measures of money flow in and out of mutual funds

	New Subscriptions	Redemptions	
	(1)	(2)	
ТК	0.052***	-0.020	
	(3.23)	(-1.42)	
Adjusted R-Squared	0.715	0.789	
N	359,604	359,604	
Fund FE	Yes	Yes	
Year FE	Yes	Yes	
Controls	Yes	Yes	

- TK predicts subsequent inflows positively and significantly
- The outflow result is not significant
 - outflows are less sensitive to past bad performance than inflows to past good performance (Sirri and Tufano, 1998)