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Introduction



Motivation

Prospect theory has become a prominent alternative utility framework

that describes investors’ decision-making under uncertainty

• Barberis and Thaler (2003); Barberis (2013)

Initially, it was developed to explain choices in the laboratory, from which

they derived a set of important parameters to govern the framework

• Kahneman and Tversky (1979); Tversky and Kahneman (1992);

However, these parameters are rarely confronted with choice outcomes

outside of the laboratory, largely due to the scarcity of data

• existing field studies rely on prices, an outcome variable of market

equilibrium (Barberis, Mukherjee, and Wang 2016; Baele, et al.

2019)

• choices and prices do not always “agree” (Bossaerts, Fattinger,

Frans and Yang (2022))
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This Paper

Our logic is simple:

flows =⇒ choices =⇒ preferences.

• We examine the link between mutual funds’ prospect theory values

and fund flows

• flows represent the aggregate choices of investors

• prospect theory values are based on the standard parameters from

the laboratory

• We test whether prospect theory explains individual investors’ buy

and sell decisions of mutual funds

• granular evidence based on account-level transactions

• Taking a revealed preference approach, we estimate the prospect

theory parameters through a discrete choice model
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Overview of Our Findings

We provide strong support for prospect theory using choice

outcomes in the market

• under a standard set of parameters, funds with higher prospect

theory value attract significantly larger future flows

• we also find corroborative evidence using account-level data

• our field-based estimates (the revealed preference parameters) align

well with previous experiment-based estimates
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Overview of Our Findings

Prospect theory offers a new framework for understanding flows

• as it has incremental predictive power over existing drivers

• alphas which proxy for manager skills

• expected utility value based on power utility

• extrapolation measurements

• salience measurements

• maximum or skewness of fund returns

• MorningStar Ratings

• compared to existing drivers, prospect theory is a well-established

psychologically realistic framework
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Overview of Our Findings

Prospect theory captures the non-fully rational aspect of mutual

fund flows

• the predictive power is stronger among retail funds and broker-sold

funds

• the effect is stronger during periods of high investor sentiment while

drops during recessions

• flows driven by prospect theory significantly predict

under-performance of funds
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Prospect Theory and Measure

Construction



Prospect Theory — Background

History:

• The original Prospect Theory: Kahneman and Tversky (1979)

• Cumulative Prospect Theory (CPT): Tversky and Kahneman (1992)

• overcome some limitations in the original version

• we use CPT.

Two steps of decision-making under prospect theory (Barberis et al

(2016)):

1. Representation

• the decision maker constructs a representation of the contingencies

and outcomes relevant to the decision.

2. Valuation

• the decision maker assesses the value of each prospect and chooses

accordingly.
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Prospect Theory — Representation

Assumption of prospect theory: investors form a mental representation of

gains and losses when evaluating risks

In the mutual fund context: investors mentally represent a fund by the

distribution of its past returns over the past 60 months

• to most investors, past returns is good and easily accessible proxy for

future return

• past performance is an important information source for mutual fund

investors

• other information is limited for funds: no “fundamental” information

• we use last 60 months, as typical price charts on MorningStar

website go back on average five years at the monthly frequency
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Prospect Theory — Representation

The representation of distribution is as follows:

(r−m,
1

60
; ...; r−1,

1

60
; r1,

1

60
; ...; rn,

1

60
)

• we assign an equal probability of 1
60 to each past monthly return

• ri are sorted ascendingly: r−m is the most negative return and rn is

the most positive return
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Prospect Theory — Value Function

Prospect Theory Value (TK) is computed as:

TK =
n∑

−m

πiv(xi )

v(·) is the value function:

v(x) =

{
xα x ≥ 0

−λ(−x)α x < 0
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Prospect Theory — Decision Weights

πi is known as decision weights

πi =

{
w+(pi + ... + pn) − w+(pi+1 + ... + pn) 0 ≤ i ≤ n

w−(p−m + ... + pi ) − w−(p−m + ... + pi−1) −m ≤ i ≤ 0

w+(·) and w−(·) are functions to transform probabilities

w+(P) =
Pγ

(Pγ + (1 − P)γ)1/γ
,w−(P) =

Pδ

(Pδ + (1 − P)δ)1/δ

where α, γ, δ ∈ (0, 1) and λ > 1
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Prospect Theory — Parameters

• Reference Point = risk-free rate

• a common choice in the literature

• other reference points also work: zero, market return, and fund style

averages

• Other parameter values: (α = 0.88, λ = 2.25, γ = 0.61, δ = 0.69)

• originally estimated by Tversky and Kahneman (1992)

• sensitivity analysis shows our results are robust
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Prospect Theory — A Simple Example
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Prospect Theory — A Simple Example
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Baseline Results



Sample

• Mutual fund data drawn from CRSP

• Sample period: 1981 to 2022

• Brokerage data from Odean

• Share classes aggregated following Berk and van Binsbergen (2015)

mean p50 sd

Flow -0.002 -0.005 0.034

TK -0.033 -0.031 0.019

Age 17.440 14.000 11.637

TNA 1533.457 258.500 5799.611

Expense Ratio 0.013 0.012 0.013

Turnover Ratio 0.822 0.540 2.015

CAPM Alpha -0.086 -0.095 0.510
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Prospect Theory Value and Fund Net Inflows

Low 2 3 4 5 6 7 8 9 High

−0.5

0

0.5

1
·10−2

TK

F
lo
w

Equally Weighted

TNA Weighted

• The “low”, “high”, and “H-L” are statistically significant at 1%.
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Baseline Results

Prospect theory (TK value) significantly predicts future mutual fund flows

Dependent Variable: Flow

(1) (2) (3) (4)

TK 0.604∗∗∗ 0.343∗∗∗ 0.307∗∗∗ 0.383∗∗∗

(26.89) (12.88) (10.24) (11.27)

performance controls ✓ ✓ ✓

risk loadings controls ✓ ✓

fund characteristics controls ✓

Adjusted R-Squared 0.124 0.128 0.130 0.138

N 871,549 861,927 861,927 859,562

Fund FE Yes Yes Yes Yes

Date FE Yes Yes Yes Yes

Controls No Yes Yes Yes
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Baseline Results — Cont’d

Dependent Variable: Flow

(1) (2) (3) (4)

TK 0.604∗∗∗ 0.343∗∗∗ 0.307∗∗∗ 0.383∗∗∗

(26.89) (12.88) (10.24) (11.27)

Cumulative Returns(60m) 0.006∗∗∗ 0.007∗∗∗ 0.008∗∗∗

(6.16) (6.61) (7.05)

CAPM Alpha 0.001 0.002∗∗ 0.002∗

(1.06) (2.28) (1.91)

Market Loading -0.001 -0.003

(-0.53) (-1.56)

SMB Loading 0.003∗∗∗ 0.001

(2.99) (0.88)

HML Loading 0.000 0.000

(0.10) (0.14)

MOM Loading -0.010∗∗∗ -0.008∗∗∗

(-8.43) (-6.32)

FF4 R Squared -0.001

(-0.59)

Return Volatility 0.114∗∗∗

(3.91)

Ln(Age) -0.013∗∗∗

(-13.01)

Ln(TNA) -0.003∗∗∗

(-16.30)

Expense Ratio (t-1) 0.001

(0.04)

Turnover Ratio (t-1) 0.000

(1.35)

Adjusted R-Squared 0.124 0.128 0.130 0.138

N 871,549 861,927 861,927 859,562

Fund FE Yes Yes Yes Yes

Date FE Yes Yes Yes Yes 17



Which Feature of Prospect Theory Plays a Role?

We investigate the standalone explanatory power of each feature of

prospect theory on mutual fund flows

• To focus on one feature, we shut down other features.

• all three features contribute to the predictive power

Dependent Variable: Flow

(1) (2) (3) (4) (5)

LA 0.839∗∗∗ 0.415∗∗∗

(14.17) (5.77)

CC 0.974∗∗∗ 0.598∗∗∗

(15.12) (7.78)

PW 0.623∗∗∗ 0.233∗∗∗

(9.59) (3.55)

TK 0.383∗∗∗

(11.27)

Adjusted R-Squared 0.139 0.140 0.137 0.140 0.138

N 859,562 859,562 859,562 859,562 859,562

Fund FE Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes
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Alternative Data — Account Level Evidence

We use Odean’s data to provide account-level evidence.

Panel A. TK and Holdings

(1) (2)

Amt Held/Balance (%) Amt Held/Fund Size (bps)

TK 49.884∗∗∗ 0.458∗∗∗

(6.00) (3.91)

Adj. Rsq. 0.840 0.755

N 1,316,974 1,519,974

Panel B. TK and Transactions

(1) (2)

NetBuy/Balance (%) NetBuy/Fund Size (bps)

TK 7.412∗∗∗ 0.074∗∗∗

(6.31) (4.97)

Adj. Rsq. 0.094 0.100

N 1,368,438 1,513,620

Acct FE Yes Yes

Date FE Yes Yes

Controls Yes Yes
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Revealed Preference Analysis

Now, we estimate the parameters directly from mutual fund flows

• we capture investor’s choice of mutual funds using discrete choice

models

• when making investment decisions, investors select a fund i from the

“product space” of all funds.

We write down the investor’s indirecty utility function as:

δi = bTKi (θ,Ri ) + ck
∑
k

xki + ei

The probability of an investor selecting fund i is determined as

Probi = eδi/
∑J

j=0 e
δj
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Revealed Preference Analysis

We link the probability of selecting fund i to the “market share” of fund i

si = fi/
J∑

j=0

fj

where fi is the inflows to fund i

Then estimate the discrete choice model based on market shares of

inflows using MLE:

Estimation of Parameters

description mean s.e. Literature

α Curvature of the value function 0.745 0.061 [0.5, 0.95]

λ Loss aversion 1.824 0.110 [1.31, 2.25]

γ Probability weighting in gain region 0.110 0.028 (0, 1)

δ Probability weighting in loss region 0.228 0.041 (0, 1)

Lab-based Parameters:α = 0.88, λ = 2.25, γ = 0.61, δ = 0.69

21



A New Framework for Mutual

Fund Flows



Controlling for Expected Utility

We directly compare prospect theory and expected utility in explaining

future fund flows

• for preference, we take the power utility with a risk aversion

coefficient θ of 0.88.1

• we then calculate:

EU =
60∑
t=1

1

60
u(ri ) ,where u(r) =

(1 + r)1−θ

1− θ

Dependent Variable: Flow

(1) (2) (3)

TK 0.383∗∗∗ 0.137∗∗∗

(11.27) (3.68)

EU 1.628∗∗∗ 1.418∗∗∗

(14.56) (11.38)

Adjusted R-Squared 0.138 0.139 0.140

N 859,562 859,562 859,562

1This parameter is consistent with the α in TK calculation. 22



Other Behavioral Theories

• Extrapolation follows Barberis, Greenwood, Jin and Shleifer (2015)

• Salience follows Bordalo, Gennaioli, and Shleifer (2013) and

Cosemans and Frehen (2021)

• Max Return is the maximum value of a fund’s monthly returns from

the past 60 months, from Akbas and Genc (2020).

• Morningstar Rating comes from Morningstar Direct.
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Other Behavioral Theories

Dependent Variable: Flow

(1) (2) (3) (4) (5)

TK 0.247∗∗∗ 0.354∗∗∗ 0.327∗∗∗ 0.295∗∗∗ 0.112∗∗∗

(6.70) (10.59) (9.80) (6.58) (3.25)

Extrapolation 1.177∗∗∗

(15.90)

ST 0.106∗∗∗

(12.25)

MAX 9.566∗∗∗

(13.25)

Skewness 0.002∗∗∗

(3.78)

MorningStar Rating 0.008∗∗∗

(36.25)

Adjusted R-Squared 0.152 0.140 0.141 0.134 0.165

N 859,562 859,562 859,562 522,823 631,401

Fund FE Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes
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Bounded-rational Drivers of Fund

Flows



Institutional vs. Retail Investors

The predictive power of prospect theory is stronger for retail investors

• Institutional = TNA in institutional share classes > 75%

• Retail = TNA in retail share classes > 75%

Dependent Variable: Flow

(1) (2) (3)

TK 0.383∗∗∗ 0.390∗∗∗ 0.368∗∗∗

(11.27) (11.36) (10.50)

Institutional × TK -0.033∗∗

(-2.22)

Institutional -0.000

(-0.32)

Retail × TK 0.024∗

(1.95)

Retail -0.001

(-1.51)
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Investor Sophistications

Prospect theory predicts fund flows stronger for the funds dominated by

less sophisticated investors

• broker/direct sold ≈ less/more sophisticated clientele (Barber,

Huang and Odean, 2016 among others)

Dependent Variable: Flow

(1) (2) (3)

TK 0.383∗∗∗ 0.363∗∗∗ 0.392∗∗∗

(11.27) (10.51) (11.51)

Broker Sold × TK 0.038∗∗∗

(3.22)

Broker Sold 0.001

(1.10)

Direct Sold × TK -0.036∗∗∗

(-2.76)

Direct Sold -0.004∗∗∗

(-5.41)
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TK and Future Returns

Are investors making the “right” choices by picking the funds with high

TK value?

We decompose flow into 2 components by projecting flows on past TK:

Flowi,t = a+ bTKi,t−1 + ui,t .

• expected: the fitted flow = ˆflow

• unexpected: the residual flow = µ

Then we regress future fund performance (four-factor alpha) on these

components respectively.
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TK and Future Returns — Cont’d

Panel A: TK and Fund Performance

(1) (2) (3)

1 Month 3 Months 12 Months

TK -0.014 -0.053 -0.380

(-0.39) (-0.52) (-1.13)

Panel B: TK-Driven Flows and Fund Performance

(1) (2) (3)

1 Month 3 Months 12 Months

flow -0.001∗∗ -0.003∗ -0.008

(-2.07) (-1.87) (-1.56)

Panel C: Non-TK-Driven Flows and Fund Performance

(1) (2) (3)

1 Month 3 Months 12 Months

u 0.006∗∗∗ 0.009∗∗∗ 0.010∗∗

(5.62) (4.27) (2.31)
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Concluding Remarks



Summary

• Prospect Theory aligns with the choices of mutual fund investors

• aggregate

• individual

• structural estimation

• Prospect theory offers a new framework for understanding flows, as

it has incremental predictive power over

• alphas, EU, extrapolation measure, salience theory, max returns, and

MorningStar Ratings

• Prospect theory reflects the irrational aspect of fund flows

• stronger among funds dominated by retail and less sophisticated

investors

• stronger during high sentiment period

• TK-Driven fund flow predicts lower future performance– dumb

money effect
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Prospect Theory and Investor Sentiment

Prospect theory predicts fund flows more strongly for the funds during

episodes of high investor sentiment

• Sentiment index from Baker and Wurgler (2006)

• Recession Dummy from NBER

Dependent Variable: Flow

(1) (2)

Investor Sentiment NBER Recessions

TK 0.082∗∗ 0.084∗∗∗

(2.55) (2.70)

TK × High Sentiment 0.074∗

(1.71)

High Sentiment 0.002∗

(1.67)

TK × Recession -0.099∗∗

(-2.15)

Recession -0.007∗∗∗

(-3.62)
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TK and Return Moments

Prospect theory implies a type of “mean-variance-skewness” preferences

TK Values and Characteristics of Past Fund Return Distributions

Dependent Variable: TK

(1) (2) (3) (4)

Cumulative Returns(60m) 0.022∗∗∗ 0.011∗∗∗

(86.39) (34.27)

Return Volatility -0.499∗∗∗ -0.510∗∗∗

(-31.53) (-35.88)

Skewness 0.009∗∗∗ 0.006∗∗∗

(20.24) (15.68)

• The negative coefficient of Volatility is due to loss aversion.

• The positive coefficient of Skewness is due to probability weighting.
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Alternative Flow Measures — Buys and Sells

We look at new subscriptions and redemption separately.

• from SEC filings, starting 2003

• more accurate measures of money flow in and out of mutual funds

New Subscriptions Redemptions

(1) (2)

TK 0.052∗∗∗ -0.020

(3.23) (-1.42)

Adjusted R-Squared 0.715 0.789

N 359,604 359,604

Fund FE Yes Yes

Year FE Yes Yes

Controls Yes Yes

• TK predicts subsequent inflows positively and significantly

• The outflow result is not significant

• outflows are less sensitive to past bad performance than inflows to

past good performance (Sirri and Tufano, 1998)
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