The Dual Local Markets: Family, Jobs, and the Spatial Distribution of Skills

Jingting Fan (Pennsylvania State University) Ben Zou (Purdue University) May 2024 ABFER

1

Introduction

Job and family remain largely 'local'

- most live with their spouses and within commuting distances from their jobs
- in choosing where to live, returns from both labor and marriage markets are considered
- implications for the spatial distribution of economic activity?
- Two trends in the U.S. economy in the past half century
 - increasing disparities between skilled and less-skilled cities ("regional divergence") ("evidence

- declining marriage rate
- Are these two phenomena related?

Note: Based on adults ages 18 and older. Percents may not total 100% due to rounding.

Source: Pew Research Center analysis of Decennial Census (1960-2000) and American Community Survey data (2008, 2010), IPUMS.

PEW RESEARCH CENTER

Decline of Marriage: Across Cohort at a Given Age

% never married, by cohort (at ages 25-34, 35-44, 45-54)

Note: The dotted lines are projected rates based on rates of the previous cohort.

Source: Pew Research Center analysis of the Decennial Census and American Community Surveys (ACS), IPUMS

PEW RESEARCH CENTER

- How do the local *labor* market and the local *marriage* market interact to shape the size and productivity of cities
- Do marriage market incentives make the spatial distribution of economic activities more or less concentrated?
 - How important are spillovers and general equilibrium effects?

- Builds a spatial equilibrium model with endogenous marriage formation
 - labor and marriage market considerations jointly determine location choices, which in turn affect eqm returns in both markets
 - delivers a sufficient statistic for the marriage market premium of a city
- Calibrates the model to the U.S. spatial economy in 2000
 - the model matches the spatial heterogeneity in marriage outcomes well
 - counterfactuals find marriages to be a force of spatial dispersion, despite positive assortative matching. Endogenous marriage returns and GE important
- Accounting for the spatial divergence between 1960 and 2000
 - evaluate roles of declining share of married, changing social norm on working wife, narrowing gender pay gap, etc. (Greenwood et al., 2016, 2017)
 - reduced return from marriage accounts for up to a third of the spatial divergence over this period

- Quantitative spatial GE models (e.g., Davis & Dingel, 2019; Fajgelbaum & Gaubert, 2020; reviewed by Redding & Rossi-Hansberg, 2017.)
 - Predominantly modeling individual choices
 - Contribution: Develop a tractable model with endogenous local marriage markets.
- Explaining the spatial divergence of U.S. economy (due to endogenous amenity (diamond, 2016); skill-biased tech.

change (Giannone, 2017); housing supply (Hsieh & Moretti, 2019))

- mostly descriptive evidence on marriage and spatial sorting (Costa & Kahn, 2000; Compton & Pollak, 2007), with exceptions (e.g., Alonzo, 2021)
- Contribution: The declining marriage rate is quantitatively important in spatial divergence.
- Quantitative transferable utility marriage models (since Choo & Siow, 2006)
 - mostly do not have a spatial dimension
 - Contribution: Extend a workhorse matching model into a multi-region GE setting.

Spatial Heterogeneity in Local Marriage Markets

More Likely to Be Single in Skill-intensive Cities

Prob. of Unmarried

Note: Aged 25 and 54 in 2000 Census. MSA-level single rate by gender-skill adjusted for age and race. Marks show MSAs binned by log skill share.

More Women in Cities with Higher Gender Wage Gaps

Gender Ratio and Pred. Relative Wage

Note: Separately for full-time men and women, log earnings regressed on demographics, MSA FE, and industry-occupation FE. Avg ind-occ FEs within MSA indicates gender-specific labor demand.

- Predicted gender wage gaps driven by relative labor demand.
- *More* women in places with higher male wage, consistent with marriage-market considerations in migration (Edlund, 2005).

People migrate to cities with higher earnings gains from marriage

- gender wage gap for skill h/I: $GWG_i^e \equiv \log(w_i^{M,e}) \log(w_i^{F,e})$
- gender marriage income gap for h/I: $GMIG_i^e \equiv log(\mathbb{E}hhd_income_i^{M,e}) log(\mathbb{E}hhd_income_i^{F,e})$

Specification:

gender difference in migration in i for skill $e = \beta_0 + \beta_1 \cdot GMIG_i^e + \beta_2 \cdot GWG_i^e + \varepsilon_i$

- def of gender difference in migration: (of net migration of men of net migration of women)/(of people of the same skill in MSA)
- expect β₁ > 0

	gender difference in net-migration rate, 25-34 yo		
	(7)	(8)	
Panel A: High-skilled			
gender wage gap	0.034	-0.063	
	(0.030)	(0.064)	
gender gap in hhd income	0.031	0.230	
	(0.045)	(0.071)	
model	OLS	2SLS	
Ν	283	283	
Panel B: Low-skilled			
gender gender wage gap	0.051	0.052	
	(0.023)	(0.027)	
gender gap in hhd income	0.229	0.239	
	(0.025)	(0.036)	
model	OLS	2SLS	
N	283	283	

Note: Data from 2000 Censuses. Each observation is an MSA. Robust standard errors are in parentheses. The dependent variable is the gender difference in net-migration rate among the 25-34 year old, separately for the high-skilled and the low-skilled. It is calculated as (# of net migration of men - # of net migration of women)/(# of people of the same skill in MSA).

Model

- N cities, indexed by d
 - cities differ in exogenous components of amenities and productivity, land supply shifter and elasticity
 - agglomeration forces change the endogenous component of amenities, productivity, and rent.
- Young adults choose city
- People in a city participate in the local marriage market
 - (e, e') denote a couple: e the skill of the husband and e' that of the wife
 - singles: (e, \emptyset) or (\emptyset, e')
 - 8 household types

- $\overline{V}_{d}^{(e,e')}$: the expected utility of household type (e,e') in d
- A couple with a man ω of skill e and a woman ω' of skill e' has unitary household utility: $\overline{V}_{d}^{(e,e')} + \xi_{M}^{e,e'}(\omega) + \xi_{F}^{e,e'}(\omega')$
 - $\xi^{e,e'}_M(\omega)$ and $\xi^{e,e'}_F(\omega')$ idisocynratic taste of the spouses for outcome (e,e')
 - household utility will be split between ω and ω' if they form a couple
 - the exact split depends on the outside option of the two partners
- Utility of ω if remaining single is $\overline{V}_{d}^{(e,\emptyset)} + \xi_{M}^{e,\emptyset}(\omega)$
- Utility of ω' if remaining single is $\overline{V}_{d}^{(\emptyset,e')} + \xi_{F}^{\emptyset,e'}(\omega')$

- Given the demographic composition of city *d* and *V*, the outcome of the marriage market in city *d* is a stable match that prescribes who matches with whom, and the distribution of utility: such that
 - Utility of ω : $u_{d,M}^{e,e'}(\omega) = U_{d,M}^{e,e'} + \xi_M^{e,e'}(\omega) = \max_{e'' \in \{H,L,\emptyset\}} [U_{d,M}^{e,e''} + \xi_M^{e,e''}(\omega)]$
 - 'No money left on table'

$$\begin{array}{l} U_{d,M}^{e,e'} + U_{d,F}^{e,e'} = \overline{V}_{d}^{e,e'} \ (4 \ eqs \\ U_{d,M}^{e,\varnothing} = \overline{V}_{d}^{e,\varnothing} \ (2 \ eqs) \\ U_{d,F}^{\varnothing,e'} = \overline{V}_{d}^{\varnothing,e'} \ (2 \ eqs) \end{array}$$

- no excess demand for each type of marriage (4 eqs)

• The expected utility of ω of type (M, e) from city d

$$\overline{U}_{d,M}^{e} = \mathbb{E} \max_{e' \in \{H,L,\emptyset\}} [U_{d,M}^{(e,e')} + \xi_{M}^{e,e'}(\omega)]$$

• Similarly, for a women of skill e':

$$\overline{U}_{d,F}^{e'} = \mathbb{E} \max_{e \in \{H,L,\emptyset\}} [U_{d,F}^{(e,e')} + \xi_F^{e,e'}(\omega)]$$

• Parametric assumption: $\vec{\xi}_{M}^{e}(\omega) \equiv \left(\xi_{M}^{e,H}(\omega), \xi_{M}^{e,L}(\omega), \xi_{M}^{e,\varnothing}(\omega)\right)$ i.i.d. from a Gumbel distribution with parameter κ_{M}^{e}

The Marriage Market Premia of Cities

- Fixing V^{e,Ø}_d, higher r^{e,Ø}_{d,M} ⇒ marriages relatively less attractive in d ⇒ marriage incentive less important a reason for people to choose d
- Implications
 - captures the marriage market premia of cities
 - the change in $\overline{U}_{d,M}^{e}$ when single rate is set to 1: $-\frac{1}{\kappa_{M}^{e}}\log(1) + \frac{1}{\kappa_{M}^{e}}\log(r_{d,M}^{e,\varnothing})$
 - Skilled intensive cities have higher single rates \Rightarrow marriage is a dispersion force in PE

Remaining Household Decisions

- Singles
 - Indirect utility given by

$$\overline{V}_{d,s}^{e} \equiv \max_{h,n} \log \left(A_{d}^{e} \cdot (I_{d,s}^{e} - r_{d} \cdot h - p_{n} \cdot n)^{(1-\alpha-\beta)} \cdot h^{\alpha} \cdot n^{\beta} \right).$$

where A_d^s is amenities; $I_{d,s}^e$ is income (earnings + transfer); *h* is housing consumption and r_d rent; *n* is home goods consumption and p_n its market price

• Couples

- the wife obtains idisocyntatic ζ^{H} and ζ^{W} (for home production and work)

$$\begin{split} \tilde{V}_{d}^{e,e'}(\zeta^{H},\zeta^{W}) &= \delta^{e,e'} + \\ \max_{H,W} \left\{ \zeta^{W} + \max_{h,n} \log \left(A_{d}^{e,e'} (I_{d,W}^{e,e'} - r_{d}h - p_{n}n)^{(1-\alpha-\beta)} h^{\alpha} n^{\beta} \right) \\ \zeta^{H} + \max_{h} \log \left(A_{d}^{e,e'} (I_{d,H}^{e,e'} - r_{d}h)^{(1-\alpha-\beta)} h^{\alpha} (\bar{n}^{e'})^{\beta} \right) \right\} \end{split}$$

- A unitary household utility function, with household amenities, $(A_d^{e,e'} = (A_d^e A_d^{e'})^{1/2})$ and household-level budget
- The option of having a stay at home spouse, captured by \bar{n}^e
- Love $(\delta^{e,e'})$: as a residual to match the number of the four types of marriages

- Amenities and city productivity
 - Exogenous: \bar{A}^e_d and \bar{K}^e_d
 - Endogenous: agglomeration for amenities $(\sigma_{e,e'})$ and productivity $(\gamma_{e,e'})$
- Housing market: shifter \overline{H}_d and return to scale $\epsilon_d < 1$. Profit paid back to household in lump sump t
- Gender wage gap: effective wage for women a β^e fraction of men
- Equilibrium definition: agents optimize, labor/good/housing/marriage clear, expectation consistent with reality

Parameterization and Model Validation

Parameters	Descriptions	Value	Targets/Source			
A. Assigned directly						
$\sigma_{e,e'}$	amenity spillovers	$\sigma_{H,H}~=~0.77,~\sigma_{H,L}~=~0.18,$)			
		$\sigma_{L,H} = -1.24, \ \sigma_{L,L} = -0.43$				
$\gamma_{e,e'}$	prod. spillovers	$\gamma_{H,H} = 0.05, \ \gamma_{H,L} = 0.04,$	Fajgelbaum and Gaubert (2020)			
		$\gamma_{L,H} = 0.02, \gamma_{L,L} = 0.003$				
ρ	substitution between skills	0.392	,			
β_F^e	gender wage gap	$\beta_F^H = 0.76, \beta_F^L = 0.74$	2000 Census			
α	housing share	0.25				
β	home-good share	0.2				
ϵ_d	housing supply elast.	Figure 2)			
θ_s^e	income elast. of migration	$\theta_M^H = \theta_F^H = 4.98,$	Diamond (2016)			
-		$\theta^L_M = \theta^L_F = 3.26$	J			
B. Estimated	independently					
η_F^e	labor force participation.	Table 1)			
κ_s^e	marriage taste shock	Table 2, column 3	2000 Census			
$\tau^{e}_{b,s}$	migration cost	Table 4	J			
C. Calibrated	l jointly					
\bar{H}_d	housing supply shifter	-	rent by city			
\bar{A}^e_d	fund. amenities	-	emp by city $ imes$ skill			
\bar{K}_{d}^{e}	fund. prod.	-	wage by city $ imes$ skill			
$\delta^{e,e'}$	love	$\delta^{H,H} = 1.07, \ \delta^{H,L} = 0.28,$	699/			
		$\delta^{L,H} = -1.96, \ \delta^{L,L} = 1.20$	00% people in marriages; composition: 21%			
$ar{n}^e$	home prod. pref.	$\bar{n}^{H} = 0.004, \ \bar{n}^{L} = 1.03$	[Π,Π], 13% (Π,\Box), 9% (L,H), 50% (L,L) labor force participation (83% and 73%)			

Counterfactuals

The PE and GE Effects of Eliminating Marriages

- PE: Set $r_{e,\emptyset}^{d,M}$ and $r_{\emptyset,e'}^{d,F}$ (single rate) to 1, while holding utility of being single unchanged
- GE: Set $\delta^{e,e'}$ (non-economic return of a match) to sufficient negative

Comparison Between 1960 and 2000 Economy

- Increasing skill share
- Declining marriage
- Increasing LFP among married women

	2000		1960		
	Target	Parameter	Target	Parameter	
Demographics	15% (M,H), 34% (M,L), 14% (F,H), 36% (F,L)		5.7% (M,H),43% (M,L), 3.5% (F,H), 48% (F,L)	-	
Marriage patterns	68% people married: HH (21%), HL (13%), LH(9%), LL (56%)	$\begin{split} \delta^{H,H} &= 1.06, \ \delta^{H,L} = 0.28, \\ \delta^{L,H} &= -1.96, \ \delta^{L,L} = 1.20 \end{split}$	83% people married: HH (4%), HL (8%), LH(3%), LL (85%)	$\begin{split} \delta^{H,H} &= 1.24, \ \delta^{H,L} = 1.72, \\ \delta^{L,H} &= -2.13, \ \delta^{L,L} = 3.98 \end{split}$	
Gender wage gap	24% for H, 26% for L	$eta_F^H=0.76,\ eta_F^L=0.74$	36% for H, 38% for L	$eta_F^H=$ 0.64, $eta_F^L=$ 0.62	
LFP of married women	83% among H, 73% among L	$ar{n}^H=0.004,\ ar{n}^L=1.03$	58% among H, 46% among L	$ar{n}^{H} = 0.62,$ $ar{n}^{L} = 2.19$	

Changing Marriage Institution and Spatial Divergence

	Model			Data	
	(1)	(2)	(3)	(4)	(5)
	home	gender	non-econ.		
	production	wage gap	return	all	
	(p_n, \bar{n}^e)	(β_F^e)	$(\delta^{e,e'})$	together	
skill gradient	0.003	0.001	0.028	0.054	0.14
population gradient	0.015	0.003	0.11	0.20	0.33

- Declining non-economic returns of marriage account for 20-30% of the spatial divergence
- Marriage-related model elements accounts for 30-60%

Conclusions

- A new quantitative spatial equilibrium model with endogenous marriage formation
 - a sufficient statistic for the PE impacts of the secular change in marriage
 - tractable quantitative GE analysis
- An application to the U.S. finds
 - marriage is a dispersion force and first-order determinant of the spatial distribution of economic activities
 - changing marriage institution is an important factor driving changes in spatial economics

Decline of Marriage: Not due to Increasing Cohabitation

% of population ages 25 to 54 who are ...

Note: Unpartnered adults are those who are neither married nor living with an unmarried partner.

Source: Pew Research Center analysis of 1990 and 2000 decennial census and 2010 and 2019 American Community Survey (IPUMS). "Rising Share of U.S. Adults Are Living Without a Spouse or Partner"

PEW RESEARCH CENTER

Decline of Marriage: Across Education Groups

Source: Pew Research Center analysis of the 1960-2000 decennial censuses and 2010-2012 American Community Survey, Integrated Public Use Microdata Series (IPUMS)

PEW RESEARCH CENTER

More Never-married people in Skill-intensive Cities

Prob. of Never Married

Note: Aged 25 and 54 in 2000 Census. MSA-level never-married rate by gender-skill adjusted for age and race. Marks show MSAs binned by log skill share.

▶ back

Shares of Unmarried by Age in Skill-intensive and Less Skill-intensive Cities

▶ back

Changing Marriage Institution and Spatial Divergence

Changing Marriage Institution and Spatial Divergence

Change in Skill Intensity: Model

Gumbel Parameter in Wife's LFP: η_F^e

$$\log(\frac{I_d^{e,e'}}{1-I_d^{e,e'}}) = \eta_F^{e'} \cdot [\log(I_{d,W}^{e,e'}) - \log(I_{d,H}^{e,e'})] + f(\hat{p}_n, \hat{n}^{e'}) + \lambda^{e,e'} + \varepsilon_d^{e,e'}.$$

	(1)	(2)
	e' = H	e' = L
$\log(I^{e,e'}_{d,W}) - \log(I^{e,e'}_{d,H})$	0.866	3.334
	(0.407)	(0.400)
Controls		
log rent	Х	×
% having young children	Х	×
distr. of husband age	Х	×
Household type FE	Х	×
	(H,H),(L,H)	(H, L), (L, L)
N	653	654

Gumbel Parameter for Idiosyncratic Marital Pref.: κ_s^e

$$\begin{split} \log(q_d^{H,H}) &= g(\mathbf{X}_d^{H,H}) + \frac{1}{\frac{1}{\kappa_M^H} + \frac{1}{\kappa_F^H}} [\alpha \log(r_d) + \frac{1}{\kappa_M^H} \log(q_d^{H,\emptyset}) + \frac{1}{\kappa_F^H} \log(q_d^{\emptyset,H})] + \varepsilon_d^{H,E} \\ \log(q_d^{H,L}) &= g(\mathbf{X}_d^{H,L}) + \frac{1}{\frac{1}{\kappa_M^H} + \frac{1}{\kappa_F^L}} [\alpha \log(r_d) + \frac{1}{\kappa_M^H} \log(q_d^{H,\emptyset}) + \frac{1}{\kappa_F^L} \log(q_d^{\emptyset,L})] + \varepsilon_d^{H,L} \\ \log(q_d^{L,H}) &= g(\mathbf{X}_d^{L,H}) + \frac{1}{\frac{1}{\kappa_M^L} + \frac{1}{\kappa_F^H}} [\alpha \log(r_d) + \frac{1}{\kappa_M^L} \log(q_d^{L,\emptyset}) + \frac{1}{\kappa_F^H} \log(q_d^{\emptyset,H})] + \varepsilon_d^{L,H} \\ \log(q_d^{L,L}) &= g(\mathbf{X}_d^{L,L}) + \frac{1}{\frac{1}{\kappa_M^L} + \frac{1}{\kappa_F^L}} [\alpha \log(r_d) + \frac{1}{\kappa_M^L} \log(q_d^{L,\emptyset}) + \frac{1}{\kappa_F^L} \log(q_d^{\emptyset,L})] + \varepsilon_d^{L,L}. \end{split}$$

▶ back

	(1)	(2)	(3)
κ_M^H	2.37	1.84	1.62
	(0.35)	(0.37)	(0.40)
κ_F^H	2.13	1.64	1.66
	(0.40)	(0.39)	(0.47)
κ_M^L	1.21	0.87	0.71
	(0.27)	(0.24)	(0.24)
κ_F^L	5.13	3.53	2.61
	(1.39)	(1.08)	(0.91)
$\log(\frac{I_d^{e,e'}}{I_{d,M}^{e} \cdot I_{d,F}^{e'}})$	Х	Х	Х
$\log(l_d^{e,e'})$	Х	Х	Х
\hat{p}_n	Х	Х	Х
$\log(\hat{A}_d)$			
climate		Х	Х
services			Х
N	1181	1181	1181

• Parameterize migration cost by distance bins

$$d^{e}_{od,s} = \mathbb{I}_{\mathcal{S}(o) \neq \mathcal{S}(d)} \cdot \sum_{b=1}^{5} \tau^{e}_{b,s} \cdot \mathbb{I}_{b}$$

• Combining with migration flow function

$$\log(N_{od,s}^{e}) = \lambda_{o,s}^{e} + \lambda_{d,s}^{e} - \theta_{s}^{e} \cdot \mathbb{I}_{S(o) \neq S(d)} \cdot \sum_{b=1}^{5} \tau_{b,s}^{e} \cdot \mathbb{I}_{b} + \varepsilon_{od,s}^{e},$$

🍽 back

	(1)	(2)	(3)	(4)
	m	male		nale
dep var: $log(N^e_{od,s})$	high	low	high	low
$ heta_s^e \cdot au_{1,s}^e$	1.870	2.224	1.957	2.148
	(0.112)	(0.135)	(0.114)	(0.141)
$ heta_s^e \cdot au_{2,s}^e$	2.621	3.312	2.713	3.260
	(0.051)	(0.062)	(0.053)	(0.061)
$ heta_s^e \cdot au_{3,s}^e$	3.510	4.315	3.638	4.280
	(0.048)	(0.058)	(0.050)	(0.058)
$ heta_s^e \cdot au_{4,s}^e$	4.025	4.888	4.161	4.868
	(0.048)	(0.059)	(0.050)	(0.058)
$ heta_s^e \cdot au_{5,s}^e$	4.346	5.378	4.529	5.365
	(0.050)	(0.061)	(0.052)	(0.060)
destination MSA FE $(\lambda_{d,s}^e)$	Х	Х	Х	Х
state-of-origin FE $(\lambda_{o,s}^e)$	Х	Х	Х	Х
Ν	11099	13529	11436	13586

Value of Marriage Market Options in Location Choices

Gender Ratio and Relative Wage

Note: Aged 25 and 54 in 2000 Census. Log gender wage gap is calculated from full-time workers and is adjusted for age, race, and detailed education levels.

- The flat relation is at odds with workhorse spatial equilibrium models
- Consistent with marriage prospects affecting location choices

Regional Divergence: Skilled Cities Grew Faster

Note: 5% sample of 1960 and 2000 population censuses. Each circle represents an MSA. The size of the circle corresponds to the size of the working age population. H/L is the employment skill ratio.

Regional Divergence: Skilled Cities Grew Even More Skilled

Note: 5% sample of 1960 and 2000 population censuses. Each circle represents an MSA. The size of the circle corresponds to the size of the working age population. H/L is the employment skill ratio.

Model Validation: Gender Composition of Skills

• Calibration targets skill share (H/L) in each city, but not the gender composition of skills in each city

Model Validation: Composition of Households

• Calibration targets the composition of marriages in the aggregate, but not by city

Utility in Different Marriage Outcomes $(U_{d,s}^{e,e'})$

- utility for both the single and the married increases with skill intensity, but the former increases faster
- marrying an *H* may be more attractive than other outcomes on average, but the premium decreases with skill intensity, so the single rate increases
- underscores the importance of endogenous marital surplus and its division