Resolving Estimation Ambiguity

Paul H. Décaire

Michael D. Wittry

FISHER COLLEGE OF BUSINESS

Motivation

Theory versus practice

I. Models offer **conceptual frameworks**, but theory rarely prescribes a specific approach to **estimate them**

Estimation ambiguity:

 Agents know that different approaches exist to estimate parameters' *true* value, but they don't know their correct weights

■ Empirical challenges → need to observe

- I. Selected model
- II. Inputs and assumptions
- III. Estimation methods
- IV. Outcomes

Our paper: how do agents select parameter inputs and estimation methods and how do these choices affect estimation outcomes?

Empirical Setting

- Estimating a key driver of fin decisions: a firm's required rate of return
 - **I. 46,000 equity reports** from 2000-2023:
 - 4,261 firms
 - 4,566 analysts
 - 63 countries
 - II. Focus on **pairs** of analysts for each **firm-date**

Empirical Setting

Observe discount rate data

- I. WACC
- II. WACC inputs

DCF Model - Aixtron Figures in EUR m	2011e	2012e	2013e	2014e
Sales Change				
EBIT <i>EBIT-Margin</i>				
Tax rate				
NOPAT				
Depreciation in % of Sales				
Change in Liquidity from				
- Working Capital				
- Capex				
Capex in % of Sales				
Other				
Free Cash Flow (WACC-Model)				

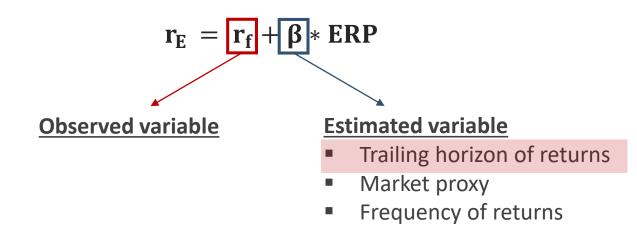
Model parameter

Empirical Setting

Insights into decision-making:

→ qualitative discussion of assumptions, sources, and methods

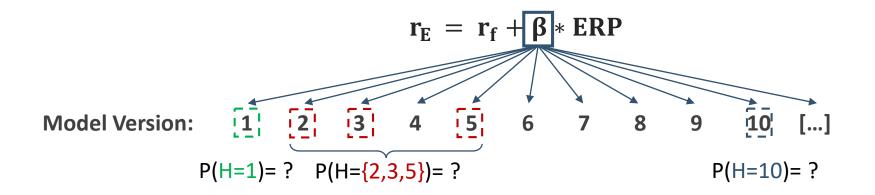
- Morgan Stanley, CLF.N, 2008-02-26: "We assume an 8.3% WACC, based on a 4.8% after-tax cost of debt, a 60-month beta of 1.3".
- HSBC-JBSS3.SA, JBS SA, 2021-03-26: We assume a beta of 0.8 (based on the average of the Bloomberg 2-year daily beta, 5-year weekly beta, and 10-year weekly beta; unchanged)


Focus on one class of models: Discount rate and CAPM

WACC =
$$W_E (r_f + \beta * ERP) + W_D (1 - \tau)r_D$$

CAPM

- CAPM is conceptually simple and common
 - I. 97% of sell-side equity analysts use the CAPM
 - II. Theory offers little guidance for estimation
- Discount rate \rightarrow a key parameter in valuation
 - I. Small \triangle WACC \rightarrow large \triangle Price Target
 - II. Unbiased predictor of firm future 1-year return, on average
 - III. Pivotal for investment decisions


CAPM and Estimation Ambiguity

The risk-free rate is a natural benchmark:

- I. Beta subject to greater estimation ambiguity
- II. Jointly observe both variables for each cost of equity calculation

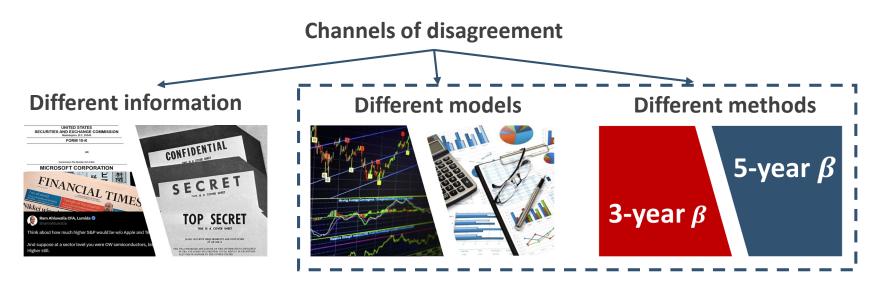
CAPM and Estimation Ambiguity

- Beta horizon as a source of estimation ambiguity
 - I. <u>Theory</u>: limited guidance
 - Analysts faced with a variety of feasible options
 - II. <u>Practice reason</u>: Analysts discuss their beta horizon in reports
 - III. <u>Economic importance</u>: horizon matters significantly for outcomes

Step 1: Explore the data

Same model, different discount rate

- 140 bps (15.7%) differences in WACC
- 180 bps (17.8%) differences in r^E
 - Beta and ERP
 - Explain 79% of the variance
 - Risk-free rate
 - Remaining 21%


Ave. within firm-date

Estimated variables

Same class of models, different discount rate

Different input values

- Analysts use different methodologies to estimate variables
 - Anchor on annual horizons
 - Use 2, 3, or 5-year for beta horizon in 85% of cases
 - Range: 1 to 10-year

Evidence on the drivers of disagreement within the same models

Same model, different discount rate

Different estimates of inputs

Method selection drivers

- - Gender
 - Race
 - Location
 - Education

Institutional norms (1%) Individual criteria (28%) Analyst effects swamp brokerage effects

Idiosyncratic criteria➢ Work-in-progress: Early career influence

Same model, different discount rate

Different estimates of inputs

Method selection

What are these idiosyncratic criteria

- Methodology is persistent
 - I. 82% of analysts use 1 method throughout the sample
 - I. 78% of analysts use single horizon
 - II. 4% aggregate over multiple horizons

Same model, different discount rate

- **Different estimates of inputs**
- **Method selection drivers**

What are these idiosyncratic criteria

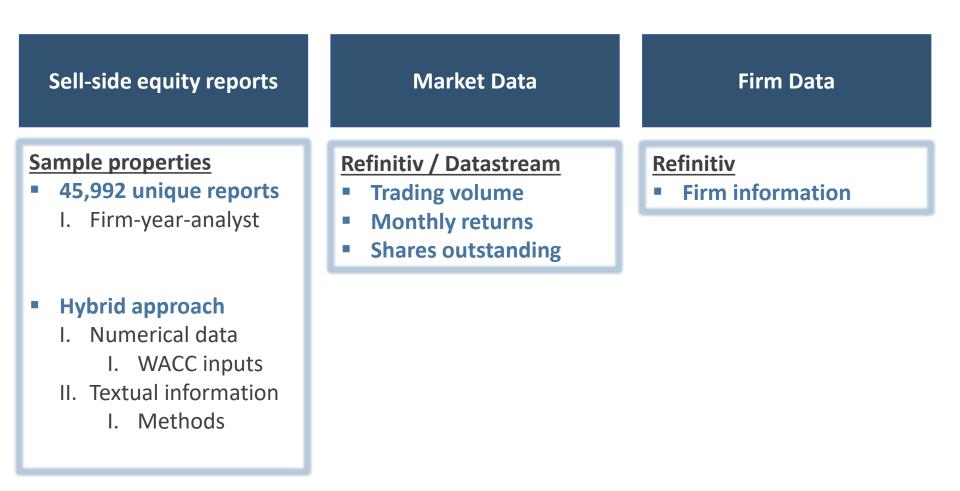
Step 2: Benchmark Empirical Results Against Theories of Ambiguity Resolution

Results most consistent with behavioral and Bayesian models

Same model, different discount rate

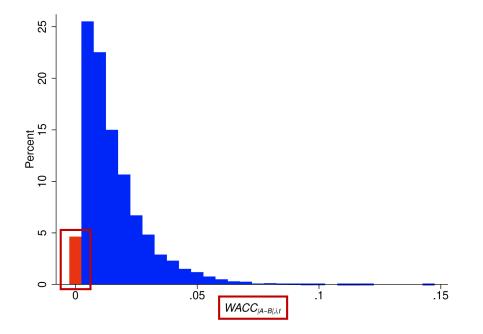
Different estimates of inputs

Method selection drivers


What are these idiosyncratic preferences

Benchmark results against theory

Step 3: Outcomes Discount rate disagreement associated with **higher trading volume**



Data

Discount rates differences

- Unit of observation
 I. Analyst A- Analyst B-Firm-Date
- 95% of pairs disagree on the discount rate
 - I. 5% use the same value

What drives differences in discount rates?

Drivers of disagreement

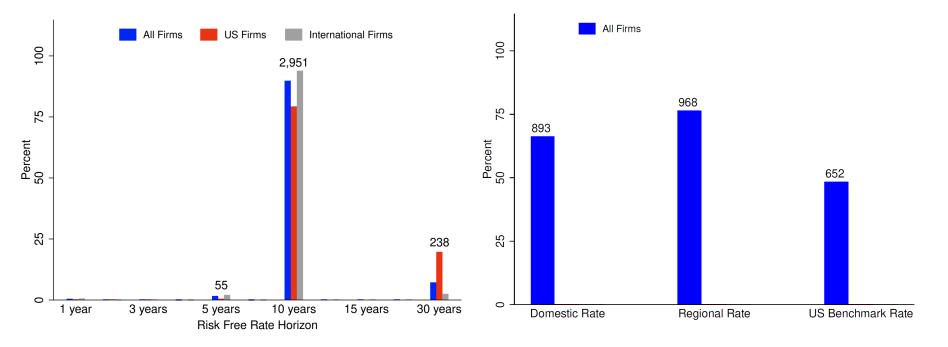
$1 = \frac{cov(rf_{A-B,i,t}, r_{A-B,i,t}^{E})}{var(r_{A-B,i,t}^{E})} + \frac{cov(\beta * ERP_{A-B,i,t}, r_{A-B,i,t}^{E})}{var(r_{A-B,i,t}^{E})}$								
Dep. variable $=$		rf_{A-}	-B, i, t			$(\beta \times EF)$	$(P)_{A-B,i,t}$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Full San	nple							
$r^E_{A-B,i,t}$	$\begin{array}{c} 0.227^{***} \\ (0.033) \end{array}$	$\begin{array}{c} 0.227^{***} \\ (0.032) \end{array}$	$\begin{array}{c} 0.233^{***} \\ (0.019) \end{array}$	$\begin{array}{c} 0.214^{***} \\ (0.040) \end{array}$	$\begin{array}{c} 0.773^{***} \\ (0.033) \end{array}$	$\begin{array}{c} 0.773^{***} \\ (0.032) \end{array}$	$\begin{array}{c} 0.785^{***} \\ (0.040) \end{array}$	$\begin{array}{c} 0.786^{***} \\ (0.040) \end{array}$
Year FE Firm FE		\checkmark	\checkmark	√ ✓		\checkmark	\checkmark	\checkmark
Observations F Statistic	$1,\!498 \\ 46.57$	$\begin{array}{c}1,\!497\\49.93\end{array}$	$1,269 \\ 156.75$	$1,117 \\ 29.15$	$1,498 \\ 542.02$	$1,497 \\576.98$	$1,119 \\ 386.54$	$1,117 \\ 393.63$

Key patterns:

- I. Disagreement in both set of variables
- **II.** Estimated variables drive > 75% of the disagreement

Drivers of disagreement

$1 - \frac{\text{cov}(rf_{A-B,i,t},r_{A-B,i,t}^{E})}{\text{cov}(rf_{A-B,i,t},r_{A-B,i,t}^{E})}$	$\sum \frac{\text{cov}(\beta * \text{ERP}_{A-B,i,t}, r_{A-B,i,t}^{E})}{\text{cov}(\beta * \text{ERP}_{A-B,i,t}, r_{A-B,i,t}^{E})}$
$1 - \frac{var(r_{A-B,i,t}^E)}{var(r_{A-B,i,t})}$	$\operatorname{var}(\mathbf{r}^{\mathbf{E}}_{\mathbf{A}-\mathbf{B},\mathbf{i},\mathbf{t}})$

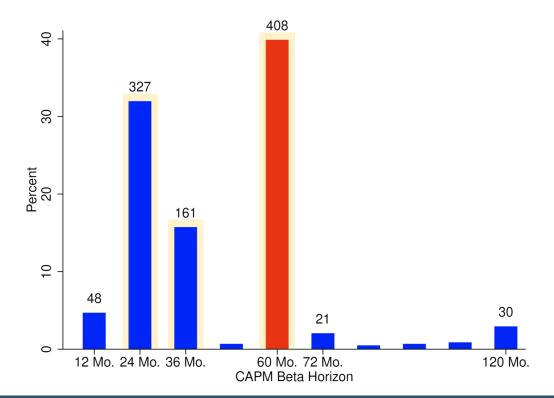

Panel B: United	States Samp	ole						
$r^E_{A-B,i,t}$	$0.075 \\ (0.053)$	0.083 (0.051)	$0.113 \\ (0.078)$	0.113	0.925^{***} (0.053)	0.917^{***} (0.051)	0.887^{***} (0.078)	0.887^{***}
	(0.055)	(0.051)	(0.078)	(0.071)	(0.055)	(0.051)	(0.078)	(0.071)
Year FE		\checkmark		\checkmark		\checkmark		\checkmark
Firm FE			\checkmark	\checkmark			\checkmark	\checkmark
Observations	229	228	160	154	229	228	160	154
F Statistic	2.01	2.70	2.13	2.53	309.10	329.37	130.73	156.88
Panel C: Interne	ational Samp	ole						
$r^E_{A-B,i,t}$	0.257^{***}	0.256^{***}	0.233^{***}	0.225***	0.743^{***}	0.744^{***}	0.767^{***}	0.775^{***}
	(0.039)	(0.037)	(0.045)	(0.045)	(0.039)	(0.037)	(0.045)	(0.045)
Year FE		\checkmark		\checkmark		\checkmark		\checkmark
Firm FE			\checkmark	\checkmark			\checkmark	\checkmark
Observations	1,269	1,268	959	957	1,269	1,268	959	957
F Statistic	43.61	47.18	26.46	25.53	364.05	399.78	287.42	301.57

Key patterns:

- I. Disagreement in both set of variables
- II. Estimated variables drive > 75% of the disagreement
- III. Risk-free rate effect is weaker with US data

Same class of models; different cost of equity

Start with the risk-free rate benchmark

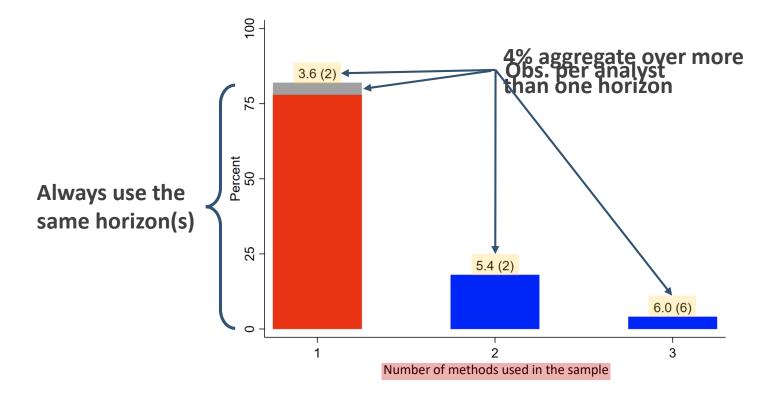

Methodology selection patterns:

<u>Take-away</u>: Helps explain why risk-free rate drives less of the variation for US firms in the decomposition

- · υ. σσ/ο μνε υς μεανμιλ λιεια
- International: 69% use regional treasury yield

Same class of models; different cost of equity

97% of analysts use CAPM when estimating their cost of equity, but...


Methodology selection patterns:

- Anchored on annual horizon
- 2, 3, and 5 years are the main horizons (85%)
 - Document similar patterns for different return frequencies

What drives methodological choices?

CAPM Beta Trailing Horizon Methodology

What do the analysts in our sample say that they do?

Methodology selection patterns:

Take-away: Persistent choice in methodology, cross-sectional disagreement

Robust to using only 4+ forecasts, multi-year, multi-firm, ...

What drives methodological choices?

What drives analysts' decisions:

 $\beta_{i,a,t} = \alpha_i + \alpha_{\text{Brokerage}} + \alpha_{\text{Analyst}}$

- Firm characteristics
- Institutional norms (Brokerage house "cookbook")
- Personal criteria

	Sum of Squares (% of Model)	Degrees of Freedom	Adjusted Partial R^2
	(1)	(2)	(3)
Panel A: Full Sample			
Firm Indicators	78%	$1,\!947$	0.38
Brokerage Indicators	2%	36	0.01
Analyst Indicators	19%	$1,\!120$	0.28
Observations		6,411	
R^2		0.78	
Adjusted \mathbb{R}^2		0.57	

Results

 Analyst effects matter more for beta choices

Methodological Choices and Related Theories

Resolving Estimation Ambiguity: Theory

Robust Methodological Choices

- I. Max-Min (Gilboa and Schmeidler, 1989, Hansen and Sargen, AER 2001)
 - Select a method that would be optimal under a justifiable worst-case scenario

	Max-Min	Bayesian selection	Behavioral
Decision criteria	E.g.: Highest Beta Across Horizons		
Persistency	Time-varying		
Individual-specific	No		
Nb. of horizons	One		

Resolving Estimation Ambiguity: Theory

- Robust Methodological Choices
- Bayesian selection
 - I. Bayesian selection criteria to average across different specifications (Giacomini et al., 2019, 2022)

	Max-Min	Bayesian selection	Behavioral
Decision criteria	E.g.: Highest Beta Across Horizons	Average Over Multiple Horizons	
Persistency	Time-varying	Time-varying*	
Individual-specific	No	Yes*	
Nb. of horizons	One	Multiple*	

Resolving Estimation Ambiguity: Theory

- Robust Methodological Choices
- Aggregation Theories
- Behavioral Theories
 - I. Familiar strategies (Heath and Tversky, 1991; Fox and Tversky, AER 1995)
 - II. Anchoring and simplification

	Max-Min	Bayesian selection	Behavioral
Decision criteria	E.g.: Highest Beta Across Horizons	Average Over Multiple Horizons	Familiarity and anchoring
Persistency	Time-varying	Time-varying*	Persistent
Individual-specific	No	Yes*	Yes
Nb. of horizons	One	Multiple*	Not specified

Evidence So Far

- Methodological choices are persistent over time
- Driven by idiosyncratic individual-specific criteria
- Only 3-4% of individuals use more than one horizon

	Max-Min	-Bayesian selection	Behavioral	
Decision criteria	E.g.: Highest Beta Across Horizons	Average Over Multiple Horizons	Familiarity and anchoring	
Persistency	X Time-varying	X Time-varying*	Persistent	
Individual-specific	No No	Yes*	Yes	
Nb. of horizons	📀 One	× Multiple*	Not specified	

Conclusion

- Large variation in estimated discount rates, even using the same model
- Methodological choices persistent and specific to analysts
- Agents appear to resolve ambiguity by adopting one model and applying it across settings

Appendix

		Discount $Rate_{a,i,t}$				
		Above	Below			
		Consensus	Consensus	Total		
	Above Consensus	$29.5\% \\ 7,037$	$25.1\% \\ 6,004$	$54.6\%\ 13,041$		
$TGR_{a,i,t}$	Below Consensus	$19.7\% \\ 4,706$	$25.7\% \\ 6,136$	$45.4\%\ 10,842$		
	Total	$49.2\%\ 11,743$	50.8% 12,140	$100.0\%\ 23,883$		